Properties

Label 2385.1.ca.a.1729.1
Level $2385$
Weight $1$
Character 2385.1729
Analytic conductor $1.190$
Analytic rank $0$
Dimension $48$
Projective image $D_{52}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2385,1,Mod(19,2385)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2385, base_ring=CyclotomicField(52))
 
chi = DirichletCharacter(H, H._module([0, 26, 37]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2385.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2385 = 3^{2} \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2385.ca (of order \(52\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.19027005513\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(2\) over \(\Q(\zeta_{52})\)
Coefficient field: \(\Q(\zeta_{104})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} - x^{44} + x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{52}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{52} - \cdots)\)

Embedding invariants

Embedding label 1729.1
Root \(0.855781 - 0.517338i\) of defining polynomial
Character \(\chi\) \(=\) 2385.1729
Dual form 2385.1.ca.a.469.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30452 + 0.239062i) q^{2} +(0.709609 - 0.269119i) q^{4} +(-0.616719 - 0.787183i) q^{5} +(0.273612 - 0.165404i) q^{8} +O(q^{10})\) \(q+(-1.30452 + 0.239062i) q^{2} +(0.709609 - 0.269119i) q^{4} +(-0.616719 - 0.787183i) q^{5} +(0.273612 - 0.165404i) q^{8} +(0.992709 + 0.879463i) q^{10} +(-0.885456 + 0.784446i) q^{16} +(0.117248 - 0.0288990i) q^{17} +(0.783659 + 1.74122i) q^{19} +(-0.649475 - 0.392621i) q^{20} +(-1.25222 + 1.25222i) q^{23} +(-0.239316 + 0.970942i) q^{25} +(0.585260 - 1.87816i) q^{31} +(0.770386 - 0.983325i) q^{32} +(-0.146044 + 0.0657290i) q^{34} +(-1.43856 - 2.08411i) q^{38} +(-0.298946 - 0.113375i) q^{40} +(1.33419 - 1.93291i) q^{46} +(1.81050 - 0.219835i) q^{47} +(0.354605 + 0.935016i) q^{49} +(0.0800767 - 1.32383i) q^{50} +(0.855781 + 0.517338i) q^{53} +(-0.885456 - 1.46472i) q^{61} +(-0.314485 + 2.59002i) q^{62} +(-0.220161 + 0.419482i) q^{64} +(0.0754229 - 0.0520607i) q^{68} +(1.02469 + 1.02469i) q^{76} +(1.21323 + 0.222333i) q^{79} +(1.16358 + 0.213234i) q^{80} +(1.32231 + 1.32231i) q^{83} +(-0.0950579 - 0.0744731i) q^{85} +(-0.551592 + 1.22559i) q^{92} +(-2.30928 + 0.719602i) q^{94} +(0.887362 - 1.69073i) q^{95} +(-0.686117 - 1.13498i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 4 q^{16} - 4 q^{19} - 4 q^{31} + 4 q^{49} + 4 q^{61} + 4 q^{76} + 4 q^{79} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2385\mathbb{Z}\right)^\times\).

\(n\) \(1432\) \(1486\) \(1856\)
\(\chi(n)\) \(-1\) \(e\left(\frac{23}{52}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30452 + 0.239062i −1.30452 + 0.239062i −0.787183 0.616719i \(-0.788462\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(3\) 0 0
\(4\) 0.709609 0.269119i 0.709609 0.269119i
\(5\) −0.616719 0.787183i −0.616719 0.787183i
\(6\) 0 0
\(7\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(8\) 0.273612 0.165404i 0.273612 0.165404i
\(9\) 0 0
\(10\) 0.992709 + 0.879463i 0.992709 + 0.879463i
\(11\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(12\) 0 0
\(13\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.885456 + 0.784446i −0.885456 + 0.784446i
\(17\) 0.117248 0.0288990i 0.117248 0.0288990i −0.180255 0.983620i \(-0.557692\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(18\) 0 0
\(19\) 0.783659 + 1.74122i 0.783659 + 1.74122i 0.663123 + 0.748511i \(0.269231\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(20\) −0.649475 0.392621i −0.649475 0.392621i
\(21\) 0 0
\(22\) 0 0
\(23\) −1.25222 + 1.25222i −1.25222 + 1.25222i −0.297503 + 0.954721i \(0.596154\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(24\) 0 0
\(25\) −0.239316 + 0.970942i −0.239316 + 0.970942i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(30\) 0 0
\(31\) 0.585260 1.87816i 0.585260 1.87816i 0.120537 0.992709i \(-0.461538\pi\)
0.464723 0.885456i \(-0.346154\pi\)
\(32\) 0.770386 0.983325i 0.770386 0.983325i
\(33\) 0 0
\(34\) −0.146044 + 0.0657290i −0.146044 + 0.0657290i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(38\) −1.43856 2.08411i −1.43856 2.08411i
\(39\) 0 0
\(40\) −0.298946 0.113375i −0.298946 0.113375i
\(41\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(42\) 0 0
\(43\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.33419 1.93291i 1.33419 1.93291i
\(47\) 1.81050 0.219835i 1.81050 0.219835i 0.855781 0.517338i \(-0.173077\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(48\) 0 0
\(49\) 0.354605 + 0.935016i 0.354605 + 0.935016i
\(50\) 0.0800767 1.32383i 0.0800767 1.32383i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.855781 + 0.517338i 0.855781 + 0.517338i
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(60\) 0 0
\(61\) −0.885456 1.46472i −0.885456 1.46472i −0.885456 0.464723i \(-0.846154\pi\)
1.00000i \(-0.5\pi\)
\(62\) −0.314485 + 2.59002i −0.314485 + 2.59002i
\(63\) 0 0
\(64\) −0.220161 + 0.419482i −0.220161 + 0.419482i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(68\) 0.0754229 0.0520607i 0.0754229 0.0520607i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(72\) 0 0
\(73\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.02469 + 1.02469i 1.02469 + 1.02469i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.21323 + 0.222333i 1.21323 + 0.222333i 0.748511 0.663123i \(-0.230769\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(80\) 1.16358 + 0.213234i 1.16358 + 0.213234i
\(81\) 0 0
\(82\) 0 0
\(83\) 1.32231 + 1.32231i 1.32231 + 1.32231i 0.911900 + 0.410413i \(0.134615\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(84\) 0 0
\(85\) −0.0950579 0.0744731i −0.0950579 0.0744731i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.551592 + 1.22559i −0.551592 + 1.22559i
\(93\) 0 0
\(94\) −2.30928 + 0.719602i −2.30928 + 0.719602i
\(95\) 0.887362 1.69073i 0.887362 1.69073i
\(96\) 0 0
\(97\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(98\) −0.686117 1.13498i −0.686117 1.13498i
\(99\) 0 0
\(100\) 0.0914785 + 0.753393i 0.0914785 + 0.753393i
\(101\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(102\) 0 0
\(103\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.24006 0.470293i −1.24006 0.470293i
\(107\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0.0624722 1.03279i 0.0624722 1.03279i −0.822984 0.568065i \(-0.807692\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.700673 1.01510i 0.700673 1.01510i −0.297503 0.954721i \(-0.596154\pi\)
0.998176 0.0603785i \(-0.0192308\pi\)
\(114\) 0 0
\(115\) 1.75800 + 0.213460i 1.75800 + 0.213460i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(122\) 1.50526 + 1.69908i 1.50526 + 1.69908i
\(123\) 0 0
\(124\) −0.0901445 1.49027i −0.0901445 1.49027i
\(125\) 0.911900 0.410413i 0.911900 0.410413i
\(126\) 0 0
\(127\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(128\) −0.184709 + 0.592752i −0.184709 + 0.592752i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.0273005 0.0273005i 0.0273005 0.0273005i
\(137\) −0.677097 0.210992i −0.677097 0.210992i −0.0603785 0.998176i \(-0.519231\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(138\) 0 0
\(139\) 0.308518 + 0.186505i 0.308518 + 0.186505i 0.663123 0.748511i \(-0.269231\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(150\) 0 0
\(151\) 0.509195 0.307819i 0.509195 0.307819i −0.239316 0.970942i \(-0.576923\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(152\) 0.502425 + 0.346799i 0.502425 + 0.346799i
\(153\) 0 0
\(154\) 0 0
\(155\) −1.83940 + 0.697593i −1.83940 + 0.697593i
\(156\) 0 0
\(157\) 0 0 0.983620 0.180255i \(-0.0576923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(158\) −1.63584 −1.63584
\(159\) 0 0
\(160\) −1.24917 −1.24917
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −2.04110 1.40887i −2.04110 1.40887i
\(167\) −0.972278 + 0.587763i −0.972278 + 0.587763i −0.911900 0.410413i \(-0.865385\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(168\) 0 0
\(169\) −0.748511 0.663123i −0.748511 0.663123i
\(170\) 0.141809 + 0.0744270i 0.141809 + 0.0744270i
\(171\) 0 0
\(172\) 0 0
\(173\) 1.77080 + 0.796974i 1.77080 + 0.796974i 0.983620 + 0.180255i \(0.0576923\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(180\) 0 0
\(181\) −1.74122 0.542586i −1.74122 0.542586i −0.748511 0.663123i \(-0.769231\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.135501 + 0.549748i −0.135501 + 0.549748i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.22559 0.643237i 1.22559 0.643237i
\(189\) 0 0
\(190\) −0.753393 + 2.41772i −0.753393 + 2.41772i
\(191\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(192\) 0 0
\(193\) 0 0 0.911900 0.410413i \(-0.134615\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.503261 + 0.568065i 0.503261 + 0.568065i
\(197\) 1.13406 + 1.64296i 1.13406 + 1.64296i 0.616719 + 0.787183i \(0.288462\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(198\) 0 0
\(199\) 1.85640 + 0.704039i 1.85640 + 0.704039i 0.970942 + 0.239316i \(0.0769231\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(200\) 0.0951184 + 0.305246i 0.0951184 + 0.305246i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.709210i 0.709210i −0.935016 0.354605i \(-0.884615\pi\)
0.935016 0.354605i \(-0.115385\pi\)
\(212\) 0.746495 + 0.136800i 0.746495 + 0.136800i
\(213\) 0 0
\(214\) −0.338085 1.84487i −0.338085 1.84487i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.165404 + 1.36223i 0.165404 + 1.36223i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.671370 + 1.49172i −0.671370 + 1.49172i
\(227\) 1.29568 0.894342i 1.29568 0.894342i 0.297503 0.954721i \(-0.403846\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(228\) 0 0
\(229\) 0.447528 + 1.81569i 0.447528 + 1.81569i 0.568065 + 0.822984i \(0.307692\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(230\) −2.34438 + 0.141809i −2.34438 + 0.141809i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.376771 + 0.295181i 0.376771 + 0.295181i 0.787183 0.616719i \(-0.211538\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(234\) 0 0
\(235\) −1.28962 1.28962i −1.28962 1.28962i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(240\) 0 0
\(241\) 0.222431 + 0.423807i 0.222431 + 0.423807i 0.970942 0.239316i \(-0.0769231\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(242\) −0.937797 0.937797i −0.937797 0.937797i
\(243\) 0 0
\(244\) −1.02251 0.801087i −1.02251 0.801087i
\(245\) 0.517338 0.855781i 0.517338 0.855781i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.150523 0.610694i −0.150523 0.610694i
\(249\) 0 0
\(250\) −1.09148 + 0.753393i −1.09148 + 0.753393i
\(251\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.156356 1.28771i 0.156356 1.28771i
\(257\) −0.587763 0.972278i −0.587763 0.972278i −0.998176 0.0603785i \(-0.980769\pi\)
0.410413 0.911900i \(-0.365385\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.350034 1.91008i −0.350034 1.91008i −0.410413 0.911900i \(-0.634615\pi\)
0.0603785 0.998176i \(-0.480769\pi\)
\(264\) 0 0
\(265\) −0.120537 0.992709i −0.120537 0.992709i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(270\) 0 0
\(271\) 1.63397 0.198399i 1.63397 0.198399i 0.748511 0.663123i \(-0.230769\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(272\) −0.0811482 + 0.117564i −0.0811482 + 0.117564i
\(273\) 0 0
\(274\) 0.933728 + 0.113375i 0.933728 + 0.113375i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(278\) −0.447054 0.169545i −0.447054 0.169545i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(282\) 0 0
\(283\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.872544 + 0.457946i −0.872544 + 0.457946i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.196436 0.796974i 0.196436 0.796974i −0.787183 0.616719i \(-0.788462\pi\)
0.983620 0.180255i \(-0.0576923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −0.590668 + 0.523286i −0.590668 + 0.523286i
\(303\) 0 0
\(304\) −2.05979 0.927035i −2.05979 0.927035i
\(305\) −0.606928 + 1.60034i −0.606928 + 1.60034i
\(306\) 0 0
\(307\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.23277 1.34976i 2.23277 1.34976i
\(311\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(312\) 0 0
\(313\) 0 0 −0.616719 0.787183i \(-0.711538\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.920756 0.168735i 0.920756 0.168735i
\(317\) −1.03468 −1.03468 −0.517338 0.855781i \(-0.673077\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.465987 0.0853953i 0.465987 0.0853953i
\(321\) 0 0
\(322\) 0 0
\(323\) 0.142202 + 0.181508i 0.142202 + 0.181508i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.169725 + 0.447528i −0.169725 + 0.447528i −0.992709 0.120537i \(-0.961538\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(332\) 1.29418 + 0.582465i 1.29418 + 0.582465i
\(333\) 0 0
\(334\) 1.12785 0.999184i 1.12785 0.999184i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.410413 0.911900i \(-0.634615\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(338\) 1.13498 + 0.686117i 1.13498 + 0.686117i
\(339\) 0 0
\(340\) −0.0874961 0.0272649i −0.0874961 0.0272649i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −2.50058 0.616337i −2.50058 0.616337i
\(347\) −0.726805 + 0.381457i −0.726805 + 0.381457i −0.787183 0.616719i \(-0.788462\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(348\) 0 0
\(349\) −0.468379 + 1.50308i −0.468379 + 1.50308i 0.354605 + 0.935016i \(0.384615\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.0903879 1.49429i −0.0903879 1.49429i −0.707107 0.707107i \(-0.750000\pi\)
0.616719 0.787183i \(-0.288462\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(360\) 0 0
\(361\) −1.75460 + 1.98054i −1.75460 + 1.98054i
\(362\) 2.40117 + 0.291555i 2.40117 + 0.291555i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(368\) 0.126488 2.09109i 0.126488 2.09109i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.180255 0.983620i \(-0.557692\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.459014 0.359615i 0.459014 0.359615i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.731626 1.21026i −0.731626 1.21026i −0.970942 0.239316i \(-0.923077\pi\)
0.239316 0.970942i \(-0.423077\pi\)
\(380\) 0.174673 1.43856i 0.174673 1.43856i
\(381\) 0 0
\(382\) 0 0
\(383\) −0.887362 + 0.276513i −0.887362 + 0.276513i −0.707107 0.707107i \(-0.750000\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(390\) 0 0
\(391\) −0.110633 + 0.183009i −0.110633 + 0.183009i
\(392\) 0.251680 + 0.197179i 0.251680 + 0.197179i
\(393\) 0 0
\(394\) −1.87217 1.87217i −1.87217 1.87217i
\(395\) −0.573207 1.09215i −0.573207 1.09215i
\(396\) 0 0
\(397\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(398\) −2.59002 0.474639i −2.59002 0.474639i
\(399\) 0 0
\(400\) −0.549748 1.04746i −0.549748 1.04746i
\(401\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.45743 + 1.00599i −1.45743 + 1.00599i −0.464723 + 0.885456i \(0.653846\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.225408 1.85640i 0.225408 1.85640i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(420\) 0 0
\(421\) −0.359852 0.0217671i −0.359852 0.0217671i −0.120537 0.992709i \(-0.538462\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(422\) 0.169545 + 0.925179i 0.169545 + 0.925179i
\(423\) 0 0
\(424\) 0.319722 0.319722
\(425\) 0.120757i 0.120757i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.380592 + 1.00354i 0.380592 + 1.00354i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(432\) 0 0
\(433\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.233612 0.749688i −0.233612 0.749688i
\(437\) −3.16171 1.19908i −3.16171 1.19908i
\(438\) 0 0
\(439\) −0.645395 0.935016i −0.645395 0.935016i 0.354605 0.935016i \(-0.384615\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.36513 + 0.614397i −1.36513 + 0.614397i −0.954721 0.297503i \(-0.903846\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.224021 0.908888i 0.224021 0.908888i
\(453\) 0 0
\(454\) −1.47644 + 1.47644i −1.47644 + 1.47644i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(458\) −1.01787 2.26162i −1.01787 2.26162i
\(459\) 0 0
\(460\) 1.30494 0.321638i 1.30494 0.321638i
\(461\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(462\) 0 0
\(463\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.562072 0.294998i −0.562072 0.294998i
\(467\) −0.269846 0.239062i −0.269846 0.239062i 0.517338 0.855781i \(-0.326923\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.99064 + 1.37404i 1.99064 + 1.37404i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.87816 + 0.344186i −1.87816 + 0.344186i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.983620 0.180255i \(-0.0576923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.391482 0.499690i −0.391482 0.499690i
\(483\) 0 0
\(484\) 0.624584 + 0.431119i 0.624584 + 0.431119i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(488\) −0.484544 0.254308i −0.484544 0.254308i
\(489\) 0 0
\(490\) −0.470293 + 1.24006i −0.470293 + 1.24006i
\(491\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.955096 + 2.12214i 0.955096 + 2.12214i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.783659 + 0.244198i 0.783659 + 0.244198i 0.663123 0.748511i \(-0.269231\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(500\) 0.536642 0.536642i 0.536642 0.536642i
\(501\) 0 0
\(502\) 0 0
\(503\) 0.269846 1.47250i 0.269846 1.47250i −0.517338 0.855781i \(-0.673077\pi\)
0.787183 0.616719i \(-0.211538\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.0663859 + 1.09749i 0.0663859 + 1.09749i
\(513\) 0 0
\(514\) 0.999184 + 1.12785i 0.999184 + 1.12785i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(522\) 0 0
\(523\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.913254 + 2.40805i 0.913254 + 2.40805i
\(527\) 0.0143434 0.237125i 0.0143434 0.237125i
\(528\) 0 0
\(529\) 2.13613i 2.13613i
\(530\) 0.394562 + 1.26619i 0.394562 + 1.26619i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.11325 0.872172i 1.11325 0.872172i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.527986 1.00599i 0.527986 1.00599i −0.464723 0.885456i \(-0.653846\pi\)
0.992709 0.120537i \(-0.0384615\pi\)
\(542\) −2.08411 + 0.649436i −2.08411 + 0.649436i
\(543\) 0 0
\(544\) 0.0619091 0.137556i 0.0619091 0.137556i
\(545\) −0.851521 + 0.587763i −0.851521 + 0.587763i
\(546\) 0 0
\(547\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(548\) −0.537256 + 0.0324980i −0.537256 + 0.0324980i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.269119 + 0.0493179i 0.269119 + 0.0493179i
\(557\) −1.83940 0.337083i −1.83940 0.337083i −0.855781 0.517338i \(-0.826923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.480838 + 0.795403i −0.480838 + 0.795403i −0.998176 0.0603785i \(-0.980769\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(564\) 0 0
\(565\) −1.23119 + 0.0744731i −1.23119 + 0.0744731i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(570\) 0 0
\(571\) −0.115289 + 0.0359256i −0.115289 + 0.0359256i −0.354605 0.935016i \(-0.615385\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.916160 1.51551i −0.916160 1.51551i
\(576\) 0 0
\(577\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(578\) 1.02877 0.805993i 1.02877 0.805993i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.0657290 + 1.08663i −0.0657290 + 1.08663i
\(587\) 0.606928 + 1.60034i 0.606928 + 1.60034i 0.787183 + 0.616719i \(0.211538\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(588\) 0 0
\(589\) 3.72894 0.452776i 3.72894 0.452776i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.937797 + 1.05855i −0.937797 + 1.05855i 0.0603785 + 0.998176i \(0.480769\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(600\) 0 0
\(601\) −0.0950579 1.57149i −0.0950579 1.57149i −0.663123 0.748511i \(-0.730769\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.278489 0.355465i 0.278489 0.355465i
\(605\) 0.297503 0.954721i 0.297503 0.954721i
\(606\) 0 0
\(607\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(608\) 2.31590 + 0.570819i 2.31590 + 0.570819i
\(609\) 0 0
\(610\) 0.409170 2.23277i 0.409170 2.23277i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.0989396 + 0.219835i 0.0989396 + 0.219835i 0.954721 0.297503i \(-0.0961538\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(618\) 0 0
\(619\) 0.902438 0.222431i 0.902438 0.222431i 0.239316 0.970942i \(-0.423077\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(620\) −1.11752 + 0.990036i −1.11752 + 0.990036i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.885456 0.464723i −0.885456 0.464723i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.970942 + 1.23932i 0.970942 + 1.23932i 0.970942 + 0.239316i \(0.0769231\pi\)
1.00000i \(0.500000\pi\)
\(632\) 0.368731 0.139841i 0.368731 0.139841i
\(633\) 0 0
\(634\) 1.34976 0.247352i 1.34976 0.247352i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.580518 0.220161i 0.580518 0.220161i
\(641\) 0 0 −0.616719 0.787183i \(-0.711538\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(642\) 0 0
\(643\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.228897 0.202785i −0.228897 0.202785i
\(647\) 1.09215 + 0.573207i 1.09215 + 0.573207i 0.911900 0.410413i \(-0.134615\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.66183 + 0.409604i −1.66183 + 0.409604i −0.954721 0.297503i \(-0.903846\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) −0.464723 + 1.88546i −0.464723 + 1.88546i 1.00000i \(0.5\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(662\) 0.114423 0.624385i 0.114423 0.624385i
\(663\) 0 0
\(664\) 0.580518 + 0.143085i 0.580518 + 0.143085i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −0.531759 + 0.678740i −0.531759 + 0.678740i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.709609 0.269119i −0.709609 0.269119i
\(677\) −0.276513 0.887362i −0.276513 0.887362i −0.983620 0.180255i \(-0.942308\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.0383272 0.00465377i −0.0383272 0.00465377i
\(681\) 0 0
\(682\) 0 0
\(683\) 1.98180 0.240634i 1.98180 0.240634i 0.983620 0.180255i \(-0.0576923\pi\)
0.998176 0.0603785i \(-0.0192308\pi\)
\(684\) 0 0
\(685\) 0.251489 + 0.663123i 0.251489 + 0.663123i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.308518 + 1.68353i 0.308518 + 1.68353i 0.663123 + 0.748511i \(0.269231\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(692\) 1.47106 + 0.0889826i 1.47106 + 0.0889826i
\(693\) 0 0
\(694\) 0.856941 0.671370i 0.856941 0.671370i
\(695\) −0.0434547 0.357882i −0.0434547 0.357882i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.251680 2.07277i 0.251680 2.07277i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.954721 0.297503i \(-0.0961538\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.475142 + 1.92773i 0.475142 + 1.92773i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.731626 + 1.21026i −0.731626 + 1.21026i 0.239316 + 0.970942i \(0.423077\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.61901 + 3.08476i 1.61901 + 3.08476i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.81544 3.00311i 1.81544 3.00311i
\(723\) 0 0
\(724\) −1.38160 + 0.0835717i −1.38160 + 0.0835717i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.266647 + 2.19604i 0.266647 + 2.19604i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.03279 0.0624722i −1.03279 0.0624722i −0.464723 0.885456i \(-0.653846\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.57437i 1.57437i 0.616719 + 0.787183i \(0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.92773 + 0.234068i 1.92773 + 0.234068i 0.992709 0.120537i \(-0.0384615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(752\) −1.43067 + 1.61489i −1.43067 + 1.61489i
\(753\) 0 0
\(754\) 0 0
\(755\) −0.556340 0.210992i −0.556340 0.210992i
\(756\) 0 0
\(757\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(758\) 1.24375 + 1.40390i 1.24375 + 1.40390i
\(759\) 0 0
\(760\) −0.0368605 0.609378i −0.0368605 0.609378i
\(761\) 0 0 0.911900 0.410413i \(-0.134615\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.09148 0.572852i 1.09148 0.572852i
\(767\) 0 0
\(768\) 0 0
\(769\) 0.107253 0.585260i 0.107253 0.585260i −0.885456 0.464723i \(-0.846154\pi\)
0.992709 0.120537i \(-0.0384615\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.42924 0.445368i −1.42924 0.445368i −0.517338 0.855781i \(-0.673077\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(774\) 0 0
\(775\) 1.68353 + 1.01773i 1.68353 + 1.01773i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.100572 0.265187i 0.100572 0.265187i
\(783\) 0 0
\(784\) −1.04746 0.549748i −1.04746 0.549748i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.855781 0.517338i \(-0.173077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(788\) 1.24689 + 0.860666i 1.24689 + 0.860666i
\(789\) 0 0
\(790\) 1.00885 + 1.28771i 1.00885 + 1.28771i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 1.50679 1.50679
\(797\) 0.470791 0.0862757i 0.470791 0.0862757i 0.0603785 0.998176i \(-0.480769\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(798\) 0 0
\(799\) 0.205925 0.0780970i 0.205925 0.0780970i
\(800\) 0.770386 + 0.983325i 0.770386 + 0.983325i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(810\) 0 0
\(811\) −0.850405 + 0.753393i −0.850405 + 0.753393i −0.970942 0.239316i \(-0.923077\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.66076 1.66076i 1.66076 1.66076i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(822\) 0 0
\(823\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.148674 0.189769i 0.148674 0.189769i −0.707107 0.707107i \(-0.750000\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(828\) 0 0
\(829\) −1.82047 + 0.819328i −1.82047 + 0.819328i −0.885456 + 0.464723i \(0.846154\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(830\) 0.149746 + 2.47560i 0.149746 + 2.47560i
\(831\) 0 0
\(832\) 0 0
\(833\) 0.0685978 + 0.0993811i 0.0685978 + 0.0993811i
\(834\) 0 0
\(835\) 1.06230 + 0.402877i 1.06230 + 0.402877i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(840\) 0 0
\(841\) 0.568065 0.822984i 0.568065 0.822984i
\(842\) 0.474639 0.0576316i 0.474639 0.0576316i
\(843\) 0 0
\(844\) −0.190862 0.503261i −0.190862 0.503261i
\(845\) −0.0603785 + 0.998176i −0.0603785 + 0.998176i
\(846\) 0 0
\(847\) 0 0
\(848\) −1.16358 + 0.213234i −1.16358 + 0.213234i
\(849\) 0 0
\(850\) −0.0288685 0.157530i −0.0288685 0.157530i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.233917 + 0.386946i 0.233917 + 0.386946i
\(857\) 0.240634 1.98180i 0.240634 1.98180i 0.0603785 0.998176i \(-0.480769\pi\)
0.180255 0.983620i \(-0.442308\pi\)
\(858\) 0 0
\(859\) −0.922670 + 1.75800i −0.922670 + 1.75800i −0.354605 + 0.935016i \(0.615385\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.489680 0.338002i 0.489680 0.338002i −0.297503 0.954721i \(-0.596154\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(864\) 0 0
\(865\) −0.464723 1.88546i −0.464723 1.88546i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.153735 0.292917i −0.153735 0.292917i
\(873\) 0 0
\(874\) 4.41118 + 0.808378i 4.41118 + 0.808378i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(878\) 1.06546 + 1.06546i 1.06546 + 1.06546i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(882\) 0 0
\(883\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.63397 1.12785i 1.63397 1.12785i
\(887\) 0.814841 1.81050i 0.814841 1.81050i 0.297503 0.954721i \(-0.403846\pi\)
0.517338 0.855781i \(-0.326923\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.80160 + 2.98021i 1.80160 + 2.98021i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.115289 + 0.0359256i 0.115289 + 0.0359256i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.0238107 0.393638i 0.0238107 0.393638i
\(905\) 0.646728 + 1.70528i 0.646728 + 1.70528i
\(906\) 0 0
\(907\) 0 0 0.992709 0.120537i \(-0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(908\) 0.678740 0.983325i 0.678740 0.983325i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.806207 + 1.16799i 0.806207 + 1.16799i
\(917\) 0 0
\(918\) 0 0
\(919\) −0.103342 1.70844i −0.103342 1.70844i −0.568065 0.822984i \(-0.692308\pi\)
0.464723 0.885456i \(-0.346154\pi\)
\(920\) 0.516318 0.232376i 0.516318 0.232376i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(930\) 0 0
\(931\) −1.35018 + 1.35018i −1.35018 + 1.35018i
\(932\) 0.346799 + 0.108067i 0.346799 + 0.108067i
\(933\) 0 0
\(934\) 0.409170 + 0.247352i 0.409170 + 0.247352i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.26219 0.568065i −1.26219 0.568065i
\(941\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.851521 + 0.587763i 0.851521 + 0.587763i 0.911900 0.410413i \(-0.134615\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 2.36782 0.897997i 2.36782 0.897997i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.90944 −1.90944 −0.954721 0.297503i \(-0.903846\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.36199 1.63036i −2.36199 1.63036i
\(962\) 0 0
\(963\) 0 0
\(964\) 0.271894 + 0.240877i 0.271894 + 0.240877i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(968\) 0.291555 + 0.131218i 0.291555 + 0.131218i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 1.93303 + 0.602356i 1.93303 + 0.602356i
\(977\) 1.40390 1.40390i 1.40390 1.40390i 0.616719 0.787183i \(-0.288462\pi\)
0.787183 0.616719i \(-0.211538\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.136800 0.746495i 0.136800 0.746495i
\(981\) 0 0
\(982\) 0 0
\(983\) 0.319216 0.167537i 0.319216 0.167537i −0.297503 0.954721i \(-0.596154\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(984\) 0 0
\(985\) 0.593921 1.90596i 0.593921 1.90596i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.616337 0.695701i −0.616337 0.695701i 0.354605 0.935016i \(-0.384615\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(992\) −1.39597 2.02241i −1.39597 2.02241i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.590668 1.89552i −0.590668 1.89552i
\(996\) 0 0
\(997\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(998\) −1.08068 0.131218i −1.08068 0.131218i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2385.1.ca.a.1729.1 yes 48
3.2 odd 2 inner 2385.1.ca.a.1729.2 yes 48
5.4 even 2 inner 2385.1.ca.a.1729.2 yes 48
15.14 odd 2 CM 2385.1.ca.a.1729.1 yes 48
53.45 odd 52 inner 2385.1.ca.a.469.2 yes 48
159.98 even 52 inner 2385.1.ca.a.469.1 48
265.204 odd 52 inner 2385.1.ca.a.469.1 48
795.734 even 52 inner 2385.1.ca.a.469.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2385.1.ca.a.469.1 48 159.98 even 52 inner
2385.1.ca.a.469.1 48 265.204 odd 52 inner
2385.1.ca.a.469.2 yes 48 53.45 odd 52 inner
2385.1.ca.a.469.2 yes 48 795.734 even 52 inner
2385.1.ca.a.1729.1 yes 48 1.1 even 1 trivial
2385.1.ca.a.1729.1 yes 48 15.14 odd 2 CM
2385.1.ca.a.1729.2 yes 48 3.2 odd 2 inner
2385.1.ca.a.1729.2 yes 48 5.4 even 2 inner