Properties

Label 2385.1.ca.a.694.2
Level $2385$
Weight $1$
Character 2385.694
Analytic conductor $1.190$
Analytic rank $0$
Dimension $48$
Projective image $D_{52}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2385,1,Mod(19,2385)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2385, base_ring=CyclotomicField(52))
 
chi = DirichletCharacter(H, H._module([0, 26, 37]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2385.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2385 = 3^{2} \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2385.ca (of order \(52\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.19027005513\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(2\) over \(\Q(\zeta_{52})\)
Coefficient field: \(\Q(\zeta_{104})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} - x^{44} + x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{52}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{52} - \cdots)\)

Embedding invariants

Embedding label 694.2
Root \(0.787183 + 0.616719i\) of defining polynomial
Character \(\chi\) \(=\) 2385.694
Dual form 2385.1.ca.a.244.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.556340 + 1.78536i) q^{2} +(-2.05501 + 1.41847i) q^{4} +(0.998176 - 0.0603785i) q^{5} +(-2.20370 - 1.72649i) q^{8} +O(q^{10})\) \(q+(0.556340 + 1.78536i) q^{2} +(-2.05501 + 1.41847i) q^{4} +(0.998176 - 0.0603785i) q^{5} +(-2.20370 - 1.72649i) q^{8} +(0.663123 + 1.74851i) q^{10} +(0.970942 - 2.56016i) q^{16} +(-0.0989396 + 0.814841i) q^{17} +(0.186505 + 1.01773i) q^{19} +(-1.96561 + 1.53996i) q^{20} +(-1.37312 + 1.37312i) q^{23} +(0.992709 - 0.120537i) q^{25} +(-0.509195 + 0.307819i) q^{31} +(2.31661 + 0.140129i) q^{32} +(-1.50983 + 0.276686i) q^{34} +(-1.71325 + 0.899182i) q^{38} +(-2.30393 - 1.59029i) q^{40} +(-3.21543 - 1.68759i) q^{46} +(1.30452 + 1.47250i) q^{47} +(-0.568065 - 0.822984i) q^{49} +(0.767485 + 1.70528i) q^{50} +(0.787183 - 0.616719i) q^{53} +(0.970942 - 1.23932i) q^{61} +(-0.832854 - 0.737844i) q^{62} +(0.383375 + 1.55542i) q^{64} +(-0.952506 - 1.81485i) q^{68} +(-1.82689 - 1.82689i) q^{76} +(0.593921 - 1.90596i) q^{79} +(0.814592 - 2.61412i) q^{80} +(1.16387 + 1.16387i) q^{83} +(-0.0495602 + 0.819328i) q^{85} +(0.874043 - 4.76950i) q^{92} +(-1.90318 + 3.14825i) q^{94} +(0.247614 + 1.00461i) q^{95} +(1.15328 - 1.47206i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 4 q^{16} - 4 q^{19} - 4 q^{31} + 4 q^{49} + 4 q^{61} + 4 q^{76} + 4 q^{79} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2385\mathbb{Z}\right)^\times\).

\(n\) \(1432\) \(1486\) \(1856\)
\(\chi(n)\) \(-1\) \(e\left(\frac{47}{52}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.556340 + 1.78536i 0.556340 + 1.78536i 0.616719 + 0.787183i \(0.288462\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(3\) 0 0
\(4\) −2.05501 + 1.41847i −2.05501 + 1.41847i
\(5\) 0.998176 0.0603785i 0.998176 0.0603785i
\(6\) 0 0
\(7\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(8\) −2.20370 1.72649i −2.20370 1.72649i
\(9\) 0 0
\(10\) 0.663123 + 1.74851i 0.663123 + 1.74851i
\(11\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(12\) 0 0
\(13\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.970942 2.56016i 0.970942 2.56016i
\(17\) −0.0989396 + 0.814841i −0.0989396 + 0.814841i 0.855781 + 0.517338i \(0.173077\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(18\) 0 0
\(19\) 0.186505 + 1.01773i 0.186505 + 1.01773i 0.935016 + 0.354605i \(0.115385\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(20\) −1.96561 + 1.53996i −1.96561 + 1.53996i
\(21\) 0 0
\(22\) 0 0
\(23\) −1.37312 + 1.37312i −1.37312 + 1.37312i −0.517338 + 0.855781i \(0.673077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(24\) 0 0
\(25\) 0.992709 0.120537i 0.992709 0.120537i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(30\) 0 0
\(31\) −0.509195 + 0.307819i −0.509195 + 0.307819i −0.748511 0.663123i \(-0.769231\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(32\) 2.31661 + 0.140129i 2.31661 + 0.140129i
\(33\) 0 0
\(34\) −1.50983 + 0.276686i −1.50983 + 0.276686i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(38\) −1.71325 + 0.899182i −1.71325 + 0.899182i
\(39\) 0 0
\(40\) −2.30393 1.59029i −2.30393 1.59029i
\(41\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(42\) 0 0
\(43\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −3.21543 1.68759i −3.21543 1.68759i
\(47\) 1.30452 + 1.47250i 1.30452 + 1.47250i 0.787183 + 0.616719i \(0.211538\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(48\) 0 0
\(49\) −0.568065 0.822984i −0.568065 0.822984i
\(50\) 0.767485 + 1.70528i 0.767485 + 1.70528i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.787183 0.616719i 0.787183 0.616719i
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(60\) 0 0
\(61\) 0.970942 1.23932i 0.970942 1.23932i 1.00000i \(-0.5\pi\)
0.970942 0.239316i \(-0.0769231\pi\)
\(62\) −0.832854 0.737844i −0.832854 0.737844i
\(63\) 0 0
\(64\) 0.383375 + 1.55542i 0.383375 + 1.55542i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(68\) −0.952506 1.81485i −0.952506 1.81485i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(72\) 0 0
\(73\) 0 0 −0.616719 0.787183i \(-0.711538\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −1.82689 1.82689i −1.82689 1.82689i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.593921 1.90596i 0.593921 1.90596i 0.239316 0.970942i \(-0.423077\pi\)
0.354605 0.935016i \(-0.384615\pi\)
\(80\) 0.814592 2.61412i 0.814592 2.61412i
\(81\) 0 0
\(82\) 0 0
\(83\) 1.16387 + 1.16387i 1.16387 + 1.16387i 0.983620 + 0.180255i \(0.0576923\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(84\) 0 0
\(85\) −0.0495602 + 0.819328i −0.0495602 + 0.819328i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.874043 4.76950i 0.874043 4.76950i
\(93\) 0 0
\(94\) −1.90318 + 3.14825i −1.90318 + 3.14825i
\(95\) 0.247614 + 1.00461i 0.247614 + 1.00461i
\(96\) 0 0
\(97\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(98\) 1.15328 1.47206i 1.15328 1.47206i
\(99\) 0 0
\(100\) −1.86905 + 1.65583i −1.86905 + 1.65583i
\(101\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(102\) 0 0
\(103\) 0 0 0.911900 0.410413i \(-0.134615\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.53901 + 1.06230i 1.53901 + 1.06230i
\(107\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(108\) 0 0
\(109\) −0.506219 1.12477i −0.506219 1.12477i −0.970942 0.239316i \(-0.923077\pi\)
0.464723 0.885456i \(-0.346154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.76768 0.927751i −1.76768 0.927751i −0.911900 0.410413i \(-0.865385\pi\)
−0.855781 0.517338i \(-0.826923\pi\)
\(114\) 0 0
\(115\) −1.28771 + 1.45352i −1.28771 + 1.45352i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.885456 0.464723i 0.885456 0.464723i
\(122\) 2.75280 + 1.04400i 2.75280 + 1.04400i
\(123\) 0 0
\(124\) 0.609768 1.35485i 0.609768 1.35485i
\(125\) 0.983620 0.180255i 0.983620 0.180255i
\(126\) 0 0
\(127\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(128\) −0.577549 + 0.349141i −0.577549 + 0.349141i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.62485 1.62485i 1.62485 1.62485i
\(137\) 0.587763 + 0.972278i 0.587763 + 0.972278i 0.998176 + 0.0603785i \(0.0192308\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(138\) 0 0
\(139\) 1.50308 1.17759i 1.50308 1.17759i 0.568065 0.822984i \(-0.307692\pi\)
0.935016 0.354605i \(-0.115385\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(150\) 0 0
\(151\) 1.34731 + 1.05555i 1.34731 + 1.05555i 0.992709 + 0.120537i \(0.0384615\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(152\) 1.34610 2.56477i 1.34610 2.56477i
\(153\) 0 0
\(154\) 0 0
\(155\) −0.489680 + 0.338002i −0.489680 + 0.338002i
\(156\) 0 0
\(157\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(158\) 3.73324 3.73324
\(159\) 0 0
\(160\) 2.32085 2.32085
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.43042 + 2.72545i −1.43042 + 2.72545i
\(167\) −1.39403 1.09215i −1.39403 1.09215i −0.983620 0.180255i \(-0.942308\pi\)
−0.410413 0.911900i \(-0.634615\pi\)
\(168\) 0 0
\(169\) −0.354605 0.935016i −0.354605 0.935016i
\(170\) −1.49037 + 0.367342i −1.49037 + 0.367342i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.237125 0.0434547i −0.237125 0.0434547i 0.0603785 0.998176i \(-0.480769\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(180\) 0 0
\(181\) −1.01773 1.68353i −1.01773 1.68353i −0.663123 0.748511i \(-0.730769\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 5.39663 0.655269i 5.39663 0.655269i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −4.76950 1.17558i −4.76950 1.17558i
\(189\) 0 0
\(190\) −1.65583 + 1.00099i −1.65583 + 1.00099i
\(191\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(192\) 0 0
\(193\) 0 0 0.983620 0.180255i \(-0.0576923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.33476 + 0.885456i 2.33476 + 0.885456i
\(197\) −1.61489 + 0.847562i −1.61489 + 0.847562i −0.616719 + 0.787183i \(0.711538\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(198\) 0 0
\(199\) −1.09148 0.753393i −1.09148 0.753393i −0.120537 0.992709i \(-0.538462\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(200\) −2.39574 1.44828i −2.39574 1.44828i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.13613i 1.13613i 0.822984 + 0.568065i \(0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(212\) −0.742872 + 2.38396i −0.742872 + 2.38396i
\(213\) 0 0
\(214\) 2.52488 0.786784i 2.52488 0.786784i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.72649 1.52954i 1.72649 1.52954i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.672936 3.67209i 0.672936 3.67209i
\(227\) −0.0561186 0.106925i −0.0561186 0.106925i 0.855781 0.517338i \(-0.173077\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(228\) 0 0
\(229\) 1.63397 + 0.198399i 1.63397 + 0.198399i 0.885456 0.464723i \(-0.153846\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(230\) −3.31146 1.49037i −3.31146 1.49037i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.119877 + 1.98180i −0.119877 + 1.98180i 0.0603785 + 0.998176i \(0.480769\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(234\) 0 0
\(235\) 1.39105 + 1.39105i 1.39105 + 1.39105i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.297503 0.954721i \(-0.403846\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(240\) 0 0
\(241\) −0.475142 + 1.92773i −0.475142 + 1.92773i −0.120537 + 0.992709i \(0.538462\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(242\) 1.32231 + 1.32231i 1.32231 + 1.32231i
\(243\) 0 0
\(244\) −0.237362 + 3.92406i −0.237362 + 3.92406i
\(245\) −0.616719 0.787183i −0.616719 0.787183i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.65356 + 0.200779i 1.65356 + 0.200779i
\(249\) 0 0
\(250\) 0.869047 + 1.65583i 0.869047 + 1.65583i
\(251\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.254432 + 0.225408i 0.254432 + 0.225408i
\(257\) 1.09215 1.39403i 1.09215 1.39403i 0.180255 0.983620i \(-0.442308\pi\)
0.911900 0.410413i \(-0.134615\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.230158 0.0717201i 0.230158 0.0717201i −0.180255 0.983620i \(-0.557692\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(264\) 0 0
\(265\) 0.748511 0.663123i 0.748511 0.663123i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(270\) 0 0
\(271\) −0.616337 0.695701i −0.616337 0.695701i 0.354605 0.935016i \(-0.384615\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(272\) 1.99006 + 1.04446i 1.99006 + 1.04446i
\(273\) 0 0
\(274\) −1.40887 + 1.59029i −1.40887 + 1.59029i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(278\) 2.93864 + 2.02840i 2.93864 + 2.02840i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(282\) 0 0
\(283\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.316765 + 0.0780756i 0.316765 + 0.0780756i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.357882 + 0.0434547i −0.357882 + 0.0434547i −0.297503 0.954721i \(-0.596154\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −1.13498 + 2.99269i −1.13498 + 2.99269i
\(303\) 0 0
\(304\) 2.78663 + 0.510670i 2.78663 + 0.510670i
\(305\) 0.894342 1.29568i 0.894342 1.29568i
\(306\) 0 0
\(307\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.875884 0.686211i −0.875884 0.686211i
\(311\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(312\) 0 0
\(313\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.48303 + 4.75922i 1.48303 + 4.75922i
\(317\) 1.23344 1.23344 0.616719 0.787183i \(-0.288462\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.476590 + 1.52943i 0.476590 + 1.52943i
\(321\) 0 0
\(322\) 0 0
\(323\) −0.847739 + 0.0512787i −0.847739 + 0.0512787i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.12785 + 1.63397i −1.12785 + 1.63397i −0.464723 + 0.885456i \(0.653846\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(332\) −4.04269 0.740851i −4.04269 0.740851i
\(333\) 0 0
\(334\) 1.17433 3.09646i 1.17433 3.09646i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.180255 0.983620i \(-0.557692\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(338\) 1.47206 1.15328i 1.47206 1.15328i
\(339\) 0 0
\(340\) −1.06035 1.75403i −1.06035 1.75403i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.0543397 0.447528i −0.0543397 0.447528i
\(347\) 0.350034 + 0.0862757i 0.350034 + 0.0862757i 0.410413 0.911900i \(-0.365385\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(348\) 0 0
\(349\) −0.103342 + 0.0624722i −0.103342 + 0.0624722i −0.568065 0.822984i \(-0.692308\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.291069 + 0.646728i −0.291069 + 0.646728i −0.998176 0.0603785i \(-0.980769\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(360\) 0 0
\(361\) −0.0659688 + 0.0250187i −0.0659688 + 0.0250187i
\(362\) 2.43950 2.75362i 2.43950 2.75362i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(368\) 2.18219 + 4.84863i 2.18219 + 4.84863i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.954721 0.297503i \(-0.0961538\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −0.332519 5.49720i −0.332519 5.49720i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.872172 + 1.11325i −0.872172 + 1.11325i 0.120537 + 0.992709i \(0.461538\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(380\) −1.93386 1.71325i −1.93386 1.71325i
\(381\) 0 0
\(382\) 0 0
\(383\) −0.247614 + 0.409604i −0.247614 + 0.409604i −0.954721 0.297503i \(-0.903846\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(390\) 0 0
\(391\) −0.983018 1.25473i −0.983018 1.25473i
\(392\) −0.169028 + 2.79437i −0.169028 + 2.79437i
\(393\) 0 0
\(394\) −2.41163 2.41163i −2.41163 2.41163i
\(395\) 0.477758 1.93834i 0.477758 1.93834i
\(396\) 0 0
\(397\) 0 0 0.297503 0.954721i \(-0.403846\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(398\) 0.737844 2.36782i 0.737844 2.36782i
\(399\) 0 0
\(400\) 0.655269 2.65853i 0.655269 2.65853i
\(401\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.902438 1.71945i −0.902438 1.71945i −0.663123 0.748511i \(-0.730769\pi\)
−0.239316 0.970942i \(-0.576923\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.23202 + 1.09148i 1.23202 + 1.09148i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(420\) 0 0
\(421\) 1.74122 0.783659i 1.74122 0.783659i 0.748511 0.663123i \(-0.230769\pi\)
0.992709 0.120537i \(-0.0384615\pi\)
\(422\) −2.02840 + 0.632075i −2.02840 + 0.632075i
\(423\) 0 0
\(424\) −2.79948 −2.79948
\(425\) 0.820826i 0.820826i
\(426\) 0 0
\(427\) 0 0
\(428\) 2.00602 + 2.90622i 2.00602 + 2.90622i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(432\) 0 0
\(433\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.63574 + 1.59336i 2.63574 + 1.59336i
\(437\) −1.65356 1.14137i −1.65356 1.14137i
\(438\) 0 0
\(439\) −1.56806 + 0.822984i −1.56806 + 0.822984i −0.568065 + 0.822984i \(0.692308\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.697593 + 0.127839i −0.697593 + 0.127839i −0.517338 0.855781i \(-0.673077\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 4.94859 0.600867i 4.94859 0.600867i
\(453\) 0 0
\(454\) 0.159679 0.159679i 0.159679 0.159679i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(458\) 0.554827 + 3.02759i 0.554827 + 3.02759i
\(459\) 0 0
\(460\) 0.584473 4.81357i 0.584473 4.81357i
\(461\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(462\) 0 0
\(463\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −3.60491 + 0.888530i −3.60491 + 0.888530i
\(467\) −0.677097 1.78536i −0.677097 1.78536i −0.616719 0.787183i \(-0.711538\pi\)
−0.0603785 0.998176i \(-0.519231\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.70962 + 3.25742i −1.70962 + 3.25742i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.307819 + 0.987826i 0.307819 + 0.987826i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −3.70602 + 0.224173i −3.70602 + 0.224173i
\(483\) 0 0
\(484\) −1.16042 + 2.21100i −1.16042 + 2.21100i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(488\) −4.27934 + 1.05476i −4.27934 + 1.05476i
\(489\) 0 0
\(490\) 1.06230 1.53901i 1.06230 1.53901i
\(491\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.293668 + 1.60250i 0.293668 + 1.60250i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.186505 + 0.308518i 0.186505 + 0.308518i 0.935016 0.354605i \(-0.115385\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(500\) −1.76566 + 1.76566i −1.76566 + 1.76566i
\(501\) 0 0
\(502\) 0 0
\(503\) 0.677097 + 0.210992i 0.677097 + 0.210992i 0.616719 0.787183i \(-0.288462\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.537862 + 1.19508i −0.537862 + 1.19508i
\(513\) 0 0
\(514\) 3.09646 + 1.17433i 3.09646 + 1.17433i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(522\) 0 0
\(523\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.256092 + 0.371013i 0.256092 + 0.371013i
\(527\) −0.200444 0.445368i −0.200444 0.445368i
\(528\) 0 0
\(529\) 2.77091i 2.77091i
\(530\) 1.60034 + 0.967439i 1.60034 + 0.967439i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.0853881 1.41163i −0.0853881 1.41163i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.423807 + 1.71945i 0.423807 + 1.71945i 0.663123 + 0.748511i \(0.269231\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(542\) 0.899182 1.48743i 0.899182 1.48743i
\(543\) 0 0
\(544\) −0.343388 + 1.87381i −0.343388 + 1.87381i
\(545\) −0.573207 1.09215i −0.573207 1.09215i
\(546\) 0 0
\(547\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(548\) −2.58700 1.16432i −2.58700 1.16432i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.41847 + 4.55203i −1.41847 + 4.55203i
\(557\) −0.489680 + 1.57144i −0.489680 + 1.57144i 0.297503 + 0.954721i \(0.403846\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.295181 + 0.376771i 0.295181 + 0.376771i 0.911900 0.410413i \(-0.134615\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(564\) 0 0
\(565\) −1.82047 0.819328i −1.82047 0.819328i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(570\) 0 0
\(571\) −0.424644 + 0.702447i −0.424644 + 0.702447i −0.992709 0.120537i \(-0.961538\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.19760 + 1.52862i −1.19760 + 1.52862i
\(576\) 0 0
\(577\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(578\) 0.0368363 + 0.608976i 0.0368363 + 0.608976i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.276686 0.614771i −0.276686 0.614771i
\(587\) −0.894342 1.29568i −0.894342 1.29568i −0.954721 0.297503i \(-0.903846\pi\)
0.0603785 0.998176i \(-0.480769\pi\)
\(588\) 0 0
\(589\) −0.408244 0.460812i −0.408244 0.460812i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.32231 0.501487i 1.32231 0.501487i 0.410413 0.911900i \(-0.365385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(600\) 0 0
\(601\) −0.0495602 + 0.110118i −0.0495602 + 0.110118i −0.935016 0.354605i \(-0.884615\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −4.26601 0.258046i −4.26601 0.258046i
\(605\) 0.855781 0.517338i 0.855781 0.517338i
\(606\) 0 0
\(607\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(608\) 0.289448 + 2.38382i 0.289448 + 2.38382i
\(609\) 0 0
\(610\) 2.81081 + 0.875884i 2.81081 + 0.875884i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.269846 1.47250i −0.269846 1.47250i −0.787183 0.616719i \(-0.788462\pi\)
0.517338 0.855781i \(-0.326923\pi\)
\(618\) 0 0
\(619\) −0.0576926 + 0.475142i −0.0576926 + 0.475142i 0.935016 + 0.354605i \(0.115385\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(620\) 0.526852 1.38919i 0.526852 1.38919i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.970942 0.239316i 0.970942 0.239316i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.120537 + 0.00729113i −0.120537 + 0.00729113i −0.120537 0.992709i \(-0.538462\pi\)
1.00000i \(0.5\pi\)
\(632\) −4.59945 + 3.17477i −4.59945 + 3.17477i
\(633\) 0 0
\(634\) 0.686211 + 2.20213i 0.686211 + 2.20213i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.555415 + 0.383375i −0.555415 + 0.383375i
\(641\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(642\) 0 0
\(643\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.563182 1.48499i −0.563182 1.48499i
\(647\) 1.93834 0.477758i 1.93834 0.477758i 0.954721 0.297503i \(-0.0961538\pi\)
0.983620 0.180255i \(-0.0576923\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.189769 1.56289i 0.189769 1.56289i −0.517338 0.855781i \(-0.673077\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) −0.239316 + 0.0290582i −0.239316 + 0.0290582i −0.239316 0.970942i \(-0.576923\pi\)
1.00000i \(0.5\pi\)
\(662\) −3.54468 1.10457i −3.54468 1.10457i
\(663\) 0 0
\(664\) −0.555415 4.57426i −0.555415 4.57426i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 4.41394 + 0.266994i 4.41394 + 0.266994i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 2.05501 + 1.41847i 2.05501 + 1.41847i
\(677\) −0.409604 0.247614i −0.409604 0.247614i 0.297503 0.954721i \(-0.403846\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.52378 1.71999i 1.52378 1.71999i
\(681\) 0 0
\(682\) 0 0
\(683\) −1.20940 1.36513i −1.20940 1.36513i −0.911900 0.410413i \(-0.865385\pi\)
−0.297503 0.954721i \(-0.596154\pi\)
\(684\) 0 0
\(685\) 0.645395 + 0.935016i 0.645395 + 0.935016i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.50308 0.468379i 1.50308 0.468379i 0.568065 0.822984i \(-0.307692\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(692\) 0.548932 0.247054i 0.548932 0.247054i
\(693\) 0 0
\(694\) 0.0407051 + 0.672936i 0.0407051 + 0.672936i
\(695\) 1.42924 1.26619i 1.42924 1.26619i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.169028 0.149746i −0.169028 0.149746i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −1.31658 0.159861i −1.31658 0.159861i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.872172 1.11325i −0.872172 1.11325i −0.992709 0.120537i \(-0.961538\pi\)
0.120537 0.992709i \(-0.461538\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.276513 1.12186i 0.276513 1.12186i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.0813684 0.103859i −0.0813684 0.103859i
\(723\) 0 0
\(724\) 4.47947 + 2.01605i 4.47947 + 2.01605i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −3.37340 + 2.98857i −3.37340 + 2.98857i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.12477 + 0.506219i −1.12477 + 0.506219i −0.885456 0.464723i \(-0.846154\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.120757i 0.120757i 0.998176 + 0.0603785i \(0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.159861 + 0.180446i −0.159861 + 0.180446i −0.822984 0.568065i \(-0.807692\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(752\) 5.03645 1.91008i 5.03645 1.91008i
\(753\) 0 0
\(754\) 0 0
\(755\) 1.40859 + 0.972278i 1.40859 + 0.972278i
\(756\) 0 0
\(757\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(758\) −2.47277 0.937797i −2.47277 0.937797i
\(759\) 0 0
\(760\) 1.18878 2.64137i 1.18878 2.64137i
\(761\) 0 0 0.983620 0.180255i \(-0.0576923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −0.869047 0.214201i −0.869047 0.214201i
\(767\) 0 0
\(768\) 0 0
\(769\) 1.63406 + 0.509195i 1.63406 + 0.509195i 0.970942 0.239316i \(-0.0769231\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.366901 0.606928i −0.366901 0.606928i 0.616719 0.787183i \(-0.288462\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(774\) 0 0
\(775\) −0.468379 + 0.366951i −0.468379 + 0.366951i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 1.69325 2.45310i 1.69325 2.45310i
\(783\) 0 0
\(784\) −2.65853 + 0.655269i −2.65853 + 0.655269i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(788\) 2.11638 4.03243i 2.11638 4.03243i
\(789\) 0 0
\(790\) 3.72643 0.225408i 3.72643 0.225408i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 3.31166 3.31166
\(797\) 0.590668 + 1.89552i 0.590668 + 1.89552i 0.410413 + 0.911900i \(0.365385\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(798\) 0 0
\(799\) −1.32892 + 0.917289i −1.32892 + 0.917289i
\(800\) 2.31661 0.140129i 2.31661 0.140129i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(810\) 0 0
\(811\) −0.627974 + 1.65583i −0.627974 + 1.65583i 0.120537 + 0.992709i \(0.461538\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 2.56778 2.56778i 2.56778 2.56778i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.954721 0.297503i \(-0.903846\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(822\) 0 0
\(823\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.49429 + 0.0903879i 1.49429 + 0.0903879i 0.787183 0.616719i \(-0.211538\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 1.79393 0.328749i 1.79393 0.328749i 0.822984 0.568065i \(-0.192308\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(830\) −1.26326 + 2.80684i −1.26326 + 2.80684i
\(831\) 0 0
\(832\) 0 0
\(833\) 0.726805 0.381457i 0.726805 0.381457i
\(834\) 0 0
\(835\) −1.45743 1.00599i −1.45743 1.00599i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(840\) 0 0
\(841\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(842\) 2.36782 + 2.67272i 2.36782 + 2.67272i
\(843\) 0 0
\(844\) −1.61157 2.33476i −1.61157 2.33476i
\(845\) −0.410413 0.911900i −0.410413 0.911900i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.814592 2.61412i −0.814592 2.61412i
\(849\) 0 0
\(850\) −1.46547 + 0.456658i −1.46547 + 0.456658i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2.44163 + 3.11651i −2.44163 + 3.11651i
\(857\) 1.36513 + 1.20940i 1.36513 + 1.20940i 0.954721 + 0.297503i \(0.0961538\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(858\) 0 0
\(859\) −0.317391 1.28771i −0.317391 1.28771i −0.885456 0.464723i \(-0.846154\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.795403 1.51551i −0.795403 1.51551i −0.855781 0.517338i \(-0.826923\pi\)
0.0603785 0.998176i \(-0.480769\pi\)
\(864\) 0 0
\(865\) −0.239316 0.0290582i −0.239316 0.0290582i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.826353 + 3.35265i −0.826353 + 3.35265i
\(873\) 0 0
\(874\) 1.11781 3.58718i 1.11781 3.58718i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(878\) −2.34170 2.34170i −2.34170 2.34170i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.616719 0.787183i \(-0.711538\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(882\) 0 0
\(883\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.616337 1.17433i −0.616337 1.17433i
\(887\) 0.239062 1.30452i 0.239062 1.30452i −0.616719 0.787183i \(-0.711538\pi\)
0.855781 0.517338i \(-0.173077\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.25530 + 1.60228i −1.25530 + 1.60228i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.424644 + 0.702447i 0.424644 + 0.702447i
\(902\) 0 0
\(903\) 0 0
\(904\) 2.29369 + 5.09637i 2.29369 + 5.09637i
\(905\) −1.11752 1.61901i −1.11752 1.61901i
\(906\) 0 0
\(907\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(908\) 0.266994 + 0.140129i 0.266994 + 0.140129i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −3.63924 + 1.91002i −3.63924 + 1.91002i
\(917\) 0 0
\(918\) 0 0
\(919\) −0.646140 + 1.43566i −0.646140 + 1.43566i 0.239316 + 0.970942i \(0.423077\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(920\) 5.34722 0.979914i 5.34722 0.979914i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.992709 0.120537i \(-0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(930\) 0 0
\(931\) 0.731626 0.731626i 0.731626 0.731626i
\(932\) −2.56477 4.24265i −2.56477 4.24265i
\(933\) 0 0
\(934\) 2.81081 2.20213i 2.81081 2.20213i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.83178 0.885456i −4.83178 0.885456i
\(941\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.573207 1.09215i 0.573207 1.09215i −0.410413 0.911900i \(-0.634615\pi\)
0.983620 0.180255i \(-0.0576923\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.59237 + 1.09914i −1.59237 + 1.09914i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.03468 −1.03468 −0.517338 0.855781i \(-0.673077\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.300196 + 0.571976i −0.300196 + 0.571976i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.75800 4.63547i −1.75800 4.63547i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(968\) −2.75362 0.504620i −2.75362 0.504620i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −2.23012 3.68907i −2.23012 3.68907i
\(977\) −0.937797 + 0.937797i −0.937797 + 0.937797i −0.998176 0.0603785i \(-0.980769\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2.38396 + 0.742872i 2.38396 + 0.742872i
\(981\) 0 0
\(982\) 0 0
\(983\) −1.85396 0.456959i −1.85396 0.456959i −0.855781 0.517338i \(-0.826923\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(984\) 0 0
\(985\) −1.56077 + 0.943521i −1.56077 + 0.943521i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.447528 0.169725i −0.447528 0.169725i 0.120537 0.992709i \(-0.461538\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(992\) −1.22274 + 0.641745i −1.22274 + 0.641745i
\(993\) 0 0
\(994\) 0 0
\(995\) −1.13498 0.686117i −1.13498 0.686117i
\(996\) 0 0
\(997\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(998\) −0.447054 + 0.504620i −0.447054 + 0.504620i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2385.1.ca.a.694.2 yes 48
3.2 odd 2 inner 2385.1.ca.a.694.1 yes 48
5.4 even 2 inner 2385.1.ca.a.694.1 yes 48
15.14 odd 2 CM 2385.1.ca.a.694.2 yes 48
53.32 odd 52 inner 2385.1.ca.a.244.1 48
159.32 even 52 inner 2385.1.ca.a.244.2 yes 48
265.244 odd 52 inner 2385.1.ca.a.244.2 yes 48
795.509 even 52 inner 2385.1.ca.a.244.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2385.1.ca.a.244.1 48 53.32 odd 52 inner
2385.1.ca.a.244.1 48 795.509 even 52 inner
2385.1.ca.a.244.2 yes 48 159.32 even 52 inner
2385.1.ca.a.244.2 yes 48 265.244 odd 52 inner
2385.1.ca.a.694.1 yes 48 3.2 odd 2 inner
2385.1.ca.a.694.1 yes 48 5.4 even 2 inner
2385.1.ca.a.694.2 yes 48 1.1 even 1 trivial
2385.1.ca.a.694.2 yes 48 15.14 odd 2 CM