Properties

Label 24.4.a.a
Level 2424
Weight 44
Character orbit 24.a
Self dual yes
Analytic conductor 1.4161.416
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [24,4,Mod(1,24)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(24, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("24.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 24=233 24 = 2^{3} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 24.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.416045840141.41604584014
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3q3+14q524q7+9q928q1174q13+42q15+82q17+92q1972q21+8q23+71q25+27q27138q29+80q3184q33336q35+252q99+O(q100) q + 3 q^{3} + 14 q^{5} - 24 q^{7} + 9 q^{9} - 28 q^{11} - 74 q^{13} + 42 q^{15} + 82 q^{17} + 92 q^{19} - 72 q^{21} + 8 q^{23} + 71 q^{25} + 27 q^{27} - 138 q^{29} + 80 q^{31} - 84 q^{33} - 336 q^{35}+ \cdots - 252 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 14.0000 0 −24.0000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 24.4.a.a 1
3.b odd 2 1 72.4.a.b 1
4.b odd 2 1 48.4.a.b 1
5.b even 2 1 600.4.a.h 1
5.c odd 4 2 600.4.f.b 2
7.b odd 2 1 1176.4.a.a 1
8.b even 2 1 192.4.a.a 1
8.d odd 2 1 192.4.a.g 1
9.c even 3 2 648.4.i.b 2
9.d odd 6 2 648.4.i.k 2
12.b even 2 1 144.4.a.b 1
15.d odd 2 1 1800.4.a.bg 1
15.e even 4 2 1800.4.f.q 2
16.e even 4 2 768.4.d.o 2
16.f odd 4 2 768.4.d.b 2
20.d odd 2 1 1200.4.a.u 1
20.e even 4 2 1200.4.f.p 2
24.f even 2 1 576.4.a.v 1
24.h odd 2 1 576.4.a.u 1
28.d even 2 1 2352.4.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.a.a 1 1.a even 1 1 trivial
48.4.a.b 1 4.b odd 2 1
72.4.a.b 1 3.b odd 2 1
144.4.a.b 1 12.b even 2 1
192.4.a.a 1 8.b even 2 1
192.4.a.g 1 8.d odd 2 1
576.4.a.u 1 24.h odd 2 1
576.4.a.v 1 24.f even 2 1
600.4.a.h 1 5.b even 2 1
600.4.f.b 2 5.c odd 4 2
648.4.i.b 2 9.c even 3 2
648.4.i.k 2 9.d odd 6 2
768.4.d.b 2 16.f odd 4 2
768.4.d.o 2 16.e even 4 2
1176.4.a.a 1 7.b odd 2 1
1200.4.a.u 1 20.d odd 2 1
1200.4.f.p 2 20.e even 4 2
1800.4.a.bg 1 15.d odd 2 1
1800.4.f.q 2 15.e even 4 2
2352.4.a.w 1 28.d even 2 1

Hecke kernels

This newform subspace is the entire newspace S4new(Γ0(24))S_{4}^{\mathrm{new}}(\Gamma_0(24)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T14 T - 14 Copy content Toggle raw display
77 T+24 T + 24 Copy content Toggle raw display
1111 T+28 T + 28 Copy content Toggle raw display
1313 T+74 T + 74 Copy content Toggle raw display
1717 T82 T - 82 Copy content Toggle raw display
1919 T92 T - 92 Copy content Toggle raw display
2323 T8 T - 8 Copy content Toggle raw display
2929 T+138 T + 138 Copy content Toggle raw display
3131 T80 T - 80 Copy content Toggle raw display
3737 T30 T - 30 Copy content Toggle raw display
4141 T282 T - 282 Copy content Toggle raw display
4343 T4 T - 4 Copy content Toggle raw display
4747 T240 T - 240 Copy content Toggle raw display
5353 T+130 T + 130 Copy content Toggle raw display
5959 T596 T - 596 Copy content Toggle raw display
6161 T+218 T + 218 Copy content Toggle raw display
6767 T+436 T + 436 Copy content Toggle raw display
7171 T856 T - 856 Copy content Toggle raw display
7373 T+998 T + 998 Copy content Toggle raw display
7979 T+32 T + 32 Copy content Toggle raw display
8383 T+1508 T + 1508 Copy content Toggle raw display
8989 T+246 T + 246 Copy content Toggle raw display
9797 T866 T - 866 Copy content Toggle raw display
show more
show less