Properties

Label 72.4.a.b
Level $72$
Weight $4$
Character orbit 72.a
Self dual yes
Analytic conductor $4.248$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,4,Mod(1,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.24813752041\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 14 q^{5} - 24 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 14 q^{5} - 24 q^{7} + 28 q^{11} - 74 q^{13} - 82 q^{17} + 92 q^{19} - 8 q^{23} + 71 q^{25} + 138 q^{29} + 80 q^{31} + 336 q^{35} + 30 q^{37} - 282 q^{41} + 4 q^{43} - 240 q^{47} + 233 q^{49} + 130 q^{53} - 392 q^{55} - 596 q^{59} - 218 q^{61} + 1036 q^{65} - 436 q^{67} - 856 q^{71} - 998 q^{73} - 672 q^{77} - 32 q^{79} + 1508 q^{83} + 1148 q^{85} + 246 q^{89} + 1776 q^{91} - 1288 q^{95} + 866 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −14.0000 0 −24.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.4.a.b 1
3.b odd 2 1 24.4.a.a 1
4.b odd 2 1 144.4.a.b 1
5.b even 2 1 1800.4.a.bg 1
5.c odd 4 2 1800.4.f.q 2
8.b even 2 1 576.4.a.u 1
8.d odd 2 1 576.4.a.v 1
9.c even 3 2 648.4.i.k 2
9.d odd 6 2 648.4.i.b 2
12.b even 2 1 48.4.a.b 1
15.d odd 2 1 600.4.a.h 1
15.e even 4 2 600.4.f.b 2
21.c even 2 1 1176.4.a.a 1
24.f even 2 1 192.4.a.g 1
24.h odd 2 1 192.4.a.a 1
48.i odd 4 2 768.4.d.o 2
48.k even 4 2 768.4.d.b 2
60.h even 2 1 1200.4.a.u 1
60.l odd 4 2 1200.4.f.p 2
84.h odd 2 1 2352.4.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.a.a 1 3.b odd 2 1
48.4.a.b 1 12.b even 2 1
72.4.a.b 1 1.a even 1 1 trivial
144.4.a.b 1 4.b odd 2 1
192.4.a.a 1 24.h odd 2 1
192.4.a.g 1 24.f even 2 1
576.4.a.u 1 8.b even 2 1
576.4.a.v 1 8.d odd 2 1
600.4.a.h 1 15.d odd 2 1
600.4.f.b 2 15.e even 4 2
648.4.i.b 2 9.d odd 6 2
648.4.i.k 2 9.c even 3 2
768.4.d.b 2 48.k even 4 2
768.4.d.o 2 48.i odd 4 2
1176.4.a.a 1 21.c even 2 1
1200.4.a.u 1 60.h even 2 1
1200.4.f.p 2 60.l odd 4 2
1800.4.a.bg 1 5.b even 2 1
1800.4.f.q 2 5.c odd 4 2
2352.4.a.w 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 14 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(72))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 14 \) Copy content Toggle raw display
$7$ \( T + 24 \) Copy content Toggle raw display
$11$ \( T - 28 \) Copy content Toggle raw display
$13$ \( T + 74 \) Copy content Toggle raw display
$17$ \( T + 82 \) Copy content Toggle raw display
$19$ \( T - 92 \) Copy content Toggle raw display
$23$ \( T + 8 \) Copy content Toggle raw display
$29$ \( T - 138 \) Copy content Toggle raw display
$31$ \( T - 80 \) Copy content Toggle raw display
$37$ \( T - 30 \) Copy content Toggle raw display
$41$ \( T + 282 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 240 \) Copy content Toggle raw display
$53$ \( T - 130 \) Copy content Toggle raw display
$59$ \( T + 596 \) Copy content Toggle raw display
$61$ \( T + 218 \) Copy content Toggle raw display
$67$ \( T + 436 \) Copy content Toggle raw display
$71$ \( T + 856 \) Copy content Toggle raw display
$73$ \( T + 998 \) Copy content Toggle raw display
$79$ \( T + 32 \) Copy content Toggle raw display
$83$ \( T - 1508 \) Copy content Toggle raw display
$89$ \( T - 246 \) Copy content Toggle raw display
$97$ \( T - 866 \) Copy content Toggle raw display
show more
show less