Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [72,4,Mod(1,72)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(72, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("72.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 72.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 24) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.4.a.b | 1 | |
3.b | odd | 2 | 1 | 24.4.a.a | ✓ | 1 | |
4.b | odd | 2 | 1 | 144.4.a.b | 1 | ||
5.b | even | 2 | 1 | 1800.4.a.bg | 1 | ||
5.c | odd | 4 | 2 | 1800.4.f.q | 2 | ||
8.b | even | 2 | 1 | 576.4.a.u | 1 | ||
8.d | odd | 2 | 1 | 576.4.a.v | 1 | ||
9.c | even | 3 | 2 | 648.4.i.k | 2 | ||
9.d | odd | 6 | 2 | 648.4.i.b | 2 | ||
12.b | even | 2 | 1 | 48.4.a.b | 1 | ||
15.d | odd | 2 | 1 | 600.4.a.h | 1 | ||
15.e | even | 4 | 2 | 600.4.f.b | 2 | ||
21.c | even | 2 | 1 | 1176.4.a.a | 1 | ||
24.f | even | 2 | 1 | 192.4.a.g | 1 | ||
24.h | odd | 2 | 1 | 192.4.a.a | 1 | ||
48.i | odd | 4 | 2 | 768.4.d.o | 2 | ||
48.k | even | 4 | 2 | 768.4.d.b | 2 | ||
60.h | even | 2 | 1 | 1200.4.a.u | 1 | ||
60.l | odd | 4 | 2 | 1200.4.f.p | 2 | ||
84.h | odd | 2 | 1 | 2352.4.a.w | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
24.4.a.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
48.4.a.b | 1 | 12.b | even | 2 | 1 | ||
72.4.a.b | 1 | 1.a | even | 1 | 1 | trivial | |
144.4.a.b | 1 | 4.b | odd | 2 | 1 | ||
192.4.a.a | 1 | 24.h | odd | 2 | 1 | ||
192.4.a.g | 1 | 24.f | even | 2 | 1 | ||
576.4.a.u | 1 | 8.b | even | 2 | 1 | ||
576.4.a.v | 1 | 8.d | odd | 2 | 1 | ||
600.4.a.h | 1 | 15.d | odd | 2 | 1 | ||
600.4.f.b | 2 | 15.e | even | 4 | 2 | ||
648.4.i.b | 2 | 9.d | odd | 6 | 2 | ||
648.4.i.k | 2 | 9.c | even | 3 | 2 | ||
768.4.d.b | 2 | 48.k | even | 4 | 2 | ||
768.4.d.o | 2 | 48.i | odd | 4 | 2 | ||
1176.4.a.a | 1 | 21.c | even | 2 | 1 | ||
1200.4.a.u | 1 | 60.h | even | 2 | 1 | ||
1200.4.f.p | 2 | 60.l | odd | 4 | 2 | ||
1800.4.a.bg | 1 | 5.b | even | 2 | 1 | ||
1800.4.f.q | 2 | 5.c | odd | 4 | 2 | ||
2352.4.a.w | 1 | 84.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .