Properties

Label 240.3.l.c.161.3
Level $240$
Weight $3$
Character 240.161
Analytic conductor $6.540$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,3,Mod(161,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 240.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53952634465\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.3
Root \(-1.58114 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 240.161
Dual form 240.3.l.c.161.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.581139 - 2.94317i) q^{3} -2.23607i q^{5} -11.4868 q^{7} +(-8.32456 - 3.42079i) q^{9} +O(q^{10})\) \(q+(0.581139 - 2.94317i) q^{3} -2.23607i q^{5} -11.4868 q^{7} +(-8.32456 - 3.42079i) q^{9} +8.48528i q^{11} -10.0000 q^{13} +(-6.58114 - 1.29947i) q^{15} +3.55415i q^{17} +10.9737 q^{19} +(-6.67544 + 33.8078i) q^{21} -17.6590i q^{23} -5.00000 q^{25} +(-14.9057 + 22.5127i) q^{27} -26.8328i q^{29} -8.00000 q^{31} +(24.9737 + 4.93113i) q^{33} +25.6853i q^{35} -59.9473 q^{37} +(-5.81139 + 29.4317i) q^{39} -20.5247i q^{41} -42.4605 q^{43} +(-7.64911 + 18.6143i) q^{45} -88.2952i q^{47} +82.9473 q^{49} +(10.4605 + 2.06546i) q^{51} +3.55415i q^{53} +18.9737 q^{55} +(6.37722 - 32.2974i) q^{57} -77.7445i q^{59} +21.9473 q^{61} +(95.6228 + 39.2940i) q^{63} +22.3607i q^{65} +53.5395 q^{67} +(-51.9737 - 10.2624i) q^{69} +69.2592i q^{71} +12.0527 q^{73} +(-2.90569 + 14.7159i) q^{75} -97.4690i q^{77} +9.02633 q^{79} +(57.5964 + 56.9530i) q^{81} -0.688486i q^{83} +7.94733 q^{85} +(-78.9737 - 15.5936i) q^{87} -7.10831i q^{89} +114.868 q^{91} +(-4.64911 + 23.5454i) q^{93} -24.5379i q^{95} +111.947 q^{97} +(29.0263 - 70.6362i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{7} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} - 8 q^{7} - 8 q^{9} - 40 q^{13} - 20 q^{15} - 32 q^{19} - 52 q^{21} - 20 q^{25} - 28 q^{27} - 32 q^{31} + 24 q^{33} - 88 q^{37} + 40 q^{39} - 56 q^{43} + 20 q^{45} + 180 q^{49} - 72 q^{51} + 152 q^{57} - 64 q^{61} + 256 q^{63} + 328 q^{67} - 132 q^{69} + 200 q^{73} + 20 q^{75} + 112 q^{79} + 28 q^{81} - 120 q^{85} - 240 q^{87} + 80 q^{91} + 32 q^{93} + 296 q^{97} + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.581139 2.94317i 0.193713 0.981058i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) −11.4868 −1.64098 −0.820488 0.571664i \(-0.806298\pi\)
−0.820488 + 0.571664i \(0.806298\pi\)
\(8\) 0 0
\(9\) −8.32456 3.42079i −0.924951 0.380087i
\(10\) 0 0
\(11\) 8.48528i 0.771389i 0.922627 + 0.385695i \(0.126038\pi\)
−0.922627 + 0.385695i \(0.873962\pi\)
\(12\) 0 0
\(13\) −10.0000 −0.769231 −0.384615 0.923077i \(-0.625666\pi\)
−0.384615 + 0.923077i \(0.625666\pi\)
\(14\) 0 0
\(15\) −6.58114 1.29947i −0.438743 0.0866311i
\(16\) 0 0
\(17\) 3.55415i 0.209068i 0.994521 + 0.104534i \(0.0333351\pi\)
−0.994521 + 0.104534i \(0.966665\pi\)
\(18\) 0 0
\(19\) 10.9737 0.577561 0.288781 0.957395i \(-0.406750\pi\)
0.288781 + 0.957395i \(0.406750\pi\)
\(20\) 0 0
\(21\) −6.67544 + 33.8078i −0.317878 + 1.60989i
\(22\) 0 0
\(23\) 17.6590i 0.767785i −0.923378 0.383892i \(-0.874583\pi\)
0.923378 0.383892i \(-0.125417\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) −14.9057 + 22.5127i −0.552063 + 0.833803i
\(28\) 0 0
\(29\) 26.8328i 0.925270i −0.886549 0.462635i \(-0.846904\pi\)
0.886549 0.462635i \(-0.153096\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.258065 −0.129032 0.991640i \(-0.541187\pi\)
−0.129032 + 0.991640i \(0.541187\pi\)
\(32\) 0 0
\(33\) 24.9737 + 4.93113i 0.756778 + 0.149428i
\(34\) 0 0
\(35\) 25.6853i 0.733867i
\(36\) 0 0
\(37\) −59.9473 −1.62020 −0.810099 0.586293i \(-0.800587\pi\)
−0.810099 + 0.586293i \(0.800587\pi\)
\(38\) 0 0
\(39\) −5.81139 + 29.4317i −0.149010 + 0.754660i
\(40\) 0 0
\(41\) 20.5247i 0.500603i −0.968168 0.250301i \(-0.919470\pi\)
0.968168 0.250301i \(-0.0805297\pi\)
\(42\) 0 0
\(43\) −42.4605 −0.987453 −0.493727 0.869617i \(-0.664366\pi\)
−0.493727 + 0.869617i \(0.664366\pi\)
\(44\) 0 0
\(45\) −7.64911 + 18.6143i −0.169980 + 0.413650i
\(46\) 0 0
\(47\) 88.2952i 1.87862i −0.343067 0.939311i \(-0.611466\pi\)
0.343067 0.939311i \(-0.388534\pi\)
\(48\) 0 0
\(49\) 82.9473 1.69280
\(50\) 0 0
\(51\) 10.4605 + 2.06546i 0.205108 + 0.0404992i
\(52\) 0 0
\(53\) 3.55415i 0.0670595i 0.999438 + 0.0335298i \(0.0106749\pi\)
−0.999438 + 0.0335298i \(0.989325\pi\)
\(54\) 0 0
\(55\) 18.9737 0.344976
\(56\) 0 0
\(57\) 6.37722 32.2974i 0.111881 0.566621i
\(58\) 0 0
\(59\) 77.7445i 1.31770i −0.752273 0.658852i \(-0.771042\pi\)
0.752273 0.658852i \(-0.228958\pi\)
\(60\) 0 0
\(61\) 21.9473 0.359792 0.179896 0.983686i \(-0.442424\pi\)
0.179896 + 0.983686i \(0.442424\pi\)
\(62\) 0 0
\(63\) 95.6228 + 39.2940i 1.51782 + 0.623714i
\(64\) 0 0
\(65\) 22.3607i 0.344010i
\(66\) 0 0
\(67\) 53.5395 0.799097 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(68\) 0 0
\(69\) −51.9737 10.2624i −0.753242 0.148730i
\(70\) 0 0
\(71\) 69.2592i 0.975482i 0.872988 + 0.487741i \(0.162179\pi\)
−0.872988 + 0.487741i \(0.837821\pi\)
\(72\) 0 0
\(73\) 12.0527 0.165105 0.0825525 0.996587i \(-0.473693\pi\)
0.0825525 + 0.996587i \(0.473693\pi\)
\(74\) 0 0
\(75\) −2.90569 + 14.7159i −0.0387426 + 0.196212i
\(76\) 0 0
\(77\) 97.4690i 1.26583i
\(78\) 0 0
\(79\) 9.02633 0.114257 0.0571287 0.998367i \(-0.481805\pi\)
0.0571287 + 0.998367i \(0.481805\pi\)
\(80\) 0 0
\(81\) 57.5964 + 56.9530i 0.711067 + 0.703124i
\(82\) 0 0
\(83\) 0.688486i 0.00829501i −0.999991 0.00414750i \(-0.998680\pi\)
0.999991 0.00414750i \(-0.00132020\pi\)
\(84\) 0 0
\(85\) 7.94733 0.0934980
\(86\) 0 0
\(87\) −78.9737 15.5936i −0.907743 0.179237i
\(88\) 0 0
\(89\) 7.10831i 0.0798686i −0.999202 0.0399343i \(-0.987285\pi\)
0.999202 0.0399343i \(-0.0127149\pi\)
\(90\) 0 0
\(91\) 114.868 1.26229
\(92\) 0 0
\(93\) −4.64911 + 23.5454i −0.0499904 + 0.253176i
\(94\) 0 0
\(95\) 24.5379i 0.258293i
\(96\) 0 0
\(97\) 111.947 1.15410 0.577048 0.816710i \(-0.304205\pi\)
0.577048 + 0.816710i \(0.304205\pi\)
\(98\) 0 0
\(99\) 29.0263 70.6362i 0.293195 0.713497i
\(100\) 0 0
\(101\) 155.489i 1.53950i 0.638348 + 0.769748i \(0.279618\pi\)
−0.638348 + 0.769748i \(0.720382\pi\)
\(102\) 0 0
\(103\) −7.59217 −0.0737104 −0.0368552 0.999321i \(-0.511734\pi\)
−0.0368552 + 0.999321i \(0.511734\pi\)
\(104\) 0 0
\(105\) 75.5964 + 14.9267i 0.719966 + 0.142160i
\(106\) 0 0
\(107\) 16.2821i 0.152169i −0.997101 0.0760845i \(-0.975758\pi\)
0.997101 0.0760845i \(-0.0242419\pi\)
\(108\) 0 0
\(109\) −93.8420 −0.860936 −0.430468 0.902606i \(-0.641651\pi\)
−0.430468 + 0.902606i \(0.641651\pi\)
\(110\) 0 0
\(111\) −34.8377 + 176.435i −0.313853 + 1.58951i
\(112\) 0 0
\(113\) 195.738i 1.73220i −0.499874 0.866098i \(-0.666620\pi\)
0.499874 0.866098i \(-0.333380\pi\)
\(114\) 0 0
\(115\) −39.4868 −0.343364
\(116\) 0 0
\(117\) 83.2456 + 34.2079i 0.711500 + 0.292375i
\(118\) 0 0
\(119\) 40.8260i 0.343075i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 0 0
\(123\) −60.4078 11.9277i −0.491121 0.0969733i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 77.5395 0.610547 0.305274 0.952265i \(-0.401252\pi\)
0.305274 + 0.952265i \(0.401252\pi\)
\(128\) 0 0
\(129\) −24.6754 + 124.969i −0.191283 + 0.968749i
\(130\) 0 0
\(131\) 101.600i 0.775572i 0.921749 + 0.387786i \(0.126760\pi\)
−0.921749 + 0.387786i \(0.873240\pi\)
\(132\) 0 0
\(133\) −126.053 −0.947764
\(134\) 0 0
\(135\) 50.3399 + 33.3301i 0.372888 + 0.246890i
\(136\) 0 0
\(137\) 176.014i 1.28477i −0.766381 0.642386i \(-0.777945\pi\)
0.766381 0.642386i \(-0.222055\pi\)
\(138\) 0 0
\(139\) −188.816 −1.35839 −0.679193 0.733960i \(-0.737670\pi\)
−0.679193 + 0.733960i \(0.737670\pi\)
\(140\) 0 0
\(141\) −259.868 51.3118i −1.84304 0.363913i
\(142\) 0 0
\(143\) 84.8528i 0.593376i
\(144\) 0 0
\(145\) −60.0000 −0.413793
\(146\) 0 0
\(147\) 48.2039 244.128i 0.327918 1.66074i
\(148\) 0 0
\(149\) 72.5899i 0.487181i −0.969878 0.243590i \(-0.921675\pi\)
0.969878 0.243590i \(-0.0783252\pi\)
\(150\) 0 0
\(151\) −93.9473 −0.622168 −0.311084 0.950382i \(-0.600692\pi\)
−0.311084 + 0.950382i \(0.600692\pi\)
\(152\) 0 0
\(153\) 12.1580 29.5868i 0.0794641 0.193378i
\(154\) 0 0
\(155\) 17.8885i 0.115410i
\(156\) 0 0
\(157\) −123.842 −0.788803 −0.394401 0.918938i \(-0.629048\pi\)
−0.394401 + 0.918938i \(0.629048\pi\)
\(158\) 0 0
\(159\) 10.4605 + 2.06546i 0.0657893 + 0.0129903i
\(160\) 0 0
\(161\) 202.847i 1.25992i
\(162\) 0 0
\(163\) −159.381 −0.977801 −0.488900 0.872340i \(-0.662602\pi\)
−0.488900 + 0.872340i \(0.662602\pi\)
\(164\) 0 0
\(165\) 11.0263 55.8428i 0.0668263 0.338441i
\(166\) 0 0
\(167\) 10.7742i 0.0645161i 0.999480 + 0.0322581i \(0.0102698\pi\)
−0.999480 + 0.0322581i \(0.989730\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) −91.3509 37.5386i −0.534216 0.219524i
\(172\) 0 0
\(173\) 283.345i 1.63783i 0.573913 + 0.818916i \(0.305425\pi\)
−0.573913 + 0.818916i \(0.694575\pi\)
\(174\) 0 0
\(175\) 57.4342 0.328195
\(176\) 0 0
\(177\) −228.816 45.1804i −1.29274 0.255256i
\(178\) 0 0
\(179\) 306.624i 1.71298i 0.516163 + 0.856491i \(0.327360\pi\)
−0.516163 + 0.856491i \(0.672640\pi\)
\(180\) 0 0
\(181\) 265.684 1.46787 0.733934 0.679221i \(-0.237682\pi\)
0.733934 + 0.679221i \(0.237682\pi\)
\(182\) 0 0
\(183\) 12.7544 64.5948i 0.0696964 0.352977i
\(184\) 0 0
\(185\) 134.046i 0.724575i
\(186\) 0 0
\(187\) −30.1580 −0.161273
\(188\) 0 0
\(189\) 171.219 258.599i 0.905922 1.36825i
\(190\) 0 0
\(191\) 159.620i 0.835706i −0.908515 0.417853i \(-0.862783\pi\)
0.908515 0.417853i \(-0.137217\pi\)
\(192\) 0 0
\(193\) −92.0527 −0.476957 −0.238478 0.971148i \(-0.576649\pi\)
−0.238478 + 0.971148i \(0.576649\pi\)
\(194\) 0 0
\(195\) 65.8114 + 12.9947i 0.337494 + 0.0666393i
\(196\) 0 0
\(197\) 69.8360i 0.354497i 0.984166 + 0.177249i \(0.0567197\pi\)
−0.984166 + 0.177249i \(0.943280\pi\)
\(198\) 0 0
\(199\) −148.921 −0.748347 −0.374173 0.927359i \(-0.622074\pi\)
−0.374173 + 0.927359i \(0.622074\pi\)
\(200\) 0 0
\(201\) 31.1139 157.576i 0.154795 0.783961i
\(202\) 0 0
\(203\) 308.224i 1.51835i
\(204\) 0 0
\(205\) −45.8947 −0.223876
\(206\) 0 0
\(207\) −60.4078 + 147.004i −0.291825 + 0.710163i
\(208\) 0 0
\(209\) 93.1146i 0.445525i
\(210\) 0 0
\(211\) 285.842 1.35470 0.677351 0.735660i \(-0.263128\pi\)
0.677351 + 0.735660i \(0.263128\pi\)
\(212\) 0 0
\(213\) 203.842 + 40.2492i 0.957005 + 0.188963i
\(214\) 0 0
\(215\) 94.9446i 0.441603i
\(216\) 0 0
\(217\) 91.8947 0.423478
\(218\) 0 0
\(219\) 7.00427 35.4731i 0.0319830 0.161978i
\(220\) 0 0
\(221\) 35.5415i 0.160821i
\(222\) 0 0
\(223\) 71.3815 0.320096 0.160048 0.987109i \(-0.448835\pi\)
0.160048 + 0.987109i \(0.448835\pi\)
\(224\) 0 0
\(225\) 41.6228 + 17.1039i 0.184990 + 0.0760175i
\(226\) 0 0
\(227\) 29.1217i 0.128290i −0.997941 0.0641448i \(-0.979568\pi\)
0.997941 0.0641448i \(-0.0204319\pi\)
\(228\) 0 0
\(229\) −129.684 −0.566306 −0.283153 0.959075i \(-0.591380\pi\)
−0.283153 + 0.959075i \(0.591380\pi\)
\(230\) 0 0
\(231\) −286.868 56.6430i −1.24185 0.245208i
\(232\) 0 0
\(233\) 185.876i 0.797751i 0.917005 + 0.398875i \(0.130599\pi\)
−0.917005 + 0.398875i \(0.869401\pi\)
\(234\) 0 0
\(235\) −197.434 −0.840145
\(236\) 0 0
\(237\) 5.24555 26.5661i 0.0221331 0.112093i
\(238\) 0 0
\(239\) 302.716i 1.26659i −0.773908 0.633297i \(-0.781701\pi\)
0.773908 0.633297i \(-0.218299\pi\)
\(240\) 0 0
\(241\) −237.526 −0.985585 −0.492793 0.870147i \(-0.664024\pi\)
−0.492793 + 0.870147i \(0.664024\pi\)
\(242\) 0 0
\(243\) 201.094 136.419i 0.827549 0.561394i
\(244\) 0 0
\(245\) 185.476i 0.757044i
\(246\) 0 0
\(247\) −109.737 −0.444278
\(248\) 0 0
\(249\) −2.02633 0.400106i −0.00813789 0.00160685i
\(250\) 0 0
\(251\) 84.6294i 0.337169i 0.985687 + 0.168584i \(0.0539196\pi\)
−0.985687 + 0.168584i \(0.946080\pi\)
\(252\) 0 0
\(253\) 149.842 0.592261
\(254\) 0 0
\(255\) 4.61850 23.3904i 0.0181118 0.0917270i
\(256\) 0 0
\(257\) 292.054i 1.13640i 0.822892 + 0.568198i \(0.192359\pi\)
−0.822892 + 0.568198i \(0.807641\pi\)
\(258\) 0 0
\(259\) 688.605 2.65871
\(260\) 0 0
\(261\) −91.7893 + 223.371i −0.351683 + 0.855829i
\(262\) 0 0
\(263\) 277.725i 1.05599i −0.849247 0.527995i \(-0.822944\pi\)
0.849247 0.527995i \(-0.177056\pi\)
\(264\) 0 0
\(265\) 7.94733 0.0299899
\(266\) 0 0
\(267\) −20.9210 4.13091i −0.0783558 0.0154716i
\(268\) 0 0
\(269\) 286.546i 1.06523i −0.846359 0.532613i \(-0.821210\pi\)
0.846359 0.532613i \(-0.178790\pi\)
\(270\) 0 0
\(271\) 324.105 1.19596 0.597980 0.801511i \(-0.295970\pi\)
0.597980 + 0.801511i \(0.295970\pi\)
\(272\) 0 0
\(273\) 66.7544 338.078i 0.244522 1.23838i
\(274\) 0 0
\(275\) 42.4264i 0.154278i
\(276\) 0 0
\(277\) 415.842 1.50123 0.750617 0.660737i \(-0.229756\pi\)
0.750617 + 0.660737i \(0.229756\pi\)
\(278\) 0 0
\(279\) 66.5964 + 27.3663i 0.238697 + 0.0980871i
\(280\) 0 0
\(281\) 431.726i 1.53639i −0.640216 0.768195i \(-0.721155\pi\)
0.640216 0.768195i \(-0.278845\pi\)
\(282\) 0 0
\(283\) −141.540 −0.500140 −0.250070 0.968228i \(-0.580454\pi\)
−0.250070 + 0.968228i \(0.580454\pi\)
\(284\) 0 0
\(285\) −72.2192 14.2599i −0.253401 0.0500348i
\(286\) 0 0
\(287\) 235.764i 0.821477i
\(288\) 0 0
\(289\) 276.368 0.956291
\(290\) 0 0
\(291\) 65.0569 329.481i 0.223563 1.13224i
\(292\) 0 0
\(293\) 164.998i 0.563133i −0.959542 0.281566i \(-0.909146\pi\)
0.959542 0.281566i \(-0.0908540\pi\)
\(294\) 0 0
\(295\) −173.842 −0.589295
\(296\) 0 0
\(297\) −191.026 126.479i −0.643186 0.425855i
\(298\) 0 0
\(299\) 176.590i 0.590604i
\(300\) 0 0
\(301\) 487.737 1.62039
\(302\) 0 0
\(303\) 457.631 + 90.3607i 1.51033 + 0.298220i
\(304\) 0 0
\(305\) 49.0757i 0.160904i
\(306\) 0 0
\(307\) −159.381 −0.519158 −0.259579 0.965722i \(-0.583584\pi\)
−0.259579 + 0.965722i \(0.583584\pi\)
\(308\) 0 0
\(309\) −4.41210 + 22.3451i −0.0142787 + 0.0723142i
\(310\) 0 0
\(311\) 143.096i 0.460117i 0.973177 + 0.230058i \(0.0738917\pi\)
−0.973177 + 0.230058i \(0.926108\pi\)
\(312\) 0 0
\(313\) −501.684 −1.60282 −0.801412 0.598113i \(-0.795918\pi\)
−0.801412 + 0.598113i \(0.795918\pi\)
\(314\) 0 0
\(315\) 87.8641 213.819i 0.278934 0.678791i
\(316\) 0 0
\(317\) 334.257i 1.05444i 0.849730 + 0.527219i \(0.176765\pi\)
−0.849730 + 0.527219i \(0.823235\pi\)
\(318\) 0 0
\(319\) 227.684 0.713743
\(320\) 0 0
\(321\) −47.9210 9.46215i −0.149287 0.0294771i
\(322\) 0 0
\(323\) 39.0021i 0.120750i
\(324\) 0 0
\(325\) 50.0000 0.153846
\(326\) 0 0
\(327\) −54.5352 + 276.193i −0.166774 + 0.844628i
\(328\) 0 0
\(329\) 1014.23i 3.08277i
\(330\) 0 0
\(331\) −389.421 −1.17650 −0.588249 0.808680i \(-0.700182\pi\)
−0.588249 + 0.808680i \(0.700182\pi\)
\(332\) 0 0
\(333\) 499.035 + 205.067i 1.49860 + 0.615817i
\(334\) 0 0
\(335\) 119.718i 0.357367i
\(336\) 0 0
\(337\) −129.684 −0.384819 −0.192409 0.981315i \(-0.561630\pi\)
−0.192409 + 0.981315i \(0.561630\pi\)
\(338\) 0 0
\(339\) −576.092 113.751i −1.69939 0.335549i
\(340\) 0 0
\(341\) 67.8823i 0.199068i
\(342\) 0 0
\(343\) −389.947 −1.13687
\(344\) 0 0
\(345\) −22.9473 + 116.217i −0.0665140 + 0.336860i
\(346\) 0 0
\(347\) 346.985i 0.999956i 0.866038 + 0.499978i \(0.166659\pi\)
−0.866038 + 0.499978i \(0.833341\pi\)
\(348\) 0 0
\(349\) 509.579 1.46011 0.730055 0.683388i \(-0.239494\pi\)
0.730055 + 0.683388i \(0.239494\pi\)
\(350\) 0 0
\(351\) 149.057 225.127i 0.424664 0.641387i
\(352\) 0 0
\(353\) 637.679i 1.80646i −0.429159 0.903229i \(-0.641190\pi\)
0.429159 0.903229i \(-0.358810\pi\)
\(354\) 0 0
\(355\) 154.868 0.436249
\(356\) 0 0
\(357\) −120.158 23.7256i −0.336577 0.0664582i
\(358\) 0 0
\(359\) 166.952i 0.465046i 0.972591 + 0.232523i \(0.0746982\pi\)
−0.972591 + 0.232523i \(0.925302\pi\)
\(360\) 0 0
\(361\) −240.579 −0.666423
\(362\) 0 0
\(363\) 28.4758 144.216i 0.0784457 0.397288i
\(364\) 0 0
\(365\) 26.9506i 0.0738372i
\(366\) 0 0
\(367\) 505.828 1.37828 0.689140 0.724629i \(-0.257989\pi\)
0.689140 + 0.724629i \(0.257989\pi\)
\(368\) 0 0
\(369\) −70.2107 + 170.859i −0.190273 + 0.463033i
\(370\) 0 0
\(371\) 40.8260i 0.110043i
\(372\) 0 0
\(373\) −416.053 −1.11542 −0.557711 0.830035i \(-0.688320\pi\)
−0.557711 + 0.830035i \(0.688320\pi\)
\(374\) 0 0
\(375\) 32.9057 + 6.49733i 0.0877485 + 0.0173262i
\(376\) 0 0
\(377\) 268.328i 0.711746i
\(378\) 0 0
\(379\) −82.7630 −0.218372 −0.109186 0.994021i \(-0.534824\pi\)
−0.109186 + 0.994021i \(0.534824\pi\)
\(380\) 0 0
\(381\) 45.0612 228.212i 0.118271 0.598982i
\(382\) 0 0
\(383\) 334.592i 0.873608i 0.899557 + 0.436804i \(0.143890\pi\)
−0.899557 + 0.436804i \(0.856110\pi\)
\(384\) 0 0
\(385\) −217.947 −0.566097
\(386\) 0 0
\(387\) 353.465 + 145.248i 0.913346 + 0.375319i
\(388\) 0 0
\(389\) 542.964i 1.39580i −0.716197 0.697898i \(-0.754119\pi\)
0.716197 0.697898i \(-0.245881\pi\)
\(390\) 0 0
\(391\) 62.7630 0.160519
\(392\) 0 0
\(393\) 299.026 + 59.0437i 0.760881 + 0.150238i
\(394\) 0 0
\(395\) 20.1835i 0.0510975i
\(396\) 0 0
\(397\) −214.000 −0.539043 −0.269521 0.962994i \(-0.586865\pi\)
−0.269521 + 0.962994i \(0.586865\pi\)
\(398\) 0 0
\(399\) −73.2541 + 370.995i −0.183594 + 0.929812i
\(400\) 0 0
\(401\) 726.086i 1.81069i −0.424677 0.905345i \(-0.639613\pi\)
0.424677 0.905345i \(-0.360387\pi\)
\(402\) 0 0
\(403\) 80.0000 0.198511
\(404\) 0 0
\(405\) 127.351 128.790i 0.314447 0.317999i
\(406\) 0 0
\(407\) 508.670i 1.24980i
\(408\) 0 0
\(409\) −346.158 −0.846352 −0.423176 0.906047i \(-0.639085\pi\)
−0.423176 + 0.906047i \(0.639085\pi\)
\(410\) 0 0
\(411\) −518.039 102.288i −1.26044 0.248877i
\(412\) 0 0
\(413\) 893.038i 2.16232i
\(414\) 0 0
\(415\) −1.53950 −0.00370964
\(416\) 0 0
\(417\) −109.728 + 555.717i −0.263137 + 1.33266i
\(418\) 0 0
\(419\) 580.907i 1.38641i −0.720740 0.693206i \(-0.756198\pi\)
0.720740 0.693206i \(-0.243802\pi\)
\(420\) 0 0
\(421\) −269.315 −0.639704 −0.319852 0.947468i \(-0.603633\pi\)
−0.319852 + 0.947468i \(0.603633\pi\)
\(422\) 0 0
\(423\) −302.039 + 735.019i −0.714041 + 1.73763i
\(424\) 0 0
\(425\) 17.7708i 0.0418136i
\(426\) 0 0
\(427\) −252.105 −0.590411
\(428\) 0 0
\(429\) −249.737 49.3113i −0.582137 0.114945i
\(430\) 0 0
\(431\) 776.068i 1.80062i −0.435247 0.900311i \(-0.643339\pi\)
0.435247 0.900311i \(-0.356661\pi\)
\(432\) 0 0
\(433\) −195.526 −0.451561 −0.225781 0.974178i \(-0.572493\pi\)
−0.225781 + 0.974178i \(0.572493\pi\)
\(434\) 0 0
\(435\) −34.8683 + 176.590i −0.0801571 + 0.405955i
\(436\) 0 0
\(437\) 193.785i 0.443443i
\(438\) 0 0
\(439\) −598.763 −1.36392 −0.681962 0.731387i \(-0.738873\pi\)
−0.681962 + 0.731387i \(0.738873\pi\)
\(440\) 0 0
\(441\) −690.500 283.745i −1.56576 0.643413i
\(442\) 0 0
\(443\) 216.728i 0.489228i −0.969621 0.244614i \(-0.921339\pi\)
0.969621 0.244614i \(-0.0786612\pi\)
\(444\) 0 0
\(445\) −15.8947 −0.0357183
\(446\) 0 0
\(447\) −213.645 42.1848i −0.477953 0.0943732i
\(448\) 0 0
\(449\) 246.203i 0.548336i 0.961682 + 0.274168i \(0.0884025\pi\)
−0.961682 + 0.274168i \(0.911598\pi\)
\(450\) 0 0
\(451\) 174.158 0.386160
\(452\) 0 0
\(453\) −54.5964 + 276.503i −0.120522 + 0.610383i
\(454\) 0 0
\(455\) 256.853i 0.564513i
\(456\) 0 0
\(457\) 553.052 1.21018 0.605090 0.796157i \(-0.293137\pi\)
0.605090 + 0.796157i \(0.293137\pi\)
\(458\) 0 0
\(459\) −80.0135 52.9771i −0.174321 0.115419i
\(460\) 0 0
\(461\) 124.749i 0.270605i 0.990804 + 0.135302i \(0.0432006\pi\)
−0.990804 + 0.135302i \(0.956799\pi\)
\(462\) 0 0
\(463\) −669.723 −1.44649 −0.723243 0.690593i \(-0.757349\pi\)
−0.723243 + 0.690593i \(0.757349\pi\)
\(464\) 0 0
\(465\) 52.6491 + 10.3957i 0.113224 + 0.0223564i
\(466\) 0 0
\(467\) 486.880i 1.04257i 0.853383 + 0.521285i \(0.174547\pi\)
−0.853383 + 0.521285i \(0.825453\pi\)
\(468\) 0 0
\(469\) −614.999 −1.31130
\(470\) 0 0
\(471\) −71.9694 + 364.489i −0.152801 + 0.773861i
\(472\) 0 0
\(473\) 360.289i 0.761711i
\(474\) 0 0
\(475\) −54.8683 −0.115512
\(476\) 0 0
\(477\) 12.1580 29.5868i 0.0254885 0.0620267i
\(478\) 0 0
\(479\) 520.580i 1.08680i 0.839472 + 0.543402i \(0.182864\pi\)
−0.839472 + 0.543402i \(0.817136\pi\)
\(480\) 0 0
\(481\) 599.473 1.24631
\(482\) 0 0
\(483\) 597.013 + 117.882i 1.23605 + 0.244062i
\(484\) 0 0
\(485\) 250.322i 0.516128i
\(486\) 0 0
\(487\) 263.381 0.540824 0.270412 0.962745i \(-0.412840\pi\)
0.270412 + 0.962745i \(0.412840\pi\)
\(488\) 0 0
\(489\) −92.6228 + 469.088i −0.189413 + 0.959279i
\(490\) 0 0
\(491\) 711.646i 1.44938i −0.689074 0.724691i \(-0.741983\pi\)
0.689074 0.724691i \(-0.258017\pi\)
\(492\) 0 0
\(493\) 95.3680 0.193444
\(494\) 0 0
\(495\) −157.947 64.9049i −0.319086 0.131121i
\(496\) 0 0
\(497\) 795.569i 1.60074i
\(498\) 0 0
\(499\) −23.0790 −0.0462505 −0.0231253 0.999733i \(-0.507362\pi\)
−0.0231253 + 0.999733i \(0.507362\pi\)
\(500\) 0 0
\(501\) 31.7103 + 6.26130i 0.0632941 + 0.0124976i
\(502\) 0 0
\(503\) 40.5844i 0.0806847i 0.999186 + 0.0403423i \(0.0128449\pi\)
−0.999186 + 0.0403423i \(0.987155\pi\)
\(504\) 0 0
\(505\) 347.684 0.688483
\(506\) 0 0
\(507\) −40.0986 + 203.079i −0.0790899 + 0.400550i
\(508\) 0 0
\(509\) 484.591i 0.952045i −0.879433 0.476023i \(-0.842078\pi\)
0.879433 0.476023i \(-0.157922\pi\)
\(510\) 0 0
\(511\) −138.447 −0.270933
\(512\) 0 0
\(513\) −163.570 + 247.047i −0.318850 + 0.481572i
\(514\) 0 0
\(515\) 16.9766i 0.0329643i
\(516\) 0 0
\(517\) 749.210 1.44915
\(518\) 0 0
\(519\) 833.934 + 164.663i 1.60681 + 0.317269i
\(520\) 0 0
\(521\) 539.857i 1.03619i 0.855322 + 0.518097i \(0.173359\pi\)
−0.855322 + 0.518097i \(0.826641\pi\)
\(522\) 0 0
\(523\) 266.644 0.509836 0.254918 0.966963i \(-0.417952\pi\)
0.254918 + 0.966963i \(0.417952\pi\)
\(524\) 0 0
\(525\) 33.3772 169.039i 0.0635757 0.321979i
\(526\) 0 0
\(527\) 28.4332i 0.0539530i
\(528\) 0 0
\(529\) 217.158 0.410507
\(530\) 0 0
\(531\) −265.947 + 647.188i −0.500842 + 1.21881i
\(532\) 0 0
\(533\) 205.247i 0.385079i
\(534\) 0 0
\(535\) −36.4078 −0.0680520
\(536\) 0 0
\(537\) 902.447 + 178.191i 1.68053 + 0.331827i
\(538\) 0 0
\(539\) 703.831i 1.30581i
\(540\) 0 0
\(541\) −337.895 −0.624574 −0.312287 0.949988i \(-0.601095\pi\)
−0.312287 + 0.949988i \(0.601095\pi\)
\(542\) 0 0
\(543\) 154.399 781.954i 0.284345 1.44006i
\(544\) 0 0
\(545\) 209.837i 0.385022i
\(546\) 0 0
\(547\) 214.566 0.392259 0.196130 0.980578i \(-0.437163\pi\)
0.196130 + 0.980578i \(0.437163\pi\)
\(548\) 0 0
\(549\) −182.702 75.0771i −0.332790 0.136753i
\(550\) 0 0
\(551\) 294.454i 0.534400i
\(552\) 0 0
\(553\) −103.684 −0.187494
\(554\) 0 0
\(555\) 394.522 + 77.8995i 0.710850 + 0.140359i
\(556\) 0 0
\(557\) 674.821i 1.21153i 0.795644 + 0.605764i \(0.207133\pi\)
−0.795644 + 0.605764i \(0.792867\pi\)
\(558\) 0 0
\(559\) 424.605 0.759580
\(560\) 0 0
\(561\) −17.5260 + 88.7603i −0.0312406 + 0.158218i
\(562\) 0 0
\(563\) 718.513i 1.27622i −0.769944 0.638111i \(-0.779716\pi\)
0.769944 0.638111i \(-0.220284\pi\)
\(564\) 0 0
\(565\) −437.684 −0.774662
\(566\) 0 0
\(567\) −661.601 654.210i −1.16684 1.15381i
\(568\) 0 0
\(569\) 183.122i 0.321831i −0.986968 0.160916i \(-0.948555\pi\)
0.986968 0.160916i \(-0.0514447\pi\)
\(570\) 0 0
\(571\) 295.895 0.518204 0.259102 0.965850i \(-0.416573\pi\)
0.259102 + 0.965850i \(0.416573\pi\)
\(572\) 0 0
\(573\) −469.789 92.7613i −0.819877 0.161887i
\(574\) 0 0
\(575\) 88.2952i 0.153557i
\(576\) 0 0
\(577\) −984.947 −1.70701 −0.853507 0.521082i \(-0.825529\pi\)
−0.853507 + 0.521082i \(0.825529\pi\)
\(578\) 0 0
\(579\) −53.4954 + 270.927i −0.0923927 + 0.467922i
\(580\) 0 0
\(581\) 7.90852i 0.0136119i
\(582\) 0 0
\(583\) −30.1580 −0.0517290
\(584\) 0 0
\(585\) 76.4911 186.143i 0.130754 0.318193i
\(586\) 0 0
\(587\) 378.172i 0.644245i 0.946698 + 0.322122i \(0.104396\pi\)
−0.946698 + 0.322122i \(0.895604\pi\)
\(588\) 0 0
\(589\) −87.7893 −0.149048
\(590\) 0 0
\(591\) 205.540 + 40.5844i 0.347783 + 0.0686707i
\(592\) 0 0
\(593\) 265.221i 0.447253i −0.974675 0.223626i \(-0.928210\pi\)
0.974675 0.223626i \(-0.0717895\pi\)
\(594\) 0 0
\(595\) −91.2897 −0.153428
\(596\) 0 0
\(597\) −86.5438 + 438.301i −0.144964 + 0.734172i
\(598\) 0 0
\(599\) 382.061i 0.637832i −0.947783 0.318916i \(-0.896681\pi\)
0.947783 0.318916i \(-0.103319\pi\)
\(600\) 0 0
\(601\) 1021.53 1.69971 0.849855 0.527016i \(-0.176689\pi\)
0.849855 + 0.527016i \(0.176689\pi\)
\(602\) 0 0
\(603\) −445.693 183.147i −0.739125 0.303727i
\(604\) 0 0
\(605\) 109.567i 0.181103i
\(606\) 0 0
\(607\) 835.487 1.37642 0.688210 0.725512i \(-0.258397\pi\)
0.688210 + 0.725512i \(0.258397\pi\)
\(608\) 0 0
\(609\) 907.157 + 179.121i 1.48959 + 0.294123i
\(610\) 0 0
\(611\) 882.952i 1.44509i
\(612\) 0 0
\(613\) 833.263 1.35932 0.679660 0.733528i \(-0.262128\pi\)
0.679660 + 0.733528i \(0.262128\pi\)
\(614\) 0 0
\(615\) −26.6712 + 135.076i −0.0433678 + 0.219636i
\(616\) 0 0
\(617\) 455.098i 0.737598i −0.929509 0.368799i \(-0.879769\pi\)
0.929509 0.368799i \(-0.120231\pi\)
\(618\) 0 0
\(619\) −336.710 −0.543959 −0.271979 0.962303i \(-0.587678\pi\)
−0.271979 + 0.962303i \(0.587678\pi\)
\(620\) 0 0
\(621\) 397.552 + 263.220i 0.640181 + 0.423865i
\(622\) 0 0
\(623\) 81.6520i 0.131063i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 274.053 + 54.1125i 0.437086 + 0.0863039i
\(628\) 0 0
\(629\) 213.062i 0.338731i
\(630\) 0 0
\(631\) 1100.89 1.74468 0.872341 0.488898i \(-0.162601\pi\)
0.872341 + 0.488898i \(0.162601\pi\)
\(632\) 0 0
\(633\) 166.114 841.283i 0.262423 1.32904i
\(634\) 0 0
\(635\) 173.384i 0.273045i
\(636\) 0 0
\(637\) −829.473 −1.30216
\(638\) 0 0
\(639\) 236.921 576.552i 0.370768 0.902273i
\(640\) 0 0
\(641\) 337.011i 0.525758i −0.964829 0.262879i \(-0.915328\pi\)
0.964829 0.262879i \(-0.0846719\pi\)
\(642\) 0 0
\(643\) 599.381 0.932164 0.466082 0.884742i \(-0.345665\pi\)
0.466082 + 0.884742i \(0.345665\pi\)
\(644\) 0 0
\(645\) 279.438 + 55.1760i 0.433238 + 0.0855441i
\(646\) 0 0
\(647\) 47.0224i 0.0726775i −0.999340 0.0363388i \(-0.988430\pi\)
0.999340 0.0363388i \(-0.0115695\pi\)
\(648\) 0 0
\(649\) 659.684 1.01646
\(650\) 0 0
\(651\) 53.4036 270.462i 0.0820331 0.415456i
\(652\) 0 0
\(653\) 559.228i 0.856399i −0.903684 0.428199i \(-0.859148\pi\)
0.903684 0.428199i \(-0.140852\pi\)
\(654\) 0 0
\(655\) 227.184 0.346846
\(656\) 0 0
\(657\) −100.333 41.2296i −0.152714 0.0627543i
\(658\) 0 0
\(659\) 665.759i 1.01026i −0.863044 0.505129i \(-0.831445\pi\)
0.863044 0.505129i \(-0.168555\pi\)
\(660\) 0 0
\(661\) −557.947 −0.844096 −0.422048 0.906574i \(-0.638689\pi\)
−0.422048 + 0.906574i \(0.638689\pi\)
\(662\) 0 0
\(663\) −104.605 20.6546i −0.157775 0.0311532i
\(664\) 0 0
\(665\) 281.862i 0.423853i
\(666\) 0 0
\(667\) −473.842 −0.710408
\(668\) 0 0
\(669\) 41.4826 210.088i 0.0620068 0.314033i
\(670\) 0 0
\(671\) 186.229i 0.277540i
\(672\) 0 0
\(673\) 1019.42 1.51474 0.757370 0.652985i \(-0.226484\pi\)
0.757370 + 0.652985i \(0.226484\pi\)
\(674\) 0 0
\(675\) 74.5285 112.563i 0.110413 0.166761i
\(676\) 0 0
\(677\) 624.616i 0.922624i −0.887238 0.461312i \(-0.847379\pi\)
0.887238 0.461312i \(-0.152621\pi\)
\(678\) 0 0
\(679\) −1285.92 −1.89384
\(680\) 0 0
\(681\) −85.7103 16.9238i −0.125860 0.0248513i
\(682\) 0 0
\(683\) 525.882i 0.769959i 0.922925 + 0.384980i \(0.125792\pi\)
−0.922925 + 0.384980i \(0.874208\pi\)
\(684\) 0 0
\(685\) −393.579 −0.574567
\(686\) 0 0
\(687\) −75.3644 + 381.683i −0.109701 + 0.555579i
\(688\) 0 0
\(689\) 35.5415i 0.0515843i
\(690\) 0 0
\(691\) −932.000 −1.34877 −0.674385 0.738380i \(-0.735591\pi\)
−0.674385 + 0.738380i \(0.735591\pi\)
\(692\) 0 0
\(693\) −333.421 + 811.386i −0.481126 + 1.17083i
\(694\) 0 0
\(695\) 422.205i 0.607489i
\(696\) 0 0
\(697\) 72.9480 0.104660
\(698\) 0 0
\(699\) 547.065 + 108.020i 0.782640 + 0.154535i
\(700\) 0 0
\(701\) 606.045i 0.864544i 0.901743 + 0.432272i \(0.142288\pi\)
−0.901743 + 0.432272i \(0.857712\pi\)
\(702\) 0 0
\(703\) −657.842 −0.935764
\(704\) 0 0
\(705\) −114.737 + 581.083i −0.162747 + 0.824232i
\(706\) 0 0
\(707\) 1786.08i 2.52627i
\(708\) 0 0
\(709\) 489.473 0.690371 0.345186 0.938534i \(-0.387816\pi\)
0.345186 + 0.938534i \(0.387816\pi\)
\(710\) 0 0
\(711\) −75.1402 30.8772i −0.105682 0.0434278i
\(712\) 0 0
\(713\) 141.272i 0.198138i
\(714\) 0 0
\(715\) −189.737 −0.265366
\(716\) 0 0
\(717\) −890.947 175.920i −1.24260 0.245356i
\(718\) 0 0
\(719\) 107.778i 0.149900i −0.997187 0.0749500i \(-0.976120\pi\)
0.997187 0.0749500i \(-0.0238797\pi\)
\(720\) 0 0
\(721\) 87.2100 0.120957
\(722\) 0 0
\(723\) −138.036 + 699.080i −0.190921 + 0.966916i
\(724\) 0 0
\(725\) 134.164i 0.185054i
\(726\) 0 0
\(727\) 150.172 0.206563 0.103282 0.994652i \(-0.467066\pi\)
0.103282 + 0.994652i \(0.467066\pi\)
\(728\) 0 0
\(729\) −284.641 671.134i −0.390453 0.920623i
\(730\) 0 0
\(731\) 150.911i 0.206445i
\(732\) 0 0
\(733\) −675.526 −0.921591 −0.460795 0.887506i \(-0.652436\pi\)
−0.460795 + 0.887506i \(0.652436\pi\)
\(734\) 0 0
\(735\) −545.888 107.787i −0.742705 0.146649i
\(736\) 0 0
\(737\) 454.298i 0.616415i
\(738\) 0 0
\(739\) 936.921 1.26782 0.633911 0.773406i \(-0.281448\pi\)
0.633911 + 0.773406i \(0.281448\pi\)
\(740\) 0 0
\(741\) −63.7722 + 322.974i −0.0860624 + 0.435863i
\(742\) 0 0
\(743\) 452.939i 0.609608i 0.952415 + 0.304804i \(0.0985910\pi\)
−0.952415 + 0.304804i \(0.901409\pi\)
\(744\) 0 0
\(745\) −162.316 −0.217874
\(746\) 0 0
\(747\) −2.35516 + 5.73134i −0.00315283 + 0.00767247i
\(748\) 0 0
\(749\) 187.029i 0.249706i
\(750\) 0 0
\(751\) −654.369 −0.871330 −0.435665 0.900109i \(-0.643487\pi\)
−0.435665 + 0.900109i \(0.643487\pi\)
\(752\) 0 0
\(753\) 249.079 + 49.1814i 0.330782 + 0.0653140i
\(754\) 0 0
\(755\) 210.073i 0.278242i
\(756\) 0 0
\(757\) 123.315 0.162900 0.0814500 0.996677i \(-0.474045\pi\)
0.0814500 + 0.996677i \(0.474045\pi\)
\(758\) 0 0
\(759\) 87.0790 441.011i 0.114729 0.581042i
\(760\) 0 0
\(761\) 502.715i 0.660598i 0.943876 + 0.330299i \(0.107150\pi\)
−0.943876 + 0.330299i \(0.892850\pi\)
\(762\) 0 0
\(763\) 1077.95 1.41278
\(764\) 0 0
\(765\) −66.1580 27.1861i −0.0864811 0.0355374i
\(766\) 0 0
\(767\) 777.445i 1.01362i
\(768\) 0 0
\(769\) −286.316 −0.372323 −0.186161 0.982519i \(-0.559605\pi\)
−0.186161 + 0.982519i \(0.559605\pi\)
\(770\) 0 0
\(771\) 859.565 + 169.724i 1.11487 + 0.220135i
\(772\) 0 0
\(773\) 972.030i 1.25748i 0.777617 + 0.628739i \(0.216428\pi\)
−0.777617 + 0.628739i \(0.783572\pi\)
\(774\) 0 0
\(775\) 40.0000 0.0516129
\(776\) 0 0
\(777\) 400.175 2026.68i 0.515026 2.60835i
\(778\) 0 0
\(779\) 225.231i 0.289129i
\(780\) 0 0
\(781\) −587.684 −0.752476
\(782\) 0 0
\(783\) 604.078 + 399.962i 0.771492 + 0.510807i
\(784\) 0 0
\(785\) 276.919i 0.352763i
\(786\) 0 0
\(787\) −1492.70 −1.89669 −0.948346 0.317237i \(-0.897245\pi\)
−0.948346 + 0.317237i \(0.897245\pi\)
\(788\) 0 0
\(789\) −817.394 161.397i −1.03599 0.204559i
\(790\) 0 0
\(791\) 2248.41i 2.84249i
\(792\) 0 0
\(793\) −219.473 −0.276763
\(794\) 0 0
\(795\) 4.61850 23.3904i 0.00580944 0.0294219i
\(796\) 0 0
\(797\) 94.3618i 0.118396i 0.998246 + 0.0591981i \(0.0188544\pi\)
−0.998246 + 0.0591981i \(0.981146\pi\)
\(798\) 0 0
\(799\) 313.815 0.392760
\(800\) 0 0
\(801\) −24.3160 + 59.1735i −0.0303571 + 0.0738746i
\(802\) 0 0
\(803\) 102.270i 0.127360i
\(804\) 0 0
\(805\) 453.579 0.563452
\(806\) 0 0
\(807\) −843.354 166.523i −1.04505 0.206348i
\(808\) 0 0
\(809\) 1103.35i 1.36384i 0.731427 + 0.681920i \(0.238855\pi\)
−0.731427 + 0.681920i \(0.761145\pi\)
\(810\) 0 0
\(811\) 10.1580 0.0125253 0.00626264 0.999980i \(-0.498007\pi\)
0.00626264 + 0.999980i \(0.498007\pi\)
\(812\) 0 0
\(813\) 188.350 953.899i 0.231673 1.17331i
\(814\) 0 0
\(815\) 356.388i 0.437286i
\(816\) 0 0
\(817\) −465.947 −0.570315
\(818\) 0 0
\(819\) −956.228 392.940i −1.16756 0.479780i
\(820\) 0 0
\(821\) 337.011i 0.410488i −0.978711 0.205244i \(-0.934201\pi\)
0.978711 0.205244i \(-0.0657988\pi\)
\(822\) 0 0
\(823\) 901.512 1.09540 0.547699 0.836675i \(-0.315504\pi\)
0.547699 + 0.836675i \(0.315504\pi\)
\(824\) 0 0
\(825\) −124.868 24.6556i −0.151356 0.0298856i
\(826\) 0 0
\(827\) 531.354i 0.642508i −0.946993 0.321254i \(-0.895896\pi\)
0.946993 0.321254i \(-0.104104\pi\)
\(828\) 0 0
\(829\) −197.631 −0.238397 −0.119199 0.992870i \(-0.538033\pi\)
−0.119199 + 0.992870i \(0.538033\pi\)
\(830\) 0 0
\(831\) 241.662 1223.90i 0.290809 1.47280i
\(832\) 0 0
\(833\) 294.808i 0.353911i
\(834\) 0 0
\(835\) 24.0918 0.0288525
\(836\) 0 0
\(837\) 119.246 180.101i 0.142468 0.215175i
\(838\) 0 0
\(839\) 943.950i 1.12509i −0.826767 0.562545i \(-0.809822\pi\)
0.826767 0.562545i \(-0.190178\pi\)
\(840\) 0 0
\(841\) 121.000 0.143876
\(842\) 0 0
\(843\) −1270.64 250.893i −1.50729 0.297619i
\(844\) 0 0
\(845\) 154.289i 0.182590i
\(846\) 0 0
\(847\) −562.855 −0.664528
\(848\) 0 0
\(849\) −82.2541 + 416.575i −0.0968835 + 0.490666i
\(850\) 0 0
\(851\) 1058.61i 1.24396i
\(852\) 0 0
\(853\) −1196.42 −1.40260 −0.701301 0.712865i \(-0.747397\pi\)
−0.701301 + 0.712865i \(0.747397\pi\)
\(854\) 0 0
\(855\) −83.9388 + 204.267i −0.0981740 + 0.238909i
\(856\) 0 0
\(857\) 1266.04i 1.47729i 0.674095 + 0.738645i \(0.264534\pi\)
−0.674095 + 0.738645i \(0.735466\pi\)
\(858\) 0 0
\(859\) 470.868 0.548159 0.274079 0.961707i \(-0.411627\pi\)
0.274079 + 0.961707i \(0.411627\pi\)
\(860\) 0 0
\(861\) 693.895 + 137.012i 0.805917 + 0.159131i
\(862\) 0 0
\(863\) 285.057i 0.330310i −0.986268 0.165155i \(-0.947188\pi\)
0.986268 0.165155i \(-0.0528124\pi\)
\(864\) 0 0
\(865\) 633.579 0.732461
\(866\) 0 0
\(867\) 160.608 813.399i 0.185246 0.938177i
\(868\) 0 0
\(869\) 76.5910i 0.0881369i
\(870\) 0 0
\(871\) −535.395 −0.614690
\(872\) 0 0
\(873\) −931.912 382.948i −1.06748 0.438657i
\(874\) 0 0
\(875\) 128.427i 0.146773i
\(876\) 0 0
\(877\) 244.579 0.278882 0.139441 0.990230i \(-0.455469\pi\)
0.139441 + 0.990230i \(0.455469\pi\)
\(878\) 0 0
\(879\) −485.618 95.8867i −0.552466 0.109086i
\(880\) 0 0
\(881\) 137.271i 0.155813i 0.996961 + 0.0779065i \(0.0248236\pi\)
−0.996961 + 0.0779065i \(0.975176\pi\)
\(882\) 0 0
\(883\) −1647.75 −1.86608 −0.933040 0.359772i \(-0.882854\pi\)
−0.933040 + 0.359772i \(0.882854\pi\)
\(884\) 0 0
\(885\) −101.026 + 511.647i −0.114154 + 0.578133i
\(886\) 0 0
\(887\) 514.419i 0.579954i 0.957034 + 0.289977i \(0.0936477\pi\)
−0.957034 + 0.289977i \(0.906352\pi\)
\(888\) 0 0
\(889\) −890.683 −1.00189
\(890\) 0 0
\(891\) −483.263 + 488.722i −0.542382 + 0.548510i
\(892\) 0 0
\(893\) 968.923i 1.08502i
\(894\) 0 0
\(895\) 685.631 0.766069
\(896\) 0 0
\(897\) 519.737 + 102.624i 0.579417 + 0.114408i
\(898\) 0 0
\(899\) 214.663i 0.238779i
\(900\) 0 0
\(901\) −12.6320 −0.0140200
\(902\) 0 0
\(903\) 283.443 1435.49i 0.313890 1.58969i
\(904\) 0 0
\(905\) 594.087i 0.656450i
\(906\) 0 0
\(907\) −347.303 −0.382914 −0.191457 0.981501i \(-0.561321\pi\)
−0.191457 + 0.981501i \(0.561321\pi\)
\(908\) 0 0
\(909\) 531.895 1294.38i 0.585143 1.42396i
\(910\) 0 0
\(911\) 304.540i 0.334292i 0.985932 + 0.167146i \(0.0534551\pi\)
−0.985932 + 0.167146i \(0.946545\pi\)
\(912\) 0 0
\(913\) 5.84200 0.00639868
\(914\) 0 0
\(915\) −144.438 28.5198i −0.157856 0.0311692i
\(916\) 0 0
\(917\) 1167.06i 1.27270i
\(918\) 0 0
\(919\) −244.289 −0.265820 −0.132910 0.991128i \(-0.542432\pi\)
−0.132910 + 0.991128i \(0.542432\pi\)
\(920\) 0 0
\(921\) −92.6228 + 469.088i −0.100568 + 0.509324i
\(922\) 0 0
\(923\) 692.592i 0.750371i
\(924\) 0 0
\(925\) 299.737 0.324040
\(926\) 0 0
\(927\) 63.2014 + 25.9712i 0.0681785 + 0.0280164i
\(928\) 0 0
\(929\) 1025.96i 1.10437i −0.833723 0.552183i \(-0.813795\pi\)
0.833723 0.552183i \(-0.186205\pi\)
\(930\) 0 0
\(931\) 910.236 0.977697
\(932\) 0 0
\(933\) 421.157 + 83.1588i 0.451401 + 0.0891305i
\(934\) 0 0
\(935\) 67.4353i 0.0721234i
\(936\) 0 0
\(937\) −332.053 −0.354379 −0.177189 0.984177i \(-0.556700\pi\)
−0.177189 + 0.984177i \(0.556700\pi\)
\(938\) 0 0
\(939\) −291.548 + 1476.54i −0.310488 + 1.57246i
\(940\) 0 0
\(941\) 1636.99i 1.73963i 0.493381 + 0.869813i \(0.335761\pi\)
−0.493381 + 0.869813i \(0.664239\pi\)
\(942\) 0 0
\(943\) −362.447 −0.384355
\(944\) 0 0
\(945\) −578.246 382.858i −0.611900 0.405141i
\(946\) 0 0
\(947\) 1209.32i 1.27700i −0.769622 0.638500i \(-0.779555\pi\)
0.769622 0.638500i \(-0.220445\pi\)
\(948\) 0 0
\(949\) −120.527 −0.127004
\(950\) 0 0
\(951\) 983.776 + 194.250i 1.03446 + 0.204258i
\(952\) 0 0
\(953\) 1205.26i 1.26470i −0.774681 0.632352i \(-0.782090\pi\)
0.774681 0.632352i \(-0.217910\pi\)
\(954\) 0 0
\(955\) −356.921 −0.373739
\(956\) 0 0
\(957\) 132.316 670.114i 0.138261 0.700223i
\(958\) 0 0
\(959\) 2021.84i 2.10828i
\(960\) 0 0
\(961\) −897.000 −0.933403
\(962\) 0 0
\(963\) −55.6975 + 135.541i −0.0578375 + 0.140749i
\(964\) 0 0
\(965\) 205.836i 0.213302i
\(966\) 0 0
\(967\) 1845.93 1.90893 0.954464 0.298325i \(-0.0964281\pi\)
0.954464 + 0.298325i \(0.0964281\pi\)
\(968\) 0 0
\(969\) 114.790 + 22.6656i 0.118462 + 0.0233908i
\(970\) 0 0
\(971\) 1057.91i 1.08950i −0.838598 0.544751i \(-0.816624\pi\)
0.838598 0.544751i \(-0.183376\pi\)
\(972\) 0 0
\(973\) 2168.89 2.22908
\(974\) 0 0
\(975\) 29.0569 147.159i 0.0298020 0.150932i
\(976\) 0 0
\(977\) 964.028i 0.986722i −0.869825 0.493361i \(-0.835768\pi\)
0.869825 0.493361i \(-0.164232\pi\)
\(978\) 0 0
\(979\) 60.3160 0.0616098
\(980\) 0 0
\(981\) 781.193 + 321.013i 0.796323 + 0.327231i
\(982\) 0 0
\(983\) 460.718i 0.468685i −0.972154 0.234343i \(-0.924706\pi\)
0.972154 0.234343i \(-0.0752937\pi\)
\(984\) 0 0
\(985\) 156.158 0.158536
\(986\) 0 0
\(987\) 2985.06 + 589.410i 3.02438 + 0.597173i
\(988\) 0 0
\(989\) 749.812i 0.758152i
\(990\) 0 0
\(991\) −1237.89 −1.24914 −0.624568 0.780971i \(-0.714725\pi\)
−0.624568 + 0.780971i \(0.714725\pi\)
\(992\) 0 0
\(993\) −226.307 + 1146.13i −0.227903 + 1.15421i
\(994\) 0 0
\(995\) 332.997i 0.334671i
\(996\) 0 0
\(997\) −9.36798 −0.00939617 −0.00469809 0.999989i \(-0.501495\pi\)
−0.00469809 + 0.999989i \(0.501495\pi\)
\(998\) 0 0
\(999\) 893.557 1349.57i 0.894451 1.35093i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.3.l.c.161.3 4
3.2 odd 2 inner 240.3.l.c.161.4 4
4.3 odd 2 30.3.d.a.11.3 yes 4
5.2 odd 4 1200.3.c.k.449.1 8
5.3 odd 4 1200.3.c.k.449.8 8
5.4 even 2 1200.3.l.u.401.2 4
8.3 odd 2 960.3.l.e.641.3 4
8.5 even 2 960.3.l.f.641.2 4
12.11 even 2 30.3.d.a.11.1 4
15.2 even 4 1200.3.c.k.449.7 8
15.8 even 4 1200.3.c.k.449.2 8
15.14 odd 2 1200.3.l.u.401.1 4
20.3 even 4 150.3.b.b.149.5 8
20.7 even 4 150.3.b.b.149.4 8
20.19 odd 2 150.3.d.c.101.2 4
24.5 odd 2 960.3.l.f.641.1 4
24.11 even 2 960.3.l.e.641.4 4
36.7 odd 6 810.3.h.a.701.4 8
36.11 even 6 810.3.h.a.701.1 8
36.23 even 6 810.3.h.a.431.4 8
36.31 odd 6 810.3.h.a.431.1 8
60.23 odd 4 150.3.b.b.149.3 8
60.47 odd 4 150.3.b.b.149.6 8
60.59 even 2 150.3.d.c.101.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.d.a.11.1 4 12.11 even 2
30.3.d.a.11.3 yes 4 4.3 odd 2
150.3.b.b.149.3 8 60.23 odd 4
150.3.b.b.149.4 8 20.7 even 4
150.3.b.b.149.5 8 20.3 even 4
150.3.b.b.149.6 8 60.47 odd 4
150.3.d.c.101.2 4 20.19 odd 2
150.3.d.c.101.4 4 60.59 even 2
240.3.l.c.161.3 4 1.1 even 1 trivial
240.3.l.c.161.4 4 3.2 odd 2 inner
810.3.h.a.431.1 8 36.31 odd 6
810.3.h.a.431.4 8 36.23 even 6
810.3.h.a.701.1 8 36.11 even 6
810.3.h.a.701.4 8 36.7 odd 6
960.3.l.e.641.3 4 8.3 odd 2
960.3.l.e.641.4 4 24.11 even 2
960.3.l.f.641.1 4 24.5 odd 2
960.3.l.f.641.2 4 8.5 even 2
1200.3.c.k.449.1 8 5.2 odd 4
1200.3.c.k.449.2 8 15.8 even 4
1200.3.c.k.449.7 8 15.2 even 4
1200.3.c.k.449.8 8 5.3 odd 4
1200.3.l.u.401.1 4 15.14 odd 2
1200.3.l.u.401.2 4 5.4 even 2