Properties

Label 150.3.d.c.101.4
Level $150$
Weight $3$
Character 150.101
Analytic conductor $4.087$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(101,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.4
Root \(-1.58114 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 150.101
Dual form 150.3.d.c.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(0.581139 + 2.94317i) q^{3} -2.00000 q^{4} +(-4.16228 + 0.821854i) q^{6} -11.4868 q^{7} -2.82843i q^{8} +(-8.32456 + 3.42079i) q^{9} +O(q^{10})\) \(q+1.41421i q^{2} +(0.581139 + 2.94317i) q^{3} -2.00000 q^{4} +(-4.16228 + 0.821854i) q^{6} -11.4868 q^{7} -2.82843i q^{8} +(-8.32456 + 3.42079i) q^{9} +8.48528i q^{11} +(-1.16228 - 5.88635i) q^{12} +10.0000 q^{13} -16.2448i q^{14} +4.00000 q^{16} +3.55415i q^{17} +(-4.83772 - 11.7727i) q^{18} -10.9737 q^{19} +(-6.67544 - 33.8078i) q^{21} -12.0000 q^{22} +17.6590i q^{23} +(8.32456 - 1.64371i) q^{24} +14.1421i q^{26} +(-14.9057 - 22.5127i) q^{27} +22.9737 q^{28} +26.8328i q^{29} +8.00000 q^{31} +5.65685i q^{32} +(-24.9737 + 4.93113i) q^{33} -5.02633 q^{34} +(16.6491 - 6.84157i) q^{36} +59.9473 q^{37} -15.5191i q^{38} +(5.81139 + 29.4317i) q^{39} +20.5247i q^{41} +(47.8114 - 9.44050i) q^{42} -42.4605 q^{43} -16.9706i q^{44} -24.9737 q^{46} +88.2952i q^{47} +(2.32456 + 11.7727i) q^{48} +82.9473 q^{49} +(-10.4605 + 2.06546i) q^{51} -20.0000 q^{52} +3.55415i q^{53} +(31.8377 - 21.0798i) q^{54} +32.4897i q^{56} +(-6.37722 - 32.2974i) q^{57} -37.9473 q^{58} -77.7445i q^{59} +21.9473 q^{61} +11.3137i q^{62} +(95.6228 - 39.2940i) q^{63} -8.00000 q^{64} +(-6.97367 - 35.3181i) q^{66} +53.5395 q^{67} -7.10831i q^{68} +(-51.9737 + 10.2624i) q^{69} +69.2592i q^{71} +(9.67544 + 23.5454i) q^{72} -12.0527 q^{73} +84.7783i q^{74} +21.9473 q^{76} -97.4690i q^{77} +(-41.6228 + 8.21854i) q^{78} -9.02633 q^{79} +(57.5964 - 56.9530i) q^{81} -29.0263 q^{82} +0.688486i q^{83} +(13.3509 + 67.6155i) q^{84} -60.0482i q^{86} +(-78.9737 + 15.5936i) q^{87} +24.0000 q^{88} +7.10831i q^{89} -114.868 q^{91} -35.3181i q^{92} +(4.64911 + 23.5454i) q^{93} -124.868 q^{94} +(-16.6491 + 3.28742i) q^{96} -111.947 q^{97} +117.305i q^{98} +(-29.0263 - 70.6362i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{4} - 4 q^{6} - 8 q^{7} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} - 8 q^{4} - 4 q^{6} - 8 q^{7} - 8 q^{9} + 8 q^{12} + 40 q^{13} + 16 q^{16} - 32 q^{18} + 32 q^{19} - 52 q^{21} - 48 q^{22} + 8 q^{24} - 28 q^{27} + 16 q^{28} + 32 q^{31} - 24 q^{33} - 96 q^{34} + 16 q^{36} + 88 q^{37} - 40 q^{39} + 128 q^{42} - 56 q^{43} - 24 q^{46} - 16 q^{48} + 180 q^{49} + 72 q^{51} - 80 q^{52} + 140 q^{54} - 152 q^{57} - 64 q^{61} + 256 q^{63} - 32 q^{64} + 48 q^{66} + 328 q^{67} - 132 q^{69} + 64 q^{72} - 200 q^{73} - 64 q^{76} - 40 q^{78} - 112 q^{79} + 28 q^{81} - 192 q^{82} + 104 q^{84} - 240 q^{87} + 96 q^{88} - 80 q^{91} - 32 q^{93} - 120 q^{94} - 16 q^{96} - 296 q^{97} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0.581139 + 2.94317i 0.193713 + 0.981058i
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) −4.16228 + 0.821854i −0.693713 + 0.136976i
\(7\) −11.4868 −1.64098 −0.820488 0.571664i \(-0.806298\pi\)
−0.820488 + 0.571664i \(0.806298\pi\)
\(8\) 2.82843i 0.353553i
\(9\) −8.32456 + 3.42079i −0.924951 + 0.380087i
\(10\) 0 0
\(11\) 8.48528i 0.771389i 0.922627 + 0.385695i \(0.126038\pi\)
−0.922627 + 0.385695i \(0.873962\pi\)
\(12\) −1.16228 5.88635i −0.0968565 0.490529i
\(13\) 10.0000 0.769231 0.384615 0.923077i \(-0.374334\pi\)
0.384615 + 0.923077i \(0.374334\pi\)
\(14\) 16.2448i 1.16035i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 3.55415i 0.209068i 0.994521 + 0.104534i \(0.0333351\pi\)
−0.994521 + 0.104534i \(0.966665\pi\)
\(18\) −4.83772 11.7727i −0.268762 0.654039i
\(19\) −10.9737 −0.577561 −0.288781 0.957395i \(-0.593250\pi\)
−0.288781 + 0.957395i \(0.593250\pi\)
\(20\) 0 0
\(21\) −6.67544 33.8078i −0.317878 1.60989i
\(22\) −12.0000 −0.545455
\(23\) 17.6590i 0.767785i 0.923378 + 0.383892i \(0.125417\pi\)
−0.923378 + 0.383892i \(0.874583\pi\)
\(24\) 8.32456 1.64371i 0.346856 0.0684879i
\(25\) 0 0
\(26\) 14.1421i 0.543928i
\(27\) −14.9057 22.5127i −0.552063 0.833803i
\(28\) 22.9737 0.820488
\(29\) 26.8328i 0.925270i 0.886549 + 0.462635i \(0.153096\pi\)
−0.886549 + 0.462635i \(0.846904\pi\)
\(30\) 0 0
\(31\) 8.00000 0.258065 0.129032 0.991640i \(-0.458813\pi\)
0.129032 + 0.991640i \(0.458813\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −24.9737 + 4.93113i −0.756778 + 0.149428i
\(34\) −5.02633 −0.147833
\(35\) 0 0
\(36\) 16.6491 6.84157i 0.462475 0.190044i
\(37\) 59.9473 1.62020 0.810099 0.586293i \(-0.199413\pi\)
0.810099 + 0.586293i \(0.199413\pi\)
\(38\) 15.5191i 0.408398i
\(39\) 5.81139 + 29.4317i 0.149010 + 0.754660i
\(40\) 0 0
\(41\) 20.5247i 0.500603i 0.968168 + 0.250301i \(0.0805297\pi\)
−0.968168 + 0.250301i \(0.919470\pi\)
\(42\) 47.8114 9.44050i 1.13837 0.224774i
\(43\) −42.4605 −0.987453 −0.493727 0.869617i \(-0.664366\pi\)
−0.493727 + 0.869617i \(0.664366\pi\)
\(44\) 16.9706i 0.385695i
\(45\) 0 0
\(46\) −24.9737 −0.542906
\(47\) 88.2952i 1.87862i 0.343067 + 0.939311i \(0.388534\pi\)
−0.343067 + 0.939311i \(0.611466\pi\)
\(48\) 2.32456 + 11.7727i 0.0484282 + 0.245265i
\(49\) 82.9473 1.69280
\(50\) 0 0
\(51\) −10.4605 + 2.06546i −0.205108 + 0.0404992i
\(52\) −20.0000 −0.384615
\(53\) 3.55415i 0.0670595i 0.999438 + 0.0335298i \(0.0106749\pi\)
−0.999438 + 0.0335298i \(0.989325\pi\)
\(54\) 31.8377 21.0798i 0.589587 0.390367i
\(55\) 0 0
\(56\) 32.4897i 0.580173i
\(57\) −6.37722 32.2974i −0.111881 0.566621i
\(58\) −37.9473 −0.654264
\(59\) 77.7445i 1.31770i −0.752273 0.658852i \(-0.771042\pi\)
0.752273 0.658852i \(-0.228958\pi\)
\(60\) 0 0
\(61\) 21.9473 0.359792 0.179896 0.983686i \(-0.442424\pi\)
0.179896 + 0.983686i \(0.442424\pi\)
\(62\) 11.3137i 0.182479i
\(63\) 95.6228 39.2940i 1.51782 0.623714i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) −6.97367 35.3181i −0.105662 0.535123i
\(67\) 53.5395 0.799097 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(68\) 7.10831i 0.104534i
\(69\) −51.9737 + 10.2624i −0.753242 + 0.148730i
\(70\) 0 0
\(71\) 69.2592i 0.975482i 0.872988 + 0.487741i \(0.162179\pi\)
−0.872988 + 0.487741i \(0.837821\pi\)
\(72\) 9.67544 + 23.5454i 0.134381 + 0.327019i
\(73\) −12.0527 −0.165105 −0.0825525 0.996587i \(-0.526307\pi\)
−0.0825525 + 0.996587i \(0.526307\pi\)
\(74\) 84.7783i 1.14565i
\(75\) 0 0
\(76\) 21.9473 0.288781
\(77\) 97.4690i 1.26583i
\(78\) −41.6228 + 8.21854i −0.533625 + 0.105366i
\(79\) −9.02633 −0.114257 −0.0571287 0.998367i \(-0.518195\pi\)
−0.0571287 + 0.998367i \(0.518195\pi\)
\(80\) 0 0
\(81\) 57.5964 56.9530i 0.711067 0.703124i
\(82\) −29.0263 −0.353980
\(83\) 0.688486i 0.00829501i 0.999991 + 0.00414750i \(0.00132020\pi\)
−0.999991 + 0.00414750i \(0.998680\pi\)
\(84\) 13.3509 + 67.6155i 0.158939 + 0.804947i
\(85\) 0 0
\(86\) 60.0482i 0.698235i
\(87\) −78.9737 + 15.5936i −0.907743 + 0.179237i
\(88\) 24.0000 0.272727
\(89\) 7.10831i 0.0798686i 0.999202 + 0.0399343i \(0.0127149\pi\)
−0.999202 + 0.0399343i \(0.987285\pi\)
\(90\) 0 0
\(91\) −114.868 −1.26229
\(92\) 35.3181i 0.383892i
\(93\) 4.64911 + 23.5454i 0.0499904 + 0.253176i
\(94\) −124.868 −1.32839
\(95\) 0 0
\(96\) −16.6491 + 3.28742i −0.173428 + 0.0342439i
\(97\) −111.947 −1.15410 −0.577048 0.816710i \(-0.695795\pi\)
−0.577048 + 0.816710i \(0.695795\pi\)
\(98\) 117.305i 1.19699i
\(99\) −29.0263 70.6362i −0.293195 0.713497i
\(100\) 0 0
\(101\) 155.489i 1.53950i −0.638348 0.769748i \(-0.720382\pi\)
0.638348 0.769748i \(-0.279618\pi\)
\(102\) −2.92100 14.7934i −0.0286372 0.145033i
\(103\) −7.59217 −0.0737104 −0.0368552 0.999321i \(-0.511734\pi\)
−0.0368552 + 0.999321i \(0.511734\pi\)
\(104\) 28.2843i 0.271964i
\(105\) 0 0
\(106\) −5.02633 −0.0474182
\(107\) 16.2821i 0.152169i 0.997101 + 0.0760845i \(0.0242419\pi\)
−0.997101 + 0.0760845i \(0.975758\pi\)
\(108\) 29.8114 + 45.0253i 0.276031 + 0.416901i
\(109\) −93.8420 −0.860936 −0.430468 0.902606i \(-0.641651\pi\)
−0.430468 + 0.902606i \(0.641651\pi\)
\(110\) 0 0
\(111\) 34.8377 + 176.435i 0.313853 + 1.58951i
\(112\) −45.9473 −0.410244
\(113\) 195.738i 1.73220i −0.499874 0.866098i \(-0.666620\pi\)
0.499874 0.866098i \(-0.333380\pi\)
\(114\) 45.6754 9.01876i 0.400662 0.0791119i
\(115\) 0 0
\(116\) 53.6656i 0.462635i
\(117\) −83.2456 + 34.2079i −0.711500 + 0.292375i
\(118\) 109.947 0.931757
\(119\) 40.8260i 0.343075i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 31.0382i 0.254412i
\(123\) −60.4078 + 11.9277i −0.491121 + 0.0969733i
\(124\) −16.0000 −0.129032
\(125\) 0 0
\(126\) 55.5701 + 135.231i 0.441033 + 1.07326i
\(127\) 77.5395 0.610547 0.305274 0.952265i \(-0.401252\pi\)
0.305274 + 0.952265i \(0.401252\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −24.6754 124.969i −0.191283 0.968749i
\(130\) 0 0
\(131\) 101.600i 0.775572i 0.921749 + 0.387786i \(0.126760\pi\)
−0.921749 + 0.387786i \(0.873240\pi\)
\(132\) 49.9473 9.86225i 0.378389 0.0747140i
\(133\) 126.053 0.947764
\(134\) 75.7163i 0.565047i
\(135\) 0 0
\(136\) 10.0527 0.0739167
\(137\) 176.014i 1.28477i −0.766381 0.642386i \(-0.777945\pi\)
0.766381 0.642386i \(-0.222055\pi\)
\(138\) −14.5132 73.5019i −0.105168 0.532622i
\(139\) 188.816 1.35839 0.679193 0.733960i \(-0.262330\pi\)
0.679193 + 0.733960i \(0.262330\pi\)
\(140\) 0 0
\(141\) −259.868 + 51.3118i −1.84304 + 0.363913i
\(142\) −97.9473 −0.689770
\(143\) 84.8528i 0.593376i
\(144\) −33.2982 + 13.6831i −0.231238 + 0.0950218i
\(145\) 0 0
\(146\) 17.0450i 0.116747i
\(147\) 48.2039 + 244.128i 0.327918 + 1.66074i
\(148\) −119.895 −0.810099
\(149\) 72.5899i 0.487181i 0.969878 + 0.243590i \(0.0783252\pi\)
−0.969878 + 0.243590i \(0.921675\pi\)
\(150\) 0 0
\(151\) 93.9473 0.622168 0.311084 0.950382i \(-0.399308\pi\)
0.311084 + 0.950382i \(0.399308\pi\)
\(152\) 31.0382i 0.204199i
\(153\) −12.1580 29.5868i −0.0794641 0.193378i
\(154\) 137.842 0.895078
\(155\) 0 0
\(156\) −11.6228 58.8635i −0.0745050 0.377330i
\(157\) 123.842 0.788803 0.394401 0.918938i \(-0.370952\pi\)
0.394401 + 0.918938i \(0.370952\pi\)
\(158\) 12.7652i 0.0807922i
\(159\) −10.4605 + 2.06546i −0.0657893 + 0.0129903i
\(160\) 0 0
\(161\) 202.847i 1.25992i
\(162\) 80.5438 + 81.4537i 0.497184 + 0.502800i
\(163\) −159.381 −0.977801 −0.488900 0.872340i \(-0.662602\pi\)
−0.488900 + 0.872340i \(0.662602\pi\)
\(164\) 41.0494i 0.250301i
\(165\) 0 0
\(166\) −0.973666 −0.00586546
\(167\) 10.7742i 0.0645161i −0.999480 0.0322581i \(-0.989730\pi\)
0.999480 0.0322581i \(-0.0102698\pi\)
\(168\) −95.6228 + 18.8810i −0.569183 + 0.112387i
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) 91.3509 37.5386i 0.534216 0.219524i
\(172\) 84.9210 0.493727
\(173\) 283.345i 1.63783i 0.573913 + 0.818916i \(0.305425\pi\)
−0.573913 + 0.818916i \(0.694575\pi\)
\(174\) −22.0527 111.686i −0.126739 0.641871i
\(175\) 0 0
\(176\) 33.9411i 0.192847i
\(177\) 228.816 45.1804i 1.29274 0.255256i
\(178\) −10.0527 −0.0564757
\(179\) 306.624i 1.71298i 0.516163 + 0.856491i \(0.327360\pi\)
−0.516163 + 0.856491i \(0.672640\pi\)
\(180\) 0 0
\(181\) 265.684 1.46787 0.733934 0.679221i \(-0.237682\pi\)
0.733934 + 0.679221i \(0.237682\pi\)
\(182\) 162.448i 0.892573i
\(183\) 12.7544 + 64.5948i 0.0696964 + 0.352977i
\(184\) 49.9473 0.271453
\(185\) 0 0
\(186\) −33.2982 + 6.57484i −0.179023 + 0.0353486i
\(187\) −30.1580 −0.161273
\(188\) 176.590i 0.939311i
\(189\) 171.219 + 258.599i 0.905922 + 1.36825i
\(190\) 0 0
\(191\) 159.620i 0.835706i −0.908515 0.417853i \(-0.862783\pi\)
0.908515 0.417853i \(-0.137217\pi\)
\(192\) −4.64911 23.5454i −0.0242141 0.122632i
\(193\) 92.0527 0.476957 0.238478 0.971148i \(-0.423351\pi\)
0.238478 + 0.971148i \(0.423351\pi\)
\(194\) 158.317i 0.816069i
\(195\) 0 0
\(196\) −165.895 −0.846401
\(197\) 69.8360i 0.354497i 0.984166 + 0.177249i \(0.0567197\pi\)
−0.984166 + 0.177249i \(0.943280\pi\)
\(198\) 99.8947 41.0494i 0.504519 0.207320i
\(199\) 148.921 0.748347 0.374173 0.927359i \(-0.377926\pi\)
0.374173 + 0.927359i \(0.377926\pi\)
\(200\) 0 0
\(201\) 31.1139 + 157.576i 0.154795 + 0.783961i
\(202\) 219.895 1.08859
\(203\) 308.224i 1.51835i
\(204\) 20.9210 4.13091i 0.102554 0.0202496i
\(205\) 0 0
\(206\) 10.7369i 0.0521211i
\(207\) −60.4078 147.004i −0.291825 0.710163i
\(208\) 40.0000 0.192308
\(209\) 93.1146i 0.445525i
\(210\) 0 0
\(211\) −285.842 −1.35470 −0.677351 0.735660i \(-0.736872\pi\)
−0.677351 + 0.735660i \(0.736872\pi\)
\(212\) 7.10831i 0.0335298i
\(213\) −203.842 + 40.2492i −0.957005 + 0.188963i
\(214\) −23.0263 −0.107600
\(215\) 0 0
\(216\) −63.6754 + 42.1597i −0.294794 + 0.195184i
\(217\) −91.8947 −0.423478
\(218\) 132.713i 0.608774i
\(219\) −7.00427 35.4731i −0.0319830 0.161978i
\(220\) 0 0
\(221\) 35.5415i 0.160821i
\(222\) −249.517 + 49.2680i −1.12395 + 0.221928i
\(223\) 71.3815 0.320096 0.160048 0.987109i \(-0.448835\pi\)
0.160048 + 0.987109i \(0.448835\pi\)
\(224\) 64.9793i 0.290086i
\(225\) 0 0
\(226\) 276.816 1.22485
\(227\) 29.1217i 0.128290i 0.997941 + 0.0641448i \(0.0204319\pi\)
−0.997941 + 0.0641448i \(0.979568\pi\)
\(228\) 12.7544 + 64.5948i 0.0559406 + 0.283311i
\(229\) −129.684 −0.566306 −0.283153 0.959075i \(-0.591380\pi\)
−0.283153 + 0.959075i \(0.591380\pi\)
\(230\) 0 0
\(231\) 286.868 56.6430i 1.24185 0.245208i
\(232\) 75.8947 0.327132
\(233\) 185.876i 0.797751i 0.917005 + 0.398875i \(0.130599\pi\)
−0.917005 + 0.398875i \(0.869401\pi\)
\(234\) −48.3772 117.727i −0.206740 0.503107i
\(235\) 0 0
\(236\) 155.489i 0.658852i
\(237\) −5.24555 26.5661i −0.0221331 0.112093i
\(238\) 57.7367 0.242591
\(239\) 302.716i 1.26659i −0.773908 0.633297i \(-0.781701\pi\)
0.773908 0.633297i \(-0.218299\pi\)
\(240\) 0 0
\(241\) −237.526 −0.985585 −0.492793 0.870147i \(-0.664024\pi\)
−0.492793 + 0.870147i \(0.664024\pi\)
\(242\) 69.2965i 0.286349i
\(243\) 201.094 + 136.419i 0.827549 + 0.561394i
\(244\) −43.8947 −0.179896
\(245\) 0 0
\(246\) −16.8683 85.4296i −0.0685704 0.347275i
\(247\) −109.737 −0.444278
\(248\) 22.6274i 0.0912396i
\(249\) −2.02633 + 0.400106i −0.00813789 + 0.00160685i
\(250\) 0 0
\(251\) 84.6294i 0.337169i 0.985687 + 0.168584i \(0.0539196\pi\)
−0.985687 + 0.168584i \(0.946080\pi\)
\(252\) −191.246 + 78.5880i −0.758911 + 0.311857i
\(253\) −149.842 −0.592261
\(254\) 109.657i 0.431722i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 292.054i 1.13640i 0.822892 + 0.568198i \(0.192359\pi\)
−0.822892 + 0.568198i \(0.807641\pi\)
\(258\) 176.732 34.8963i 0.685009 0.135257i
\(259\) −688.605 −2.65871
\(260\) 0 0
\(261\) −91.7893 223.371i −0.351683 0.855829i
\(262\) −143.684 −0.548412
\(263\) 277.725i 1.05599i 0.849247 + 0.527995i \(0.177056\pi\)
−0.849247 + 0.527995i \(0.822944\pi\)
\(264\) 13.9473 + 70.6362i 0.0528308 + 0.267561i
\(265\) 0 0
\(266\) 178.265i 0.670171i
\(267\) −20.9210 + 4.13091i −0.0783558 + 0.0154716i
\(268\) −107.079 −0.399549
\(269\) 286.546i 1.06523i 0.846359 + 0.532613i \(0.178790\pi\)
−0.846359 + 0.532613i \(0.821210\pi\)
\(270\) 0 0
\(271\) −324.105 −1.19596 −0.597980 0.801511i \(-0.704030\pi\)
−0.597980 + 0.801511i \(0.704030\pi\)
\(272\) 14.2166i 0.0522670i
\(273\) −66.7544 338.078i −0.244522 1.23838i
\(274\) 248.921 0.908471
\(275\) 0 0
\(276\) 103.947 20.5247i 0.376621 0.0743649i
\(277\) −415.842 −1.50123 −0.750617 0.660737i \(-0.770244\pi\)
−0.750617 + 0.660737i \(0.770244\pi\)
\(278\) 267.026i 0.960524i
\(279\) −66.5964 + 27.3663i −0.238697 + 0.0980871i
\(280\) 0 0
\(281\) 431.726i 1.53639i 0.640216 + 0.768195i \(0.278845\pi\)
−0.640216 + 0.768195i \(0.721155\pi\)
\(282\) −72.5658 367.509i −0.257326 1.30322i
\(283\) −141.540 −0.500140 −0.250070 0.968228i \(-0.580454\pi\)
−0.250070 + 0.968228i \(0.580454\pi\)
\(284\) 138.518i 0.487741i
\(285\) 0 0
\(286\) −120.000 −0.419580
\(287\) 235.764i 0.821477i
\(288\) −19.3509 47.0908i −0.0671906 0.163510i
\(289\) 276.368 0.956291
\(290\) 0 0
\(291\) −65.0569 329.481i −0.223563 1.13224i
\(292\) 24.1053 0.0825525
\(293\) 164.998i 0.563133i −0.959542 0.281566i \(-0.909146\pi\)
0.959542 0.281566i \(-0.0908540\pi\)
\(294\) −345.250 + 68.1706i −1.17432 + 0.231873i
\(295\) 0 0
\(296\) 169.557i 0.572827i
\(297\) 191.026 126.479i 0.643186 0.425855i
\(298\) −102.658 −0.344489
\(299\) 176.590i 0.590604i
\(300\) 0 0
\(301\) 487.737 1.62039
\(302\) 132.862i 0.439939i
\(303\) 457.631 90.3607i 1.51033 0.298220i
\(304\) −43.8947 −0.144390
\(305\) 0 0
\(306\) 41.8420 17.1940i 0.136739 0.0561896i
\(307\) −159.381 −0.519158 −0.259579 0.965722i \(-0.583584\pi\)
−0.259579 + 0.965722i \(0.583584\pi\)
\(308\) 194.938i 0.632916i
\(309\) −4.41210 22.3451i −0.0142787 0.0723142i
\(310\) 0 0
\(311\) 143.096i 0.460117i 0.973177 + 0.230058i \(0.0738917\pi\)
−0.973177 + 0.230058i \(0.926108\pi\)
\(312\) 83.2456 16.4371i 0.266813 0.0526830i
\(313\) 501.684 1.60282 0.801412 0.598113i \(-0.204082\pi\)
0.801412 + 0.598113i \(0.204082\pi\)
\(314\) 175.139i 0.557768i
\(315\) 0 0
\(316\) 18.0527 0.0571287
\(317\) 334.257i 1.05444i 0.849730 + 0.527219i \(0.176765\pi\)
−0.849730 + 0.527219i \(0.823235\pi\)
\(318\) −2.92100 14.7934i −0.00918553 0.0465201i
\(319\) −227.684 −0.713743
\(320\) 0 0
\(321\) −47.9210 + 9.46215i −0.149287 + 0.0294771i
\(322\) 286.868 0.890895
\(323\) 39.0021i 0.120750i
\(324\) −115.193 + 113.906i −0.355534 + 0.351562i
\(325\) 0 0
\(326\) 225.399i 0.691409i
\(327\) −54.5352 276.193i −0.166774 0.844628i
\(328\) 58.0527 0.176990
\(329\) 1014.23i 3.08277i
\(330\) 0 0
\(331\) 389.421 1.17650 0.588249 0.808680i \(-0.299818\pi\)
0.588249 + 0.808680i \(0.299818\pi\)
\(332\) 1.37697i 0.00414750i
\(333\) −499.035 + 205.067i −1.49860 + 0.615817i
\(334\) 15.2370 0.0456198
\(335\) 0 0
\(336\) −26.7018 135.231i −0.0794696 0.402473i
\(337\) 129.684 0.384819 0.192409 0.981315i \(-0.438370\pi\)
0.192409 + 0.981315i \(0.438370\pi\)
\(338\) 97.5807i 0.288700i
\(339\) 576.092 113.751i 1.69939 0.335549i
\(340\) 0 0
\(341\) 67.8823i 0.199068i
\(342\) 53.0875 + 129.190i 0.155227 + 0.377748i
\(343\) −389.947 −1.13687
\(344\) 120.096i 0.349118i
\(345\) 0 0
\(346\) −400.710 −1.15812
\(347\) 346.985i 0.999956i −0.866038 0.499978i \(-0.833341\pi\)
0.866038 0.499978i \(-0.166659\pi\)
\(348\) 157.947 31.1872i 0.453872 0.0896183i
\(349\) 509.579 1.46011 0.730055 0.683388i \(-0.239494\pi\)
0.730055 + 0.683388i \(0.239494\pi\)
\(350\) 0 0
\(351\) −149.057 225.127i −0.424664 0.641387i
\(352\) −48.0000 −0.136364
\(353\) 637.679i 1.80646i −0.429159 0.903229i \(-0.641190\pi\)
0.429159 0.903229i \(-0.358810\pi\)
\(354\) 63.8947 + 323.594i 0.180493 + 0.914108i
\(355\) 0 0
\(356\) 14.2166i 0.0399343i
\(357\) 120.158 23.7256i 0.336577 0.0664582i
\(358\) −433.631 −1.21126
\(359\) 166.952i 0.465046i 0.972591 + 0.232523i \(0.0746982\pi\)
−0.972591 + 0.232523i \(0.925302\pi\)
\(360\) 0 0
\(361\) −240.579 −0.666423
\(362\) 375.734i 1.03794i
\(363\) 28.4758 + 144.216i 0.0784457 + 0.397288i
\(364\) 229.737 0.631145
\(365\) 0 0
\(366\) −91.3509 + 18.0375i −0.249593 + 0.0492828i
\(367\) 505.828 1.37828 0.689140 0.724629i \(-0.257989\pi\)
0.689140 + 0.724629i \(0.257989\pi\)
\(368\) 70.6362i 0.191946i
\(369\) −70.2107 170.859i −0.190273 0.463033i
\(370\) 0 0
\(371\) 40.8260i 0.110043i
\(372\) −9.29822 47.0908i −0.0249952 0.126588i
\(373\) 416.053 1.11542 0.557711 0.830035i \(-0.311680\pi\)
0.557711 + 0.830035i \(0.311680\pi\)
\(374\) 42.6499i 0.114037i
\(375\) 0 0
\(376\) 249.737 0.664193
\(377\) 268.328i 0.711746i
\(378\) −365.715 + 242.141i −0.967499 + 0.640583i
\(379\) 82.7630 0.218372 0.109186 0.994021i \(-0.465176\pi\)
0.109186 + 0.994021i \(0.465176\pi\)
\(380\) 0 0
\(381\) 45.0612 + 228.212i 0.118271 + 0.598982i
\(382\) 225.737 0.590934
\(383\) 334.592i 0.873608i −0.899557 0.436804i \(-0.856110\pi\)
0.899557 0.436804i \(-0.143890\pi\)
\(384\) 33.2982 6.57484i 0.0867141 0.0171220i
\(385\) 0 0
\(386\) 130.182i 0.337259i
\(387\) 353.465 145.248i 0.913346 0.375319i
\(388\) 223.895 0.577048
\(389\) 542.964i 1.39580i 0.716197 + 0.697898i \(0.245881\pi\)
−0.716197 + 0.697898i \(0.754119\pi\)
\(390\) 0 0
\(391\) −62.7630 −0.160519
\(392\) 234.610i 0.598496i
\(393\) −299.026 + 59.0437i −0.760881 + 0.150238i
\(394\) −98.7630 −0.250667
\(395\) 0 0
\(396\) 58.0527 + 141.272i 0.146598 + 0.356748i
\(397\) 214.000 0.539043 0.269521 0.962994i \(-0.413135\pi\)
0.269521 + 0.962994i \(0.413135\pi\)
\(398\) 210.606i 0.529161i
\(399\) 73.2541 + 370.995i 0.183594 + 0.929812i
\(400\) 0 0
\(401\) 726.086i 1.81069i 0.424677 + 0.905345i \(0.360387\pi\)
−0.424677 + 0.905345i \(0.639613\pi\)
\(402\) −222.846 + 44.0017i −0.554344 + 0.109457i
\(403\) 80.0000 0.198511
\(404\) 310.978i 0.769748i
\(405\) 0 0
\(406\) 435.895 1.07363
\(407\) 508.670i 1.24980i
\(408\) 5.84200 + 29.5868i 0.0143186 + 0.0725166i
\(409\) −346.158 −0.846352 −0.423176 0.906047i \(-0.639085\pi\)
−0.423176 + 0.906047i \(0.639085\pi\)
\(410\) 0 0
\(411\) 518.039 102.288i 1.26044 0.248877i
\(412\) 15.1843 0.0368552
\(413\) 893.038i 2.16232i
\(414\) 207.895 85.4296i 0.502161 0.206352i
\(415\) 0 0
\(416\) 56.5685i 0.135982i
\(417\) 109.728 + 555.717i 0.263137 + 1.33266i
\(418\) 131.684 0.315033
\(419\) 580.907i 1.38641i −0.720740 0.693206i \(-0.756198\pi\)
0.720740 0.693206i \(-0.243802\pi\)
\(420\) 0 0
\(421\) −269.315 −0.639704 −0.319852 0.947468i \(-0.603633\pi\)
−0.319852 + 0.947468i \(0.603633\pi\)
\(422\) 404.242i 0.957919i
\(423\) −302.039 735.019i −0.714041 1.73763i
\(424\) 10.0527 0.0237091
\(425\) 0 0
\(426\) −56.9210 288.276i −0.133617 0.676704i
\(427\) −252.105 −0.590411
\(428\) 32.5642i 0.0760845i
\(429\) −249.737 + 49.3113i −0.582137 + 0.114945i
\(430\) 0 0
\(431\) 776.068i 1.80062i −0.435247 0.900311i \(-0.643339\pi\)
0.435247 0.900311i \(-0.356661\pi\)
\(432\) −59.6228 90.0507i −0.138016 0.208451i
\(433\) 195.526 0.451561 0.225781 0.974178i \(-0.427507\pi\)
0.225781 + 0.974178i \(0.427507\pi\)
\(434\) 129.959i 0.299444i
\(435\) 0 0
\(436\) 187.684 0.430468
\(437\) 193.785i 0.443443i
\(438\) 50.1666 9.90554i 0.114536 0.0226154i
\(439\) 598.763 1.36392 0.681962 0.731387i \(-0.261127\pi\)
0.681962 + 0.731387i \(0.261127\pi\)
\(440\) 0 0
\(441\) −690.500 + 283.745i −1.56576 + 0.643413i
\(442\) −50.2633 −0.113718
\(443\) 216.728i 0.489228i 0.969621 + 0.244614i \(0.0786612\pi\)
−0.969621 + 0.244614i \(0.921339\pi\)
\(444\) −69.6754 352.871i −0.156927 0.794754i
\(445\) 0 0
\(446\) 100.949i 0.226342i
\(447\) −213.645 + 42.1848i −0.477953 + 0.0943732i
\(448\) 91.8947 0.205122
\(449\) 246.203i 0.548336i −0.961682 0.274168i \(-0.911598\pi\)
0.961682 0.274168i \(-0.0884025\pi\)
\(450\) 0 0
\(451\) −174.158 −0.386160
\(452\) 391.476i 0.866098i
\(453\) 54.5964 + 276.503i 0.120522 + 0.610383i
\(454\) −41.1843 −0.0907144
\(455\) 0 0
\(456\) −91.3509 + 18.0375i −0.200331 + 0.0395559i
\(457\) −553.052 −1.21018 −0.605090 0.796157i \(-0.706863\pi\)
−0.605090 + 0.796157i \(0.706863\pi\)
\(458\) 183.401i 0.400439i
\(459\) 80.0135 52.9771i 0.174321 0.115419i
\(460\) 0 0
\(461\) 124.749i 0.270605i −0.990804 0.135302i \(-0.956799\pi\)
0.990804 0.135302i \(-0.0432006\pi\)
\(462\) 80.1053 + 405.693i 0.173388 + 0.878124i
\(463\) −669.723 −1.44649 −0.723243 0.690593i \(-0.757349\pi\)
−0.723243 + 0.690593i \(0.757349\pi\)
\(464\) 107.331i 0.231317i
\(465\) 0 0
\(466\) −262.868 −0.564095
\(467\) 486.880i 1.04257i −0.853383 0.521285i \(-0.825453\pi\)
0.853383 0.521285i \(-0.174547\pi\)
\(468\) 166.491 68.4157i 0.355750 0.146187i
\(469\) −614.999 −1.31130
\(470\) 0 0
\(471\) 71.9694 + 364.489i 0.152801 + 0.773861i
\(472\) −219.895 −0.465879
\(473\) 360.289i 0.761711i
\(474\) 37.5701 7.41833i 0.0792618 0.0156505i
\(475\) 0 0
\(476\) 81.6520i 0.171538i
\(477\) −12.1580 29.5868i −0.0254885 0.0620267i
\(478\) 428.105 0.895618
\(479\) 520.580i 1.08680i 0.839472 + 0.543402i \(0.182864\pi\)
−0.839472 + 0.543402i \(0.817136\pi\)
\(480\) 0 0
\(481\) 599.473 1.24631
\(482\) 335.912i 0.696914i
\(483\) 597.013 117.882i 1.23605 0.244062i
\(484\) −98.0000 −0.202479
\(485\) 0 0
\(486\) −192.925 + 284.390i −0.396966 + 0.585165i
\(487\) 263.381 0.540824 0.270412 0.962745i \(-0.412840\pi\)
0.270412 + 0.962745i \(0.412840\pi\)
\(488\) 62.0764i 0.127206i
\(489\) −92.6228 469.088i −0.189413 0.959279i
\(490\) 0 0
\(491\) 711.646i 1.44938i −0.689074 0.724691i \(-0.741983\pi\)
0.689074 0.724691i \(-0.258017\pi\)
\(492\) 120.816 23.8554i 0.245560 0.0484866i
\(493\) −95.3680 −0.193444
\(494\) 155.191i 0.314152i
\(495\) 0 0
\(496\) 32.0000 0.0645161
\(497\) 795.569i 1.60074i
\(498\) −0.565835 2.86567i −0.00113622 0.00575436i
\(499\) 23.0790 0.0462505 0.0231253 0.999733i \(-0.492638\pi\)
0.0231253 + 0.999733i \(0.492638\pi\)
\(500\) 0 0
\(501\) 31.7103 6.26130i 0.0632941 0.0124976i
\(502\) −119.684 −0.238414
\(503\) 40.5844i 0.0806847i −0.999186 0.0403423i \(-0.987155\pi\)
0.999186 0.0403423i \(-0.0128449\pi\)
\(504\) −111.140 270.462i −0.220516 0.536631i
\(505\) 0 0
\(506\) 211.909i 0.418792i
\(507\) −40.0986 203.079i −0.0790899 0.400550i
\(508\) −155.079 −0.305274
\(509\) 484.591i 0.952045i 0.879433 + 0.476023i \(0.157922\pi\)
−0.879433 + 0.476023i \(0.842078\pi\)
\(510\) 0 0
\(511\) 138.447 0.270933
\(512\) 22.6274i 0.0441942i
\(513\) 163.570 + 247.047i 0.318850 + 0.481572i
\(514\) −413.026 −0.803553
\(515\) 0 0
\(516\) 49.3509 + 249.937i 0.0956413 + 0.484375i
\(517\) −749.210 −1.44915
\(518\) 973.835i 1.87999i
\(519\) −833.934 + 164.663i −1.60681 + 0.317269i
\(520\) 0 0
\(521\) 539.857i 1.03619i −0.855322 0.518097i \(-0.826641\pi\)
0.855322 0.518097i \(-0.173359\pi\)
\(522\) 315.895 129.810i 0.605162 0.248678i
\(523\) 266.644 0.509836 0.254918 0.966963i \(-0.417952\pi\)
0.254918 + 0.966963i \(0.417952\pi\)
\(524\) 203.200i 0.387786i
\(525\) 0 0
\(526\) −392.763 −0.746698
\(527\) 28.4332i 0.0539530i
\(528\) −99.8947 + 19.7245i −0.189194 + 0.0373570i
\(529\) 217.158 0.410507
\(530\) 0 0
\(531\) 265.947 + 647.188i 0.500842 + 1.21881i
\(532\) −252.105 −0.473882
\(533\) 205.247i 0.385079i
\(534\) −5.84200 29.5868i −0.0109401 0.0554059i
\(535\) 0 0
\(536\) 151.433i 0.282523i
\(537\) −902.447 + 178.191i −1.68053 + 0.331827i
\(538\) −405.237 −0.753229
\(539\) 703.831i 1.30581i
\(540\) 0 0
\(541\) −337.895 −0.624574 −0.312287 0.949988i \(-0.601095\pi\)
−0.312287 + 0.949988i \(0.601095\pi\)
\(542\) 458.354i 0.845672i
\(543\) 154.399 + 781.954i 0.284345 + 1.44006i
\(544\) −20.1053 −0.0369583
\(545\) 0 0
\(546\) 478.114 94.4050i 0.875666 0.172903i
\(547\) 214.566 0.392259 0.196130 0.980578i \(-0.437163\pi\)
0.196130 + 0.980578i \(0.437163\pi\)
\(548\) 352.027i 0.642386i
\(549\) −182.702 + 75.0771i −0.332790 + 0.136753i
\(550\) 0 0
\(551\) 294.454i 0.534400i
\(552\) 29.0263 + 147.004i 0.0525839 + 0.266311i
\(553\) 103.684 0.187494
\(554\) 588.089i 1.06153i
\(555\) 0 0
\(556\) −377.631 −0.679193
\(557\) 674.821i 1.21153i 0.795644 + 0.605764i \(0.207133\pi\)
−0.795644 + 0.605764i \(0.792867\pi\)
\(558\) −38.7018 94.1816i −0.0693580 0.168784i
\(559\) −424.605 −0.759580
\(560\) 0 0
\(561\) −17.5260 88.7603i −0.0312406 0.158218i
\(562\) −610.552 −1.08639
\(563\) 718.513i 1.27622i 0.769944 + 0.638111i \(0.220284\pi\)
−0.769944 + 0.638111i \(0.779716\pi\)
\(564\) 519.737 102.624i 0.921519 0.181957i
\(565\) 0 0
\(566\) 200.167i 0.353652i
\(567\) −661.601 + 654.210i −1.16684 + 1.15381i
\(568\) 195.895 0.344885
\(569\) 183.122i 0.321831i 0.986968 + 0.160916i \(0.0514447\pi\)
−0.986968 + 0.160916i \(0.948555\pi\)
\(570\) 0 0
\(571\) −295.895 −0.518204 −0.259102 0.965850i \(-0.583427\pi\)
−0.259102 + 0.965850i \(0.583427\pi\)
\(572\) 169.706i 0.296688i
\(573\) 469.789 92.7613i 0.819877 0.161887i
\(574\) 333.421 0.580872
\(575\) 0 0
\(576\) 66.5964 27.3663i 0.115619 0.0475109i
\(577\) 984.947 1.70701 0.853507 0.521082i \(-0.174471\pi\)
0.853507 + 0.521082i \(0.174471\pi\)
\(578\) 390.843i 0.676200i
\(579\) 53.4954 + 270.927i 0.0923927 + 0.467922i
\(580\) 0 0
\(581\) 7.90852i 0.0136119i
\(582\) 465.956 92.0044i 0.800611 0.158083i
\(583\) −30.1580 −0.0517290
\(584\) 34.0901i 0.0583734i
\(585\) 0 0
\(586\) 233.342 0.398195
\(587\) 378.172i 0.644245i −0.946698 0.322122i \(-0.895604\pi\)
0.946698 0.322122i \(-0.104396\pi\)
\(588\) −96.4078 488.257i −0.163959 0.830369i
\(589\) −87.7893 −0.149048
\(590\) 0 0
\(591\) −205.540 + 40.5844i −0.347783 + 0.0686707i
\(592\) 239.789 0.405050
\(593\) 265.221i 0.447253i −0.974675 0.223626i \(-0.928210\pi\)
0.974675 0.223626i \(-0.0717895\pi\)
\(594\) 178.868 + 270.152i 0.301125 + 0.454801i
\(595\) 0 0
\(596\) 145.180i 0.243590i
\(597\) 86.5438 + 438.301i 0.144964 + 0.734172i
\(598\) −249.737 −0.417620
\(599\) 382.061i 0.637832i −0.947783 0.318916i \(-0.896681\pi\)
0.947783 0.318916i \(-0.103319\pi\)
\(600\) 0 0
\(601\) 1021.53 1.69971 0.849855 0.527016i \(-0.176689\pi\)
0.849855 + 0.527016i \(0.176689\pi\)
\(602\) 689.764i 1.14579i
\(603\) −445.693 + 183.147i −0.739125 + 0.303727i
\(604\) −187.895 −0.311084
\(605\) 0 0
\(606\) 127.789 + 647.188i 0.210873 + 1.06797i
\(607\) 835.487 1.37642 0.688210 0.725512i \(-0.258397\pi\)
0.688210 + 0.725512i \(0.258397\pi\)
\(608\) 62.0764i 0.102099i
\(609\) 907.157 179.121i 1.48959 0.294123i
\(610\) 0 0
\(611\) 882.952i 1.44509i
\(612\) 24.3160 + 59.1735i 0.0397320 + 0.0966888i
\(613\) −833.263 −1.35932 −0.679660 0.733528i \(-0.737872\pi\)
−0.679660 + 0.733528i \(0.737872\pi\)
\(614\) 225.399i 0.367100i
\(615\) 0 0
\(616\) −275.684 −0.447539
\(617\) 455.098i 0.737598i −0.929509 0.368799i \(-0.879769\pi\)
0.929509 0.368799i \(-0.120231\pi\)
\(618\) 31.6007 6.23966i 0.0511338 0.0100965i
\(619\) 336.710 0.543959 0.271979 0.962303i \(-0.412322\pi\)
0.271979 + 0.962303i \(0.412322\pi\)
\(620\) 0 0
\(621\) 397.552 263.220i 0.640181 0.423865i
\(622\) −202.369 −0.325352
\(623\) 81.6520i 0.131063i
\(624\) 23.2456 + 117.727i 0.0372525 + 0.188665i
\(625\) 0 0
\(626\) 709.488i 1.13337i
\(627\) 274.053 54.1125i 0.437086 0.0863039i
\(628\) −247.684 −0.394401
\(629\) 213.062i 0.338731i
\(630\) 0 0
\(631\) −1100.89 −1.74468 −0.872341 0.488898i \(-0.837399\pi\)
−0.872341 + 0.488898i \(0.837399\pi\)
\(632\) 25.5303i 0.0403961i
\(633\) −166.114 841.283i −0.262423 1.32904i
\(634\) −472.710 −0.745600
\(635\) 0 0
\(636\) 20.9210 4.13091i 0.0328947 0.00649515i
\(637\) 829.473 1.30216
\(638\) 321.994i 0.504692i
\(639\) −236.921 576.552i −0.370768 0.902273i
\(640\) 0 0
\(641\) 337.011i 0.525758i 0.964829 + 0.262879i \(0.0846719\pi\)
−0.964829 + 0.262879i \(0.915328\pi\)
\(642\) −13.3815 67.7705i −0.0208435 0.105562i
\(643\) 599.381 0.932164 0.466082 0.884742i \(-0.345665\pi\)
0.466082 + 0.884742i \(0.345665\pi\)
\(644\) 405.693i 0.629958i
\(645\) 0 0
\(646\) 55.1573 0.0853828
\(647\) 47.0224i 0.0726775i 0.999340 + 0.0363388i \(0.0115695\pi\)
−0.999340 + 0.0363388i \(0.988430\pi\)
\(648\) −161.088 162.907i −0.248592 0.251400i
\(649\) 659.684 1.01646
\(650\) 0 0
\(651\) −53.4036 270.462i −0.0820331 0.415456i
\(652\) 318.763 0.488900
\(653\) 559.228i 0.856399i −0.903684 0.428199i \(-0.859148\pi\)
0.903684 0.428199i \(-0.140852\pi\)
\(654\) 390.596 77.1245i 0.597242 0.117927i
\(655\) 0 0
\(656\) 82.0989i 0.125151i
\(657\) 100.333 41.2296i 0.152714 0.0627543i
\(658\) 1434.34 2.17985
\(659\) 665.759i 1.01026i −0.863044 0.505129i \(-0.831445\pi\)
0.863044 0.505129i \(-0.168555\pi\)
\(660\) 0 0
\(661\) −557.947 −0.844096 −0.422048 0.906574i \(-0.638689\pi\)
−0.422048 + 0.906574i \(0.638689\pi\)
\(662\) 550.724i 0.831909i
\(663\) −104.605 + 20.6546i −0.157775 + 0.0311532i
\(664\) 1.94733 0.00293273
\(665\) 0 0
\(666\) −290.009 705.742i −0.435448 1.05967i
\(667\) −473.842 −0.710408
\(668\) 21.5484i 0.0322581i
\(669\) 41.4826 + 210.088i 0.0620068 + 0.314033i
\(670\) 0 0
\(671\) 186.229i 0.277540i
\(672\) 191.246 37.7620i 0.284592 0.0561935i
\(673\) −1019.42 −1.51474 −0.757370 0.652985i \(-0.773516\pi\)
−0.757370 + 0.652985i \(0.773516\pi\)
\(674\) 183.401i 0.272108i
\(675\) 0 0
\(676\) 138.000 0.204142
\(677\) 624.616i 0.922624i −0.887238 0.461312i \(-0.847379\pi\)
0.887238 0.461312i \(-0.152621\pi\)
\(678\) 160.868 + 814.717i 0.237269 + 1.20165i
\(679\) 1285.92 1.89384
\(680\) 0 0
\(681\) −85.7103 + 16.9238i −0.125860 + 0.0248513i
\(682\) −96.0000 −0.140762
\(683\) 525.882i 0.769959i −0.922925 0.384980i \(-0.874208\pi\)
0.922925 0.384980i \(-0.125792\pi\)
\(684\) −182.702 + 75.0771i −0.267108 + 0.109762i
\(685\) 0 0
\(686\) 551.469i 0.803890i
\(687\) −75.3644 381.683i −0.109701 0.555579i
\(688\) −169.842 −0.246863
\(689\) 35.5415i 0.0515843i
\(690\) 0 0
\(691\) 932.000 1.34877 0.674385 0.738380i \(-0.264409\pi\)
0.674385 + 0.738380i \(0.264409\pi\)
\(692\) 566.690i 0.818916i
\(693\) 333.421 + 811.386i 0.481126 + 1.17083i
\(694\) 490.710 0.707075
\(695\) 0 0
\(696\) 44.1053 + 223.371i 0.0633697 + 0.320936i
\(697\) −72.9480 −0.104660
\(698\) 720.653i 1.03245i
\(699\) −547.065 + 108.020i −0.782640 + 0.154535i
\(700\) 0 0
\(701\) 606.045i 0.864544i −0.901743 0.432272i \(-0.857712\pi\)
0.901743 0.432272i \(-0.142288\pi\)
\(702\) 318.377 210.798i 0.453529 0.300283i
\(703\) −657.842 −0.935764
\(704\) 67.8823i 0.0964237i
\(705\) 0 0
\(706\) 901.815 1.27736
\(707\) 1786.08i 2.52627i
\(708\) −457.631 + 90.3607i −0.646372 + 0.127628i
\(709\) 489.473 0.690371 0.345186 0.938534i \(-0.387816\pi\)
0.345186 + 0.938534i \(0.387816\pi\)
\(710\) 0 0
\(711\) 75.1402 30.8772i 0.105682 0.0434278i
\(712\) 20.1053 0.0282378
\(713\) 141.272i 0.198138i
\(714\) 33.5530 + 169.929i 0.0469930 + 0.237996i
\(715\) 0 0
\(716\) 613.247i 0.856491i
\(717\) 890.947 175.920i 1.24260 0.245356i
\(718\) −236.105 −0.328838
\(719\) 107.778i 0.149900i −0.997187 0.0749500i \(-0.976120\pi\)
0.997187 0.0749500i \(-0.0238797\pi\)
\(720\) 0 0
\(721\) 87.2100 0.120957
\(722\) 340.230i 0.471232i
\(723\) −138.036 699.080i −0.190921 0.966916i
\(724\) −531.368 −0.733934
\(725\) 0 0
\(726\) −203.952 + 40.2709i −0.280925 + 0.0554695i
\(727\) 150.172 0.206563 0.103282 0.994652i \(-0.467066\pi\)
0.103282 + 0.994652i \(0.467066\pi\)
\(728\) 324.897i 0.446287i
\(729\) −284.641 + 671.134i −0.390453 + 0.920623i
\(730\) 0 0
\(731\) 150.911i 0.206445i
\(732\) −25.5089 129.190i −0.0348482 0.176489i
\(733\) 675.526 0.921591 0.460795 0.887506i \(-0.347564\pi\)
0.460795 + 0.887506i \(0.347564\pi\)
\(734\) 715.349i 0.974591i
\(735\) 0 0
\(736\) −99.8947 −0.135726
\(737\) 454.298i 0.616415i
\(738\) 241.631 99.2929i 0.327414 0.134543i
\(739\) −936.921 −1.26782 −0.633911 0.773406i \(-0.718552\pi\)
−0.633911 + 0.773406i \(0.718552\pi\)
\(740\) 0 0
\(741\) −63.7722 322.974i −0.0860624 0.435863i
\(742\) 57.7367 0.0778122
\(743\) 452.939i 0.609608i −0.952415 0.304804i \(-0.901409\pi\)
0.952415 0.304804i \(-0.0985910\pi\)
\(744\) 66.5964 13.1497i 0.0895113 0.0176743i
\(745\) 0 0
\(746\) 588.387i 0.788723i
\(747\) −2.35516 5.73134i −0.00315283 0.00767247i
\(748\) 60.3160 0.0806364
\(749\) 187.029i 0.249706i
\(750\) 0 0
\(751\) 654.369 0.871330 0.435665 0.900109i \(-0.356513\pi\)
0.435665 + 0.900109i \(0.356513\pi\)
\(752\) 353.181i 0.469656i
\(753\) −249.079 + 49.1814i −0.330782 + 0.0653140i
\(754\) −379.473 −0.503280
\(755\) 0 0
\(756\) −342.438 517.199i −0.452961 0.684125i
\(757\) −123.315 −0.162900 −0.0814500 0.996677i \(-0.525955\pi\)
−0.0814500 + 0.996677i \(0.525955\pi\)
\(758\) 117.045i 0.154412i
\(759\) −87.0790 441.011i −0.114729 0.581042i
\(760\) 0 0
\(761\) 502.715i 0.660598i −0.943876 0.330299i \(-0.892850\pi\)
0.943876 0.330299i \(-0.107150\pi\)
\(762\) −322.741 + 63.7262i −0.423545 + 0.0836302i
\(763\) 1077.95 1.41278
\(764\) 319.240i 0.417853i
\(765\) 0 0
\(766\) 473.184 0.617734
\(767\) 777.445i 1.01362i
\(768\) 9.29822 + 47.0908i 0.0121071 + 0.0613161i
\(769\) −286.316 −0.372323 −0.186161 0.982519i \(-0.559605\pi\)
−0.186161 + 0.982519i \(0.559605\pi\)
\(770\) 0 0
\(771\) −859.565 + 169.724i −1.11487 + 0.220135i
\(772\) −184.105 −0.238478
\(773\) 972.030i 1.25748i 0.777617 + 0.628739i \(0.216428\pi\)
−0.777617 + 0.628739i \(0.783572\pi\)
\(774\) 205.412 + 499.875i 0.265390 + 0.645833i
\(775\) 0 0
\(776\) 316.635i 0.408035i
\(777\) −400.175 2026.68i −0.515026 2.60835i
\(778\) −767.868 −0.986976
\(779\) 225.231i 0.289129i
\(780\) 0 0
\(781\) −587.684 −0.752476
\(782\) 88.7603i 0.113504i
\(783\) 604.078 399.962i 0.771492 0.510807i
\(784\) 331.789 0.423201
\(785\) 0 0
\(786\) −83.5003 422.887i −0.106235 0.538024i
\(787\) −1492.70 −1.89669 −0.948346 0.317237i \(-0.897245\pi\)
−0.948346 + 0.317237i \(0.897245\pi\)
\(788\) 139.672i 0.177249i
\(789\) −817.394 + 161.397i −1.03599 + 0.204559i
\(790\) 0 0
\(791\) 2248.41i 2.84249i
\(792\) −199.789 + 82.0989i −0.252259 + 0.103660i
\(793\) 219.473 0.276763
\(794\) 302.642i 0.381161i
\(795\) 0 0
\(796\) −297.842 −0.374173
\(797\) 94.3618i 0.118396i 0.998246 + 0.0591981i \(0.0188544\pi\)
−0.998246 + 0.0591981i \(0.981146\pi\)
\(798\) −524.666 + 103.597i −0.657476 + 0.129821i
\(799\) −313.815 −0.392760
\(800\) 0 0
\(801\) −24.3160 59.1735i −0.0303571 0.0738746i
\(802\) −1026.84 −1.28035
\(803\) 102.270i 0.127360i
\(804\) −62.2278 315.152i −0.0773977 0.391980i
\(805\) 0 0
\(806\) 113.137i 0.140369i
\(807\) −843.354 + 166.523i −1.04505 + 0.206348i
\(808\) −439.789 −0.544294
\(809\) 1103.35i 1.36384i −0.731427 0.681920i \(-0.761145\pi\)
0.731427 0.681920i \(-0.238855\pi\)
\(810\) 0 0
\(811\) −10.1580 −0.0125253 −0.00626264 0.999980i \(-0.501993\pi\)
−0.00626264 + 0.999980i \(0.501993\pi\)
\(812\) 616.448i 0.759173i
\(813\) −188.350 953.899i −0.231673 1.17331i
\(814\) −719.368 −0.883744
\(815\) 0 0
\(816\) −41.8420 + 8.26183i −0.0512770 + 0.0101248i
\(817\) 465.947 0.570315
\(818\) 489.541i 0.598461i
\(819\) 956.228 392.940i 1.16756 0.479780i
\(820\) 0 0
\(821\) 337.011i 0.410488i 0.978711 + 0.205244i \(0.0657988\pi\)
−0.978711 + 0.205244i \(0.934201\pi\)
\(822\) 144.658 + 732.618i 0.175983 + 0.891263i
\(823\) 901.512 1.09540 0.547699 0.836675i \(-0.315504\pi\)
0.547699 + 0.836675i \(0.315504\pi\)
\(824\) 21.4739i 0.0260606i
\(825\) 0 0
\(826\) −1262.95 −1.52899
\(827\) 531.354i 0.642508i 0.946993 + 0.321254i \(0.104104\pi\)
−0.946993 + 0.321254i \(0.895896\pi\)
\(828\) 120.816 + 294.007i 0.145913 + 0.355081i
\(829\) −197.631 −0.238397 −0.119199 0.992870i \(-0.538033\pi\)
−0.119199 + 0.992870i \(0.538033\pi\)
\(830\) 0 0
\(831\) −241.662 1223.90i −0.290809 1.47280i
\(832\) −80.0000 −0.0961538
\(833\) 294.808i 0.353911i
\(834\) −785.903 + 155.179i −0.942330 + 0.186066i
\(835\) 0 0
\(836\) 186.229i 0.222762i
\(837\) −119.246 180.101i −0.142468 0.215175i
\(838\) 821.526 0.980341
\(839\) 943.950i 1.12509i −0.826767 0.562545i \(-0.809822\pi\)
0.826767 0.562545i \(-0.190178\pi\)
\(840\) 0 0
\(841\) 121.000 0.143876
\(842\) 380.869i 0.452339i
\(843\) −1270.64 + 250.893i −1.50729 + 0.297619i
\(844\) 571.684 0.677351
\(845\) 0 0
\(846\) 1039.47 427.148i 1.22869 0.504903i
\(847\) −562.855 −0.664528
\(848\) 14.2166i 0.0167649i
\(849\) −82.2541 416.575i −0.0968835 0.490666i
\(850\) 0 0
\(851\) 1058.61i 1.24396i
\(852\) 407.684 80.4984i 0.478502 0.0944817i
\(853\) 1196.42 1.40260 0.701301 0.712865i \(-0.252603\pi\)
0.701301 + 0.712865i \(0.252603\pi\)
\(854\) 356.531i 0.417483i
\(855\) 0 0
\(856\) 46.0527 0.0537998
\(857\) 1266.04i 1.47729i 0.674095 + 0.738645i \(0.264534\pi\)
−0.674095 + 0.738645i \(0.735466\pi\)
\(858\) −69.7367 353.181i −0.0812782 0.411633i
\(859\) −470.868 −0.548159 −0.274079 0.961707i \(-0.588373\pi\)
−0.274079 + 0.961707i \(0.588373\pi\)
\(860\) 0 0
\(861\) 693.895 137.012i 0.805917 0.159131i
\(862\) 1097.53 1.27323
\(863\) 285.057i 0.330310i 0.986268 + 0.165155i \(0.0528124\pi\)
−0.986268 + 0.165155i \(0.947188\pi\)
\(864\) 127.351 84.3193i 0.147397 0.0975918i
\(865\) 0 0
\(866\) 276.516i 0.319302i
\(867\) 160.608 + 813.399i 0.185246 + 0.938177i
\(868\) 183.789 0.211739
\(869\) 76.5910i 0.0881369i
\(870\) 0 0
\(871\) 535.395 0.614690
\(872\) 265.425i 0.304387i
\(873\) 931.912 382.948i 1.06748 0.438657i
\(874\) 274.053 0.313561
\(875\) 0 0
\(876\) 14.0085 + 70.9462i 0.0159915 + 0.0809888i
\(877\) −244.579 −0.278882 −0.139441 0.990230i \(-0.544531\pi\)
−0.139441 + 0.990230i \(0.544531\pi\)
\(878\) 846.779i 0.964440i
\(879\) 485.618 95.8867i 0.552466 0.109086i
\(880\) 0 0
\(881\) 137.271i 0.155813i −0.996961 0.0779065i \(-0.975176\pi\)
0.996961 0.0779065i \(-0.0248236\pi\)
\(882\) −401.276 976.514i −0.454962 1.10716i
\(883\) −1647.75 −1.86608 −0.933040 0.359772i \(-0.882854\pi\)
−0.933040 + 0.359772i \(0.882854\pi\)
\(884\) 71.0831i 0.0804107i
\(885\) 0 0
\(886\) −306.500 −0.345936
\(887\) 514.419i 0.579954i −0.957034 0.289977i \(-0.906352\pi\)
0.957034 0.289977i \(-0.0936477\pi\)
\(888\) 499.035 98.5360i 0.561976 0.110964i
\(889\) −890.683 −1.00189
\(890\) 0 0
\(891\) 483.263 + 488.722i 0.542382 + 0.548510i
\(892\) −142.763 −0.160048
\(893\) 968.923i 1.08502i
\(894\) −59.6584 302.139i −0.0667319 0.337964i
\(895\) 0 0
\(896\) 129.959i 0.145043i
\(897\) −519.737 + 102.624i −0.579417 + 0.114408i
\(898\) 348.184 0.387732
\(899\) 214.663i 0.238779i
\(900\) 0 0
\(901\) −12.6320 −0.0140200
\(902\) 246.297i 0.273056i
\(903\) 283.443 + 1435.49i 0.313890 + 1.58969i
\(904\) −553.631 −0.612424
\(905\) 0 0
\(906\) −391.035 + 77.2110i −0.431606 + 0.0852219i
\(907\) −347.303 −0.382914 −0.191457 0.981501i \(-0.561321\pi\)
−0.191457 + 0.981501i \(0.561321\pi\)
\(908\) 58.2434i 0.0641448i
\(909\) 531.895 + 1294.38i 0.585143 + 1.42396i
\(910\) 0 0
\(911\) 304.540i 0.334292i 0.985932 + 0.167146i \(0.0534551\pi\)
−0.985932 + 0.167146i \(0.946545\pi\)
\(912\) −25.5089 129.190i −0.0279703 0.141655i
\(913\) −5.84200 −0.00639868
\(914\) 782.134i 0.855726i
\(915\) 0 0
\(916\) 259.368 0.283153
\(917\) 1167.06i 1.27270i
\(918\) 74.9210 + 113.156i 0.0816133 + 0.123264i
\(919\) 244.289 0.265820 0.132910 0.991128i \(-0.457568\pi\)
0.132910 + 0.991128i \(0.457568\pi\)
\(920\) 0 0
\(921\) −92.6228 469.088i −0.100568 0.509324i
\(922\) 176.421 0.191346
\(923\) 692.592i 0.750371i
\(924\) −573.737 + 113.286i −0.620927 + 0.122604i
\(925\) 0 0
\(926\) 947.132i 1.02282i
\(927\) 63.2014 25.9712i 0.0681785 0.0280164i
\(928\) −151.789 −0.163566
\(929\) 1025.96i 1.10437i 0.833723 + 0.552183i \(0.186205\pi\)
−0.833723 + 0.552183i \(0.813795\pi\)
\(930\) 0 0
\(931\) −910.236 −0.977697
\(932\) 371.752i 0.398875i
\(933\) −421.157 + 83.1588i −0.451401 + 0.0891305i
\(934\) 688.552 0.737208
\(935\) 0 0
\(936\) 96.7544 + 235.454i 0.103370 + 0.251553i
\(937\) 332.053 0.354379 0.177189 0.984177i \(-0.443300\pi\)
0.177189 + 0.984177i \(0.443300\pi\)
\(938\) 869.740i 0.927229i
\(939\) 291.548 + 1476.54i 0.310488 + 1.57246i
\(940\) 0 0
\(941\) 1636.99i 1.73963i −0.493381 0.869813i \(-0.664239\pi\)
0.493381 0.869813i \(-0.335761\pi\)
\(942\) −515.465 + 101.780i −0.547203 + 0.108047i
\(943\) −362.447 −0.384355
\(944\) 310.978i 0.329426i
\(945\) 0 0
\(946\) 509.526 0.538611
\(947\) 1209.32i 1.27700i 0.769622 + 0.638500i \(0.220445\pi\)
−0.769622 + 0.638500i \(0.779555\pi\)
\(948\) 10.4911 + 53.1322i 0.0110666 + 0.0560466i
\(949\) −120.527 −0.127004
\(950\) 0 0
\(951\) −983.776 + 194.250i −1.03446 + 0.204258i
\(952\) −115.473 −0.121296
\(953\) 1205.26i 1.26470i −0.774681 0.632352i \(-0.782090\pi\)
0.774681 0.632352i \(-0.217910\pi\)
\(954\) 41.8420 17.1940i 0.0438595 0.0180231i
\(955\) 0 0
\(956\) 605.432i 0.633297i
\(957\) −132.316 670.114i −0.138261 0.700223i
\(958\) −736.211 −0.768487
\(959\) 2021.84i 2.10828i
\(960\) 0 0
\(961\) −897.000 −0.933403
\(962\) 847.783i 0.881272i
\(963\) −55.6975 135.541i −0.0578375 0.140749i
\(964\) 475.052 0.492793
\(965\) 0 0
\(966\) 166.710 + 844.304i 0.172578 + 0.874020i
\(967\) 1845.93 1.90893 0.954464 0.298325i \(-0.0964281\pi\)
0.954464 + 0.298325i \(0.0964281\pi\)
\(968\) 138.593i 0.143175i
\(969\) 114.790 22.6656i 0.118462 0.0233908i
\(970\) 0 0
\(971\) 1057.91i 1.08950i −0.838598 0.544751i \(-0.816624\pi\)
0.838598 0.544751i \(-0.183376\pi\)
\(972\) −402.189 272.838i −0.413774 0.280697i
\(973\) −2168.89 −2.22908
\(974\) 372.478i 0.382421i
\(975\) 0 0
\(976\) 87.7893 0.0899481
\(977\) 964.028i 0.986722i −0.869825 0.493361i \(-0.835768\pi\)
0.869825 0.493361i \(-0.164232\pi\)
\(978\) 663.390 130.988i 0.678313 0.133935i
\(979\) −60.3160 −0.0616098
\(980\) 0 0
\(981\) 781.193 321.013i 0.796323 0.327231i
\(982\) 1006.42 1.02487
\(983\) 460.718i 0.468685i 0.972154 + 0.234343i \(0.0752937\pi\)
−0.972154 + 0.234343i \(0.924706\pi\)
\(984\) 33.7367 + 170.859i 0.0342852 + 0.173637i
\(985\) 0 0
\(986\) 134.871i 0.136786i
\(987\) 2985.06 589.410i 3.02438 0.597173i
\(988\) 219.473 0.222139
\(989\) 749.812i 0.758152i
\(990\) 0 0
\(991\) 1237.89 1.24914 0.624568 0.780971i \(-0.285275\pi\)
0.624568 + 0.780971i \(0.285275\pi\)
\(992\) 45.2548i 0.0456198i
\(993\) 226.307 + 1146.13i 0.227903 + 1.15421i
\(994\) 1125.10 1.13190
\(995\) 0 0
\(996\) 4.05267 0.800212i 0.00406894 0.000803425i
\(997\) 9.36798 0.00939617 0.00469809 0.999989i \(-0.498505\pi\)
0.00469809 + 0.999989i \(0.498505\pi\)
\(998\) 32.6386i 0.0327040i
\(999\) −893.557 1349.57i −0.894451 1.35093i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.3.d.c.101.4 4
3.2 odd 2 inner 150.3.d.c.101.2 4
4.3 odd 2 1200.3.l.u.401.1 4
5.2 odd 4 150.3.b.b.149.3 8
5.3 odd 4 150.3.b.b.149.6 8
5.4 even 2 30.3.d.a.11.1 4
12.11 even 2 1200.3.l.u.401.2 4
15.2 even 4 150.3.b.b.149.5 8
15.8 even 4 150.3.b.b.149.4 8
15.14 odd 2 30.3.d.a.11.3 yes 4
20.3 even 4 1200.3.c.k.449.7 8
20.7 even 4 1200.3.c.k.449.2 8
20.19 odd 2 240.3.l.c.161.4 4
40.19 odd 2 960.3.l.f.641.1 4
40.29 even 2 960.3.l.e.641.4 4
45.4 even 6 810.3.h.a.431.4 8
45.14 odd 6 810.3.h.a.431.1 8
45.29 odd 6 810.3.h.a.701.4 8
45.34 even 6 810.3.h.a.701.1 8
60.23 odd 4 1200.3.c.k.449.1 8
60.47 odd 4 1200.3.c.k.449.8 8
60.59 even 2 240.3.l.c.161.3 4
120.29 odd 2 960.3.l.e.641.3 4
120.59 even 2 960.3.l.f.641.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.d.a.11.1 4 5.4 even 2
30.3.d.a.11.3 yes 4 15.14 odd 2
150.3.b.b.149.3 8 5.2 odd 4
150.3.b.b.149.4 8 15.8 even 4
150.3.b.b.149.5 8 15.2 even 4
150.3.b.b.149.6 8 5.3 odd 4
150.3.d.c.101.2 4 3.2 odd 2 inner
150.3.d.c.101.4 4 1.1 even 1 trivial
240.3.l.c.161.3 4 60.59 even 2
240.3.l.c.161.4 4 20.19 odd 2
810.3.h.a.431.1 8 45.14 odd 6
810.3.h.a.431.4 8 45.4 even 6
810.3.h.a.701.1 8 45.34 even 6
810.3.h.a.701.4 8 45.29 odd 6
960.3.l.e.641.3 4 120.29 odd 2
960.3.l.e.641.4 4 40.29 even 2
960.3.l.f.641.1 4 40.19 odd 2
960.3.l.f.641.2 4 120.59 even 2
1200.3.c.k.449.1 8 60.23 odd 4
1200.3.c.k.449.2 8 20.7 even 4
1200.3.c.k.449.7 8 20.3 even 4
1200.3.c.k.449.8 8 60.47 odd 4
1200.3.l.u.401.1 4 4.3 odd 2
1200.3.l.u.401.2 4 12.11 even 2