Properties

Label 150.3.d.c
Level $150$
Weight $3$
Character orbit 150.d
Analytic conductor $4.087$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(101,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} + \beta_1 - 1) q^{3} - 2 q^{4} + (\beta_{3} - \beta_1 - 1) q^{6} + (2 \beta_{3} + 2 \beta_{2} - \beta_1 - 2) q^{7} - 2 \beta_1 q^{8} + (\beta_{3} + 2 \beta_{2} + 3 \beta_1 - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + ( - \beta_{2} + \beta_1 - 1) q^{3} - 2 q^{4} + (\beta_{3} - \beta_1 - 1) q^{6} + (2 \beta_{3} + 2 \beta_{2} - \beta_1 - 2) q^{7} - 2 \beta_1 q^{8} + (\beta_{3} + 2 \beta_{2} + 3 \beta_1 - 2) q^{9} + 6 \beta_1 q^{11} + (2 \beta_{2} - 2 \beta_1 + 2) q^{12} + 10 q^{13} + ( - 2 \beta_{3} + 4 \beta_{2} - 4 \beta_1) q^{14} + 4 q^{16} + ( - 2 \beta_{3} + 4 \beta_{2} + 10 \beta_1) q^{17} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 8) q^{18}+ \cdots + ( - 12 \beta_{3} + 12 \beta_{2} + \cdots - 48) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{4} - 4 q^{6} - 8 q^{7} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} - 8 q^{4} - 4 q^{6} - 8 q^{7} - 8 q^{9} + 8 q^{12} + 40 q^{13} + 16 q^{16} - 32 q^{18} + 32 q^{19} - 52 q^{21} - 48 q^{22} + 8 q^{24} - 28 q^{27} + 16 q^{28} + 32 q^{31} - 24 q^{33} - 96 q^{34} + 16 q^{36} + 88 q^{37} - 40 q^{39} + 128 q^{42} - 56 q^{43} - 24 q^{46} - 16 q^{48} + 180 q^{49} + 72 q^{51} - 80 q^{52} + 140 q^{54} - 152 q^{57} - 64 q^{61} + 256 q^{63} - 32 q^{64} + 48 q^{66} + 328 q^{67} - 132 q^{69} + 64 q^{72} - 200 q^{73} - 64 q^{76} - 40 q^{78} - 112 q^{79} + 28 q^{81} - 192 q^{82} + 104 q^{84} - 240 q^{87} + 96 q^{88} - 80 q^{91} - 32 q^{93} - 120 q^{94} - 16 q^{96} - 296 q^{97} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 4x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} - 3\nu^{2} + 7\nu + 6 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} - \beta _1 + 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + \beta_{2} + 10\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
1.58114 0.707107i
−1.58114 0.707107i
1.58114 + 0.707107i
−1.58114 + 0.707107i
1.41421i −2.58114 + 1.52896i −2.00000 0 2.16228 + 3.65028i 7.48683 2.82843i 4.32456 7.89292i 0
101.2 1.41421i 0.581139 2.94317i −2.00000 0 −4.16228 0.821854i −11.4868 2.82843i −8.32456 3.42079i 0
101.3 1.41421i −2.58114 1.52896i −2.00000 0 2.16228 3.65028i 7.48683 2.82843i 4.32456 + 7.89292i 0
101.4 1.41421i 0.581139 + 2.94317i −2.00000 0 −4.16228 + 0.821854i −11.4868 2.82843i −8.32456 + 3.42079i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.3.d.c 4
3.b odd 2 1 inner 150.3.d.c 4
4.b odd 2 1 1200.3.l.u 4
5.b even 2 1 30.3.d.a 4
5.c odd 4 2 150.3.b.b 8
12.b even 2 1 1200.3.l.u 4
15.d odd 2 1 30.3.d.a 4
15.e even 4 2 150.3.b.b 8
20.d odd 2 1 240.3.l.c 4
20.e even 4 2 1200.3.c.k 8
40.e odd 2 1 960.3.l.f 4
40.f even 2 1 960.3.l.e 4
45.h odd 6 2 810.3.h.a 8
45.j even 6 2 810.3.h.a 8
60.h even 2 1 240.3.l.c 4
60.l odd 4 2 1200.3.c.k 8
120.i odd 2 1 960.3.l.e 4
120.m even 2 1 960.3.l.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.3.d.a 4 5.b even 2 1
30.3.d.a 4 15.d odd 2 1
150.3.b.b 8 5.c odd 4 2
150.3.b.b 8 15.e even 4 2
150.3.d.c 4 1.a even 1 1 trivial
150.3.d.c 4 3.b odd 2 1 inner
240.3.l.c 4 20.d odd 2 1
240.3.l.c 4 60.h even 2 1
810.3.h.a 8 45.h odd 6 2
810.3.h.a 8 45.j even 6 2
960.3.l.e 4 40.f even 2 1
960.3.l.e 4 120.i odd 2 1
960.3.l.f 4 40.e odd 2 1
960.3.l.f 4 120.m even 2 1
1200.3.c.k 8 20.e even 4 2
1200.3.c.k 8 60.l odd 4 2
1200.3.l.u 4 4.b odd 2 1
1200.3.l.u 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 4T_{7} - 86 \) acting on \(S_{3}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 86)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$13$ \( (T - 10)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 936 T^{2} + 11664 \) Copy content Toggle raw display
$19$ \( (T^{2} - 16 T - 296)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 396 T^{2} + 26244 \) Copy content Toggle raw display
$29$ \( (T^{2} + 720)^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 44 T - 956)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 2664 T^{2} + 944784 \) Copy content Toggle raw display
$43$ \( (T^{2} + 28 T - 614)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 9900 T^{2} + 16402500 \) Copy content Toggle raw display
$53$ \( T^{4} + 936 T^{2} + 11664 \) Copy content Toggle raw display
$59$ \( T^{4} + 6624 T^{2} + 3504384 \) Copy content Toggle raw display
$61$ \( (T^{2} + 32 T - 1184)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 164 T + 5914)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 5040 T^{2} + 1166400 \) Copy content Toggle raw display
$73$ \( (T^{2} + 100 T + 1060)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 56 T + 424)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 684T^{2} + 324 \) Copy content Toggle raw display
$89$ \( T^{4} + 3744 T^{2} + 186624 \) Copy content Toggle raw display
$97$ \( (T^{2} + 148 T + 4036)^{2} \) Copy content Toggle raw display
show more
show less