gp: [N,k,chi] = [150,3,Mod(101,150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(150, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("150.101");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 4 x 2 + 9 x^{4} - 4x^{2} + 9 x 4 − 4 x 2 + 9
x^4 - 4*x^2 + 9
:
β 1 \beta_{1} β 1 = = =
( ν 3 − ν ) / 3 ( \nu^{3} - \nu ) / 3 ( ν 3 − ν ) / 3
(v^3 - v) / 3
β 2 \beta_{2} β 2 = = =
ν 2 + ν − 2 \nu^{2} + \nu - 2 ν 2 + ν − 2
v^2 + v - 2
β 3 \beta_{3} β 3 = = =
( − ν 3 − 3 ν 2 + 7 ν + 6 ) / 3 ( -\nu^{3} - 3\nu^{2} + 7\nu + 6 ) / 3 ( − ν 3 − 3 ν 2 + 7 ν + 6 ) / 3
(-v^3 - 3*v^2 + 7*v + 6) / 3
ν \nu ν = = =
( β 3 + β 2 + β 1 ) / 3 ( \beta_{3} + \beta_{2} + \beta_1 ) / 3 ( β 3 + β 2 + β 1 ) / 3
(b3 + b2 + b1) / 3
ν 2 \nu^{2} ν 2 = = =
( − β 3 + 2 β 2 − β 1 + 6 ) / 3 ( -\beta_{3} + 2\beta_{2} - \beta _1 + 6 ) / 3 ( − β 3 + 2 β 2 − β 1 + 6 ) / 3
(-b3 + 2*b2 - b1 + 6) / 3
ν 3 \nu^{3} ν 3 = = =
( β 3 + β 2 + 10 β 1 ) / 3 ( \beta_{3} + \beta_{2} + 10\beta_1 ) / 3 ( β 3 + β 2 + 1 0 β 1 ) / 3
(b3 + b2 + 10*b1) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 150 Z ) × \left(\mathbb{Z}/150\mathbb{Z}\right)^\times ( Z / 1 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 2 + 4 T 7 − 86 T_{7}^{2} + 4T_{7} - 86 T 7 2 + 4 T 7 − 8 6
T7^2 + 4*T7 - 86
acting on S 3 n e w ( 150 , [ χ ] ) S_{3}^{\mathrm{new}}(150, [\chi]) S 3 n e w ( 1 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
3 3 3
T 4 + 4 T 3 + ⋯ + 81 T^{4} + 4 T^{3} + \cdots + 81 T 4 + 4 T 3 + ⋯ + 8 1
T^4 + 4*T^3 + 12*T^2 + 36*T + 81
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + 4 T − 86 ) 2 (T^{2} + 4 T - 86)^{2} ( T 2 + 4 T − 8 6 ) 2
(T^2 + 4*T - 86)^2
11 11 1 1
( T 2 + 72 ) 2 (T^{2} + 72)^{2} ( T 2 + 7 2 ) 2
(T^2 + 72)^2
13 13 1 3
( T − 10 ) 4 (T - 10)^{4} ( T − 1 0 ) 4
(T - 10)^4
17 17 1 7
T 4 + 936 T 2 + 11664 T^{4} + 936 T^{2} + 11664 T 4 + 9 3 6 T 2 + 1 1 6 6 4
T^4 + 936*T^2 + 11664
19 19 1 9
( T 2 − 16 T − 296 ) 2 (T^{2} - 16 T - 296)^{2} ( T 2 − 1 6 T − 2 9 6 ) 2
(T^2 - 16*T - 296)^2
23 23 2 3
T 4 + 396 T 2 + 26244 T^{4} + 396 T^{2} + 26244 T 4 + 3 9 6 T 2 + 2 6 2 4 4
T^4 + 396*T^2 + 26244
29 29 2 9
( T 2 + 720 ) 2 (T^{2} + 720)^{2} ( T 2 + 7 2 0 ) 2
(T^2 + 720)^2
31 31 3 1
( T − 8 ) 4 (T - 8)^{4} ( T − 8 ) 4
(T - 8)^4
37 37 3 7
( T 2 − 44 T − 956 ) 2 (T^{2} - 44 T - 956)^{2} ( T 2 − 4 4 T − 9 5 6 ) 2
(T^2 - 44*T - 956)^2
41 41 4 1
T 4 + 2664 T 2 + 944784 T^{4} + 2664 T^{2} + 944784 T 4 + 2 6 6 4 T 2 + 9 4 4 7 8 4
T^4 + 2664*T^2 + 944784
43 43 4 3
( T 2 + 28 T − 614 ) 2 (T^{2} + 28 T - 614)^{2} ( T 2 + 2 8 T − 6 1 4 ) 2
(T^2 + 28*T - 614)^2
47 47 4 7
T 4 + 9900 T 2 + 16402500 T^{4} + 9900 T^{2} + 16402500 T 4 + 9 9 0 0 T 2 + 1 6 4 0 2 5 0 0
T^4 + 9900*T^2 + 16402500
53 53 5 3
T 4 + 936 T 2 + 11664 T^{4} + 936 T^{2} + 11664 T 4 + 9 3 6 T 2 + 1 1 6 6 4
T^4 + 936*T^2 + 11664
59 59 5 9
T 4 + 6624 T 2 + 3504384 T^{4} + 6624 T^{2} + 3504384 T 4 + 6 6 2 4 T 2 + 3 5 0 4 3 8 4
T^4 + 6624*T^2 + 3504384
61 61 6 1
( T 2 + 32 T − 1184 ) 2 (T^{2} + 32 T - 1184)^{2} ( T 2 + 3 2 T − 1 1 8 4 ) 2
(T^2 + 32*T - 1184)^2
67 67 6 7
( T 2 − 164 T + 5914 ) 2 (T^{2} - 164 T + 5914)^{2} ( T 2 − 1 6 4 T + 5 9 1 4 ) 2
(T^2 - 164*T + 5914)^2
71 71 7 1
T 4 + 5040 T 2 + 1166400 T^{4} + 5040 T^{2} + 1166400 T 4 + 5 0 4 0 T 2 + 1 1 6 6 4 0 0
T^4 + 5040*T^2 + 1166400
73 73 7 3
( T 2 + 100 T + 1060 ) 2 (T^{2} + 100 T + 1060)^{2} ( T 2 + 1 0 0 T + 1 0 6 0 ) 2
(T^2 + 100*T + 1060)^2
79 79 7 9
( T 2 + 56 T + 424 ) 2 (T^{2} + 56 T + 424)^{2} ( T 2 + 5 6 T + 4 2 4 ) 2
(T^2 + 56*T + 424)^2
83 83 8 3
T 4 + 684 T 2 + 324 T^{4} + 684T^{2} + 324 T 4 + 6 8 4 T 2 + 3 2 4
T^4 + 684*T^2 + 324
89 89 8 9
T 4 + 3744 T 2 + 186624 T^{4} + 3744 T^{2} + 186624 T 4 + 3 7 4 4 T 2 + 1 8 6 6 2 4
T^4 + 3744*T^2 + 186624
97 97 9 7
( T 2 + 148 T + 4036 ) 2 (T^{2} + 148 T + 4036)^{2} ( T 2 + 1 4 8 T + 4 0 3 6 ) 2
(T^2 + 148*T + 4036)^2
show more
show less