Properties

Label 150.3.d.c
Level 150150
Weight 33
Character orbit 150.d
Analytic conductor 4.0874.087
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,3,Mod(101,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.101"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 150.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.087203965404.08720396540
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,5)\Q(\sqrt{-2}, \sqrt{-5})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x44x2+9 x^{4} - 4x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+β11)q32q4+(β3β11)q6+(2β3+2β2β12)q72β1q8+(β3+2β2+3β12)q9++(12β3+12β2+48)q99+O(q100) q + \beta_1 q^{2} + ( - \beta_{2} + \beta_1 - 1) q^{3} - 2 q^{4} + (\beta_{3} - \beta_1 - 1) q^{6} + (2 \beta_{3} + 2 \beta_{2} - \beta_1 - 2) q^{7} - 2 \beta_1 q^{8} + (\beta_{3} + 2 \beta_{2} + 3 \beta_1 - 2) q^{9}+ \cdots + ( - 12 \beta_{3} + 12 \beta_{2} + \cdots - 48) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q38q44q68q78q9+8q12+40q13+16q1632q18+32q1952q2148q22+8q2428q27+16q28+32q3124q3396q34+192q99+O(q100) 4 q - 4 q^{3} - 8 q^{4} - 4 q^{6} - 8 q^{7} - 8 q^{9} + 8 q^{12} + 40 q^{13} + 16 q^{16} - 32 q^{18} + 32 q^{19} - 52 q^{21} - 48 q^{22} + 8 q^{24} - 28 q^{27} + 16 q^{28} + 32 q^{31} - 24 q^{33} - 96 q^{34}+ \cdots - 192 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x44x2+9 x^{4} - 4x^{2} + 9 : Copy content Toggle raw display

β1\beta_{1}== (ν3ν)/3 ( \nu^{3} - \nu ) / 3 Copy content Toggle raw display
β2\beta_{2}== ν2+ν2 \nu^{2} + \nu - 2 Copy content Toggle raw display
β3\beta_{3}== (ν33ν2+7ν+6)/3 ( -\nu^{3} - 3\nu^{2} + 7\nu + 6 ) / 3 Copy content Toggle raw display
ν\nu== (β3+β2+β1)/3 ( \beta_{3} + \beta_{2} + \beta_1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β3+2β2β1+6)/3 ( -\beta_{3} + 2\beta_{2} - \beta _1 + 6 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (β3+β2+10β1)/3 ( \beta_{3} + \beta_{2} + 10\beta_1 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
1.58114 0.707107i
−1.58114 0.707107i
1.58114 + 0.707107i
−1.58114 + 0.707107i
1.41421i −2.58114 + 1.52896i −2.00000 0 2.16228 + 3.65028i 7.48683 2.82843i 4.32456 7.89292i 0
101.2 1.41421i 0.581139 2.94317i −2.00000 0 −4.16228 0.821854i −11.4868 2.82843i −8.32456 3.42079i 0
101.3 1.41421i −2.58114 1.52896i −2.00000 0 2.16228 3.65028i 7.48683 2.82843i 4.32456 + 7.89292i 0
101.4 1.41421i 0.581139 + 2.94317i −2.00000 0 −4.16228 + 0.821854i −11.4868 2.82843i −8.32456 + 3.42079i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.3.d.c 4
3.b odd 2 1 inner 150.3.d.c 4
4.b odd 2 1 1200.3.l.u 4
5.b even 2 1 30.3.d.a 4
5.c odd 4 2 150.3.b.b 8
12.b even 2 1 1200.3.l.u 4
15.d odd 2 1 30.3.d.a 4
15.e even 4 2 150.3.b.b 8
20.d odd 2 1 240.3.l.c 4
20.e even 4 2 1200.3.c.k 8
40.e odd 2 1 960.3.l.f 4
40.f even 2 1 960.3.l.e 4
45.h odd 6 2 810.3.h.a 8
45.j even 6 2 810.3.h.a 8
60.h even 2 1 240.3.l.c 4
60.l odd 4 2 1200.3.c.k 8
120.i odd 2 1 960.3.l.e 4
120.m even 2 1 960.3.l.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.3.d.a 4 5.b even 2 1
30.3.d.a 4 15.d odd 2 1
150.3.b.b 8 5.c odd 4 2
150.3.b.b 8 15.e even 4 2
150.3.d.c 4 1.a even 1 1 trivial
150.3.d.c 4 3.b odd 2 1 inner
240.3.l.c 4 20.d odd 2 1
240.3.l.c 4 60.h even 2 1
810.3.h.a 8 45.h odd 6 2
810.3.h.a 8 45.j even 6 2
960.3.l.e 4 40.f even 2 1
960.3.l.e 4 120.i odd 2 1
960.3.l.f 4 40.e odd 2 1
960.3.l.f 4 120.m even 2 1
1200.3.c.k 8 20.e even 4 2
1200.3.c.k 8 60.l odd 4 2
1200.3.l.u 4 4.b odd 2 1
1200.3.l.u 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+4T786 T_{7}^{2} + 4T_{7} - 86 acting on S3new(150,[χ])S_{3}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
33 T4+4T3++81 T^{4} + 4 T^{3} + \cdots + 81 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+4T86)2 (T^{2} + 4 T - 86)^{2} Copy content Toggle raw display
1111 (T2+72)2 (T^{2} + 72)^{2} Copy content Toggle raw display
1313 (T10)4 (T - 10)^{4} Copy content Toggle raw display
1717 T4+936T2+11664 T^{4} + 936 T^{2} + 11664 Copy content Toggle raw display
1919 (T216T296)2 (T^{2} - 16 T - 296)^{2} Copy content Toggle raw display
2323 T4+396T2+26244 T^{4} + 396 T^{2} + 26244 Copy content Toggle raw display
2929 (T2+720)2 (T^{2} + 720)^{2} Copy content Toggle raw display
3131 (T8)4 (T - 8)^{4} Copy content Toggle raw display
3737 (T244T956)2 (T^{2} - 44 T - 956)^{2} Copy content Toggle raw display
4141 T4+2664T2+944784 T^{4} + 2664 T^{2} + 944784 Copy content Toggle raw display
4343 (T2+28T614)2 (T^{2} + 28 T - 614)^{2} Copy content Toggle raw display
4747 T4+9900T2+16402500 T^{4} + 9900 T^{2} + 16402500 Copy content Toggle raw display
5353 T4+936T2+11664 T^{4} + 936 T^{2} + 11664 Copy content Toggle raw display
5959 T4+6624T2+3504384 T^{4} + 6624 T^{2} + 3504384 Copy content Toggle raw display
6161 (T2+32T1184)2 (T^{2} + 32 T - 1184)^{2} Copy content Toggle raw display
6767 (T2164T+5914)2 (T^{2} - 164 T + 5914)^{2} Copy content Toggle raw display
7171 T4+5040T2+1166400 T^{4} + 5040 T^{2} + 1166400 Copy content Toggle raw display
7373 (T2+100T+1060)2 (T^{2} + 100 T + 1060)^{2} Copy content Toggle raw display
7979 (T2+56T+424)2 (T^{2} + 56 T + 424)^{2} Copy content Toggle raw display
8383 T4+684T2+324 T^{4} + 684T^{2} + 324 Copy content Toggle raw display
8989 T4+3744T2+186624 T^{4} + 3744 T^{2} + 186624 Copy content Toggle raw display
9797 (T2+148T+4036)2 (T^{2} + 148 T + 4036)^{2} Copy content Toggle raw display
show more
show less