Properties

Label 240.4.a.d
Level $240$
Weight $4$
Character orbit 240.a
Self dual yes
Analytic conductor $14.160$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,4,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.1604584014\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} + 5 q^{5} - 8 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{3} + 5 q^{5} - 8 q^{7} + 9 q^{9} - 20 q^{11} + 22 q^{13} - 15 q^{15} - 14 q^{17} - 76 q^{19} + 24 q^{21} - 56 q^{23} + 25 q^{25} - 27 q^{27} - 154 q^{29} - 160 q^{31} + 60 q^{33} - 40 q^{35} - 162 q^{37} - 66 q^{39} - 390 q^{41} - 388 q^{43} + 45 q^{45} + 544 q^{47} - 279 q^{49} + 42 q^{51} - 210 q^{53} - 100 q^{55} + 228 q^{57} + 380 q^{59} - 794 q^{61} - 72 q^{63} + 110 q^{65} + 148 q^{67} + 168 q^{69} + 840 q^{71} + 858 q^{73} - 75 q^{75} + 160 q^{77} - 144 q^{79} + 81 q^{81} - 316 q^{83} - 70 q^{85} + 462 q^{87} + 1098 q^{89} - 176 q^{91} + 480 q^{93} - 380 q^{95} + 994 q^{97} - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 5.00000 0 −8.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.4.a.d 1
3.b odd 2 1 720.4.a.f 1
4.b odd 2 1 120.4.a.f 1
5.b even 2 1 1200.4.a.bf 1
5.c odd 4 2 1200.4.f.g 2
8.b even 2 1 960.4.a.v 1
8.d odd 2 1 960.4.a.g 1
12.b even 2 1 360.4.a.e 1
20.d odd 2 1 600.4.a.d 1
20.e even 4 2 600.4.f.g 2
60.h even 2 1 1800.4.a.k 1
60.l odd 4 2 1800.4.f.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.a.f 1 4.b odd 2 1
240.4.a.d 1 1.a even 1 1 trivial
360.4.a.e 1 12.b even 2 1
600.4.a.d 1 20.d odd 2 1
600.4.f.g 2 20.e even 4 2
720.4.a.f 1 3.b odd 2 1
960.4.a.g 1 8.d odd 2 1
960.4.a.v 1 8.b even 2 1
1200.4.a.bf 1 5.b even 2 1
1200.4.f.g 2 5.c odd 4 2
1800.4.a.k 1 60.h even 2 1
1800.4.f.h 2 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(240))\):

\( T_{7} + 8 \) Copy content Toggle raw display
\( T_{11} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T + 20 \) Copy content Toggle raw display
$13$ \( T - 22 \) Copy content Toggle raw display
$17$ \( T + 14 \) Copy content Toggle raw display
$19$ \( T + 76 \) Copy content Toggle raw display
$23$ \( T + 56 \) Copy content Toggle raw display
$29$ \( T + 154 \) Copy content Toggle raw display
$31$ \( T + 160 \) Copy content Toggle raw display
$37$ \( T + 162 \) Copy content Toggle raw display
$41$ \( T + 390 \) Copy content Toggle raw display
$43$ \( T + 388 \) Copy content Toggle raw display
$47$ \( T - 544 \) Copy content Toggle raw display
$53$ \( T + 210 \) Copy content Toggle raw display
$59$ \( T - 380 \) Copy content Toggle raw display
$61$ \( T + 794 \) Copy content Toggle raw display
$67$ \( T - 148 \) Copy content Toggle raw display
$71$ \( T - 840 \) Copy content Toggle raw display
$73$ \( T - 858 \) Copy content Toggle raw display
$79$ \( T + 144 \) Copy content Toggle raw display
$83$ \( T + 316 \) Copy content Toggle raw display
$89$ \( T - 1098 \) Copy content Toggle raw display
$97$ \( T - 994 \) Copy content Toggle raw display
show more
show less