Properties

Label 960.4.a.v
Level 960960
Weight 44
Character orbit 960.a
Self dual yes
Analytic conductor 56.64256.642
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,4,Mod(1,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 56.641833605556.6418336055
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 120)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3q35q58q7+9q9+20q1122q1315q1514q17+76q1924q2156q23+25q25+27q27+154q29160q31+60q33+40q35+162q37++180q99+O(q100) q + 3 q^{3} - 5 q^{5} - 8 q^{7} + 9 q^{9} + 20 q^{11} - 22 q^{13} - 15 q^{15} - 14 q^{17} + 76 q^{19} - 24 q^{21} - 56 q^{23} + 25 q^{25} + 27 q^{27} + 154 q^{29} - 160 q^{31} + 60 q^{33} + 40 q^{35} + 162 q^{37}+ \cdots + 180 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 −5.00000 0 −8.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.4.a.v 1
4.b odd 2 1 960.4.a.g 1
8.b even 2 1 240.4.a.d 1
8.d odd 2 1 120.4.a.f 1
24.f even 2 1 360.4.a.e 1
24.h odd 2 1 720.4.a.f 1
40.e odd 2 1 600.4.a.d 1
40.f even 2 1 1200.4.a.bf 1
40.i odd 4 2 1200.4.f.g 2
40.k even 4 2 600.4.f.g 2
120.m even 2 1 1800.4.a.k 1
120.q odd 4 2 1800.4.f.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.a.f 1 8.d odd 2 1
240.4.a.d 1 8.b even 2 1
360.4.a.e 1 24.f even 2 1
600.4.a.d 1 40.e odd 2 1
600.4.f.g 2 40.k even 4 2
720.4.a.f 1 24.h odd 2 1
960.4.a.g 1 4.b odd 2 1
960.4.a.v 1 1.a even 1 1 trivial
1200.4.a.bf 1 40.f even 2 1
1200.4.f.g 2 40.i odd 4 2
1800.4.a.k 1 120.m even 2 1
1800.4.f.h 2 120.q odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(960))S_{4}^{\mathrm{new}}(\Gamma_0(960)):

T7+8 T_{7} + 8 Copy content Toggle raw display
T1120 T_{11} - 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T+5 T + 5 Copy content Toggle raw display
77 T+8 T + 8 Copy content Toggle raw display
1111 T20 T - 20 Copy content Toggle raw display
1313 T+22 T + 22 Copy content Toggle raw display
1717 T+14 T + 14 Copy content Toggle raw display
1919 T76 T - 76 Copy content Toggle raw display
2323 T+56 T + 56 Copy content Toggle raw display
2929 T154 T - 154 Copy content Toggle raw display
3131 T+160 T + 160 Copy content Toggle raw display
3737 T162 T - 162 Copy content Toggle raw display
4141 T+390 T + 390 Copy content Toggle raw display
4343 T388 T - 388 Copy content Toggle raw display
4747 T544 T - 544 Copy content Toggle raw display
5353 T210 T - 210 Copy content Toggle raw display
5959 T+380 T + 380 Copy content Toggle raw display
6161 T794 T - 794 Copy content Toggle raw display
6767 T+148 T + 148 Copy content Toggle raw display
7171 T840 T - 840 Copy content Toggle raw display
7373 T858 T - 858 Copy content Toggle raw display
7979 T+144 T + 144 Copy content Toggle raw display
8383 T316 T - 316 Copy content Toggle raw display
8989 T1098 T - 1098 Copy content Toggle raw display
9797 T994 T - 994 Copy content Toggle raw display
show more
show less