Properties

Label 240.6.a.f
Level $240$
Weight $6$
Character orbit 240.a
Self dual yes
Analytic conductor $38.492$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,6,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.4921167551\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 9 q^{3} + 25 q^{5} - 32 q^{7} + 81 q^{9} - 12 q^{11} - 154 q^{13} - 225 q^{15} - 918 q^{17} + 1060 q^{19} + 288 q^{21} + 4224 q^{23} + 625 q^{25} - 729 q^{27} - 7890 q^{29} - 5192 q^{31} + 108 q^{33}+ \cdots - 972 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −9.00000 0 25.0000 0 −32.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.6.a.f 1
3.b odd 2 1 720.6.a.e 1
4.b odd 2 1 30.6.a.b 1
8.b even 2 1 960.6.a.q 1
8.d odd 2 1 960.6.a.d 1
12.b even 2 1 90.6.a.a 1
20.d odd 2 1 150.6.a.b 1
20.e even 4 2 150.6.c.f 2
60.h even 2 1 450.6.a.q 1
60.l odd 4 2 450.6.c.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.6.a.b 1 4.b odd 2 1
90.6.a.a 1 12.b even 2 1
150.6.a.b 1 20.d odd 2 1
150.6.c.f 2 20.e even 4 2
240.6.a.f 1 1.a even 1 1 trivial
450.6.a.q 1 60.h even 2 1
450.6.c.i 2 60.l odd 4 2
720.6.a.e 1 3.b odd 2 1
960.6.a.d 1 8.d odd 2 1
960.6.a.q 1 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 32 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(240))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T + 32 \) Copy content Toggle raw display
$11$ \( T + 12 \) Copy content Toggle raw display
$13$ \( T + 154 \) Copy content Toggle raw display
$17$ \( T + 918 \) Copy content Toggle raw display
$19$ \( T - 1060 \) Copy content Toggle raw display
$23$ \( T - 4224 \) Copy content Toggle raw display
$29$ \( T + 7890 \) Copy content Toggle raw display
$31$ \( T + 5192 \) Copy content Toggle raw display
$37$ \( T - 16382 \) Copy content Toggle raw display
$41$ \( T - 3642 \) Copy content Toggle raw display
$43$ \( T + 15116 \) Copy content Toggle raw display
$47$ \( T + 23592 \) Copy content Toggle raw display
$53$ \( T + 16074 \) Copy content Toggle raw display
$59$ \( T - 14340 \) Copy content Toggle raw display
$61$ \( T + 47938 \) Copy content Toggle raw display
$67$ \( T + 33092 \) Copy content Toggle raw display
$71$ \( T + 51912 \) Copy content Toggle raw display
$73$ \( T - 12026 \) Copy content Toggle raw display
$79$ \( T + 25160 \) Copy content Toggle raw display
$83$ \( T + 35796 \) Copy content Toggle raw display
$89$ \( T + 75510 \) Copy content Toggle raw display
$97$ \( T + 44158 \) Copy content Toggle raw display
show more
show less