Properties

Label 240.6.a.q
Level $240$
Weight $6$
Character orbit 240.a
Self dual yes
Analytic conductor $38.492$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,6,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.4921167551\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{409}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 102 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 8\sqrt{409}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + 25 q^{5} + ( - \beta + 56) q^{7} + 81 q^{9} + ( - 2 \beta - 124) q^{11} + ( - \beta + 438) q^{13} + 225 q^{15} + (5 \beta + 1018) q^{17} + (13 \beta - 732) q^{19} + ( - 9 \beta + 504) q^{21}+ \cdots + ( - 162 \beta - 10044) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 50 q^{5} + 112 q^{7} + 162 q^{9} - 248 q^{11} + 876 q^{13} + 450 q^{15} + 2036 q^{17} - 1464 q^{19} + 1008 q^{21} + 3216 q^{23} + 1250 q^{25} + 1458 q^{27} + 1948 q^{29} - 2672 q^{31} - 2232 q^{33}+ \cdots - 20088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
10.6119
−9.61187
0 9.00000 0 25.0000 0 −105.790 0 81.0000 0
1.2 0 9.00000 0 25.0000 0 217.790 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.6.a.q 2
3.b odd 2 1 720.6.a.bd 2
4.b odd 2 1 15.6.a.c 2
8.b even 2 1 960.6.a.bf 2
8.d odd 2 1 960.6.a.bj 2
12.b even 2 1 45.6.a.e 2
20.d odd 2 1 75.6.a.h 2
20.e even 4 2 75.6.b.e 4
28.d even 2 1 735.6.a.g 2
60.h even 2 1 225.6.a.m 2
60.l odd 4 2 225.6.b.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.6.a.c 2 4.b odd 2 1
45.6.a.e 2 12.b even 2 1
75.6.a.h 2 20.d odd 2 1
75.6.b.e 4 20.e even 4 2
225.6.a.m 2 60.h even 2 1
225.6.b.g 4 60.l odd 4 2
240.6.a.q 2 1.a even 1 1 trivial
720.6.a.bd 2 3.b odd 2 1
735.6.a.g 2 28.d even 2 1
960.6.a.bf 2 8.b even 2 1
960.6.a.bj 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - 112T_{7} - 23040 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(240))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( (T - 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 112T - 23040 \) Copy content Toggle raw display
$11$ \( T^{2} + 248T - 89328 \) Copy content Toggle raw display
$13$ \( T^{2} - 876T + 165668 \) Copy content Toggle raw display
$17$ \( T^{2} - 2036 T + 381924 \) Copy content Toggle raw display
$19$ \( T^{2} + 1464 T - 3887920 \) Copy content Toggle raw display
$23$ \( T^{2} - 3216 T + 2350080 \) Copy content Toggle raw display
$29$ \( T^{2} - 1948 T + 529860 \) Copy content Toggle raw display
$31$ \( T^{2} + 2672 T - 1382400 \) Copy content Toggle raw display
$37$ \( T^{2} - 8668 T - 49300220 \) Copy content Toggle raw display
$41$ \( T^{2} + 7628 T - 15712860 \) Copy content Toggle raw display
$43$ \( T^{2} - 16440 T + 67149584 \) Copy content Toggle raw display
$47$ \( T^{2} - 19360 T - 61495104 \) Copy content Toggle raw display
$53$ \( T^{2} + 14356 T - 476289180 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1067881200 \) Copy content Toggle raw display
$61$ \( T^{2} - 20220 T - 149182204 \) Copy content Toggle raw display
$67$ \( T^{2} - 12904 T - 125898096 \) Copy content Toggle raw display
$71$ \( T^{2} - 40976 T - 627281856 \) Copy content Toggle raw display
$73$ \( T^{2} - 59124 T + 836113700 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1448870400 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2064089232 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 2895368220 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 15772164476 \) Copy content Toggle raw display
show more
show less