Properties

Label 240.6.f.f
Level 240240
Weight 66
Character orbit 240.f
Analytic conductor 38.49238.492
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,6,Mod(49,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 240=2435 240 = 2^{4} \cdot 3 \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 240.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.492116755138.4921167551
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+142x6+5761x4+52020x2+129600 x^{8} + 142x^{6} + 5761x^{4} + 52020x^{2} + 129600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2103253 2^{10}\cdot 3^{2}\cdot 5^{3}
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+9β1q3+(β210β18)q5+(β5β42β1)q781q9+(2β7+2β6+3β4+86)q11+(5β7+7β5+5)q13++(162β7162β6++6966)q99+O(q100) q + 9 \beta_1 q^{3} + (\beta_{2} - 10 \beta_1 - 8) q^{5} + (\beta_{5} - \beta_{4} - 2 \beta_1) q^{7} - 81 q^{9} + (2 \beta_{7} + 2 \beta_{6} + 3 \beta_{4} + \cdots - 86) q^{11} + ( - 5 \beta_{7} + 7 \beta_{5} + \cdots - 5) q^{13}+ \cdots + ( - 162 \beta_{7} - 162 \beta_{6} + \cdots + 6966) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q66q5648q9684q11+738q15+3040q19+108q21564q258004q296024q31+4476q353996q3937800q41+5346q4534368q4911124q51++55404q99+O(q100) 8 q - 66 q^{5} - 648 q^{9} - 684 q^{11} + 738 q^{15} + 3040 q^{19} + 108 q^{21} - 564 q^{25} - 8004 q^{29} - 6024 q^{31} + 4476 q^{35} - 3996 q^{39} - 37800 q^{41} + 5346 q^{45} - 34368 q^{49} - 11124 q^{51}+ \cdots + 55404 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+142x6+5761x4+52020x2+129600 x^{8} + 142x^{6} + 5761x^{4} + 52020x^{2} + 129600 : Copy content Toggle raw display

β1\beta_{1}== (ν7142ν55401ν326460ν)/10800 ( -\nu^{7} - 142\nu^{5} - 5401\nu^{3} - 26460\nu ) / 10800 Copy content Toggle raw display
β2\beta_{2}== (5ν7+12ν6674ν5+1272ν425169ν3+31980ν2160740ν+82080)/2160 ( -5\nu^{7} + 12\nu^{6} - 674\nu^{5} + 1272\nu^{4} - 25169\nu^{3} + 31980\nu^{2} - 160740\nu + 82080 ) / 2160 Copy content Toggle raw display
β3\beta_{3}== (19ν7+2698ν52700ν4+111619ν3218700ν2+979740ν1933200)/10800 ( 19\nu^{7} + 2698\nu^{5} - 2700\nu^{4} + 111619\nu^{3} - 218700\nu^{2} + 979740\nu - 1933200 ) / 10800 Copy content Toggle raw display
β4\beta_{4}== (8ν730ν6+1046ν53855ν4+36368ν3134625ν2+163530ν688500)/2700 ( 8\nu^{7} - 30\nu^{6} + 1046\nu^{5} - 3855\nu^{4} + 36368\nu^{3} - 134625\nu^{2} + 163530\nu - 688500 ) / 2700 Copy content Toggle raw display
β5\beta_{5}== (22ν730ν62854ν53855ν497402ν3134625ν2325170ν688500)/2700 ( -22\nu^{7} - 30\nu^{6} - 2854\nu^{5} - 3855\nu^{4} - 97402\nu^{3} - 134625\nu^{2} - 325170\nu - 688500 ) / 2700 Copy content Toggle raw display
β6\beta_{6}== (5ν7+60ν6+674ν5+8520ν4+25169ν3+317580ν2+160740ν+1343520)/2160 ( 5\nu^{7} + 60\nu^{6} + 674\nu^{5} + 8520\nu^{4} + 25169\nu^{3} + 317580\nu^{2} + 160740\nu + 1343520 ) / 2160 Copy content Toggle raw display
β7\beta_{7}== (89ν7300ν611738ν537200ν4416789ν31236900ν2+5929200)/10800 ( - 89 \nu^{7} - 300 \nu^{6} - 11738 \nu^{5} - 37200 \nu^{4} - 416789 \nu^{3} - 1236900 \nu^{2} + \cdots - 5929200 ) / 10800 Copy content Toggle raw display
ν\nu== (4β7+5β5+6β43β3+2β2+β14)/120 ( -4\beta_{7} + 5\beta_{5} + 6\beta_{4} - 3\beta_{3} + 2\beta_{2} + \beta _1 - 4 ) / 120 Copy content Toggle raw display
ν2\nu^{2}== (3β75β610β44β310β24β11423)/40 ( -3\beta_{7} - 5\beta_{6} - 10\beta_{4} - 4\beta_{3} - 10\beta_{2} - 4\beta _1 - 1423 ) / 40 Copy content Toggle raw display
ν3\nu^{3}== (212β7265β5390β4+231β3250β2+2611β1+212)/120 ( 212\beta_{7} - 265\beta_{5} - 390\beta_{4} + 231\beta_{3} - 250\beta_{2} + 2611\beta _1 + 212 ) / 120 Copy content Toggle raw display
ν4\nu^{4}== (243β7+405β6+730β4+244β3+650β2+244β1+86623)/40 ( 243\beta_{7} + 405\beta_{6} + 730\beta_{4} + 244\beta_{3} + 650\beta_{2} + 244\beta _1 + 86623 ) / 40 Copy content Toggle raw display
ν5\nu^{5}== (13252β7+17465β5+24630β415591β3+17930β2313811β113252)/120 ( -13252\beta_{7} + 17465\beta_{5} + 24630\beta_{4} - 15591\beta_{3} + 17930\beta_{2} - 313811\beta _1 - 13252 ) / 120 Copy content Toggle raw display
ν6\nu^{6}== (18483β729605β650730β413764β338650β213764β15664063)/40 ( -18483\beta_{7} - 29605\beta_{6} - 50730\beta_{4} - 13764\beta_{3} - 38650\beta_{2} - 13764\beta _1 - 5664063 ) / 40 Copy content Toggle raw display
ν7\nu^{7}== (842612β71181065β51549830β4+1045671β31248730β2++842612)/120 ( 842612 \beta_{7} - 1181065 \beta_{5} - 1549830 \beta_{4} + 1045671 \beta_{3} - 1248730 \beta_{2} + \cdots + 842612 ) / 120 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/240Z)×\left(\mathbb{Z}/240\mathbb{Z}\right)^\times.

nn 3131 9797 161161 181181
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
2.61388i
2.11144i
8.33154i
7.82911i
2.61388i
2.11144i
8.33154i
7.82911i
0 9.00000i 0 −45.4388 + 32.5625i 0 242.714i 0 −81.0000 0
49.2 0 9.00000i 0 −24.7939 50.1025i 0 27.6635i 0 −81.0000 0
49.3 0 9.00000i 0 −18.3731 + 52.7961i 0 122.878i 0 −81.0000 0
49.4 0 9.00000i 0 55.6058 + 5.74389i 0 98.1720i 0 −81.0000 0
49.5 0 9.00000i 0 −45.4388 32.5625i 0 242.714i 0 −81.0000 0
49.6 0 9.00000i 0 −24.7939 + 50.1025i 0 27.6635i 0 −81.0000 0
49.7 0 9.00000i 0 −18.3731 52.7961i 0 122.878i 0 −81.0000 0
49.8 0 9.00000i 0 55.6058 5.74389i 0 98.1720i 0 −81.0000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.6.f.f 8
3.b odd 2 1 720.6.f.o 8
4.b odd 2 1 120.6.f.b 8
5.b even 2 1 inner 240.6.f.f 8
12.b even 2 1 360.6.f.c 8
15.d odd 2 1 720.6.f.o 8
20.d odd 2 1 120.6.f.b 8
20.e even 4 1 600.6.a.v 4
20.e even 4 1 600.6.a.w 4
60.h even 2 1 360.6.f.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.f.b 8 4.b odd 2 1
120.6.f.b 8 20.d odd 2 1
240.6.f.f 8 1.a even 1 1 trivial
240.6.f.f 8 5.b even 2 1 inner
360.6.f.c 8 12.b even 2 1
360.6.f.c 8 60.h even 2 1
600.6.a.v 4 20.e even 4 1
600.6.a.w 4 20.e even 4 1
720.6.f.o 8 3.b odd 2 1
720.6.f.o 8 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T78+84412T76+1666776048T74+9799162809664T72+6560352016000000 T_{7}^{8} + 84412T_{7}^{6} + 1666776048T_{7}^{4} + 9799162809664T_{7}^{2} + 6560352016000000 acting on S6new(240,[χ])S_{6}^{\mathrm{new}}(240, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+81)4 (T^{2} + 81)^{4} Copy content Toggle raw display
55 T8++95367431640625 T^{8} + \cdots + 95367431640625 Copy content Toggle raw display
77 T8++65 ⁣ ⁣00 T^{8} + \cdots + 65\!\cdots\!00 Copy content Toggle raw display
1111 (T4+342T3+7954368992)2 (T^{4} + 342 T^{3} + \cdots - 7954368992)^{2} Copy content Toggle raw display
1313 T8++28 ⁣ ⁣64 T^{8} + \cdots + 28\!\cdots\!64 Copy content Toggle raw display
1717 T8++18 ⁣ ⁣96 T^{8} + \cdots + 18\!\cdots\!96 Copy content Toggle raw display
1919 (T4+1452392480768)2 (T^{4} + \cdots - 1452392480768)^{2} Copy content Toggle raw display
2323 T8++91 ⁣ ⁣00 T^{8} + \cdots + 91\!\cdots\!00 Copy content Toggle raw display
2929 (T4+318720439844864)2 (T^{4} + \cdots - 318720439844864)^{2} Copy content Toggle raw display
3131 (T4+51134602752000)2 (T^{4} + \cdots - 51134602752000)^{2} Copy content Toggle raw display
3737 T8++12 ⁣ ⁣00 T^{8} + \cdots + 12\!\cdots\!00 Copy content Toggle raw display
4141 (T4++39 ⁣ ⁣92)2 (T^{4} + \cdots + 39\!\cdots\!92)^{2} Copy content Toggle raw display
4343 T8++22 ⁣ ⁣96 T^{8} + \cdots + 22\!\cdots\!96 Copy content Toggle raw display
4747 T8++41 ⁣ ⁣00 T^{8} + \cdots + 41\!\cdots\!00 Copy content Toggle raw display
5353 T8++25 ⁣ ⁣00 T^{8} + \cdots + 25\!\cdots\!00 Copy content Toggle raw display
5959 (T4+69 ⁣ ⁣32)2 (T^{4} + \cdots - 69\!\cdots\!32)^{2} Copy content Toggle raw display
6161 (T4+15 ⁣ ⁣28)2 (T^{4} + \cdots - 15\!\cdots\!28)^{2} Copy content Toggle raw display
6767 T8++34 ⁣ ⁣24 T^{8} + \cdots + 34\!\cdots\!24 Copy content Toggle raw display
7171 (T4+12 ⁣ ⁣32)2 (T^{4} + \cdots - 12\!\cdots\!32)^{2} Copy content Toggle raw display
7373 T8++35 ⁣ ⁣16 T^{8} + \cdots + 35\!\cdots\!16 Copy content Toggle raw display
7979 (T4++12 ⁣ ⁣56)2 (T^{4} + \cdots + 12\!\cdots\!56)^{2} Copy content Toggle raw display
8383 T8++13 ⁣ ⁣44 T^{8} + \cdots + 13\!\cdots\!44 Copy content Toggle raw display
8989 (T4+17 ⁣ ⁣40)2 (T^{4} + \cdots - 17\!\cdots\!40)^{2} Copy content Toggle raw display
9797 T8++18 ⁣ ⁣96 T^{8} + \cdots + 18\!\cdots\!96 Copy content Toggle raw display
show more
show less