Properties

Label 600.6.a.v
Level $600$
Weight $6$
Character orbit 600.a
Self dual yes
Analytic conductor $96.230$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 71x^{2} - 30x + 360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} + ( - \beta_{3} - 2) q^{7} + 81 q^{9} + ( - \beta_{3} - \beta_{2} + 2 \beta_1 + 86) q^{11} + ( - 2 \beta_{3} - 5 \beta_{2} + \cdots + 55) q^{13} + ( - 10 \beta_{3} + \beta_{2} + \cdots - 157) q^{17}+ \cdots + ( - 81 \beta_{3} - 81 \beta_{2} + \cdots + 6966) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} - 6 q^{7} + 324 q^{9} + 342 q^{11} + 222 q^{13} - 618 q^{17} + 1520 q^{19} + 54 q^{21} - 752 q^{23} - 2916 q^{27} + 4002 q^{29} + 3012 q^{31} - 3078 q^{33} - 14142 q^{37} - 1998 q^{39} - 18900 q^{41}+ \cdots + 27702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 71x^{2} - 30x + 360 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -5\nu^{3} + 265\nu + 111 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} - \nu^{2} + 80\nu + 58 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 4\nu^{2} + 65\nu - 120 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 4\beta_{2} - 3\beta _1 - 1 ) / 120 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 9\beta_{3} - 4\beta_{2} - 3\beta _1 + 1423 ) / 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 53\beta_{3} + 212\beta_{2} - 231\beta _1 + 2611 ) / 120 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.33154
−7.82911
2.11144
−2.61388
0 −9.00000 0 0 0 −122.878 0 81.0000 0
1.2 0 −9.00000 0 0 0 −98.1720 0 81.0000 0
1.3 0 −9.00000 0 0 0 −27.6635 0 81.0000 0
1.4 0 −9.00000 0 0 0 242.714 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.a.v 4
5.b even 2 1 600.6.a.w 4
5.c odd 4 2 120.6.f.b 8
15.e even 4 2 360.6.f.c 8
20.e even 4 2 240.6.f.f 8
60.l odd 4 2 720.6.f.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.f.b 8 5.c odd 4 2
240.6.f.f 8 20.e even 4 2
360.6.f.c 8 15.e even 4 2
600.6.a.v 4 1.a even 1 1 trivial
600.6.a.w 4 5.b even 2 1
720.6.f.o 8 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 6T_{7}^{3} - 42188T_{7}^{2} - 4078392T_{7} - 80996000 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(600))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 6 T^{3} + \cdots - 80996000 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 7954368992 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 531625211008 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1356291692064 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 1452392480768 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 9590662585600 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 318720439844864 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 51134602752000 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 39\!\cdots\!92 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 47\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 64\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 69\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 15\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 58\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 12\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 36\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 17\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
show more
show less