Properties

Label 240.6.f.f.49.8
Level $240$
Weight $6$
Character 240.49
Analytic conductor $38.492$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,6,Mod(49,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.4921167551\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 142x^{6} + 5761x^{4} + 52020x^{2} + 129600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.8
Root \(7.82911i\) of defining polynomial
Character \(\chi\) \(=\) 240.49
Dual form 240.6.f.f.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000i q^{3} +(55.6058 - 5.74389i) q^{5} -98.1720i q^{7} -81.0000 q^{9} -430.039 q^{11} +756.588i q^{13} +(51.6950 + 500.452i) q^{15} +542.278i q^{17} +731.455 q^{19} +883.548 q^{21} +1993.90i q^{23} +(3059.02 - 638.788i) q^{25} -729.000i q^{27} +7208.45 q^{29} -7156.48 q^{31} -3870.35i q^{33} +(-563.889 - 5458.93i) q^{35} +8199.54i q^{37} -6809.29 q^{39} +3623.74 q^{41} +14899.5i q^{43} +(-4504.07 + 465.255i) q^{45} +3274.60i q^{47} +7169.26 q^{49} -4880.51 q^{51} +30198.3i q^{53} +(-23912.7 + 2470.10i) q^{55} +6583.09i q^{57} +13968.2 q^{59} -19116.3 q^{61} +7951.93i q^{63} +(4345.76 + 42070.7i) q^{65} +44151.1i q^{67} -17945.1 q^{69} -28917.7 q^{71} -34137.8i q^{73} +(5749.09 + 27531.1i) q^{75} +42217.8i q^{77} +76490.6 q^{79} +6561.00 q^{81} +34315.0i q^{83} +(3114.79 + 30153.8i) q^{85} +64876.1i q^{87} -148918. q^{89} +74275.7 q^{91} -64408.3i q^{93} +(40673.1 - 4201.40i) q^{95} +40117.3i q^{97} +34833.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 66 q^{5} - 648 q^{9} - 684 q^{11} + 738 q^{15} + 3040 q^{19} + 108 q^{21} - 564 q^{25} - 8004 q^{29} - 6024 q^{31} + 4476 q^{35} - 3996 q^{39} - 37800 q^{41} + 5346 q^{45} - 34368 q^{49} - 11124 q^{51}+ \cdots + 55404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000i 0.577350i
\(4\) 0 0
\(5\) 55.6058 5.74389i 0.994707 0.102750i
\(6\) 0 0
\(7\) 98.1720i 0.757255i −0.925549 0.378628i \(-0.876396\pi\)
0.925549 0.378628i \(-0.123604\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) −430.039 −1.07158 −0.535792 0.844350i \(-0.679987\pi\)
−0.535792 + 0.844350i \(0.679987\pi\)
\(12\) 0 0
\(13\) 756.588i 1.24165i 0.783947 + 0.620827i \(0.213203\pi\)
−0.783947 + 0.620827i \(0.786797\pi\)
\(14\) 0 0
\(15\) 51.6950 + 500.452i 0.0593227 + 0.574294i
\(16\) 0 0
\(17\) 542.278i 0.455093i 0.973767 + 0.227546i \(0.0730704\pi\)
−0.973767 + 0.227546i \(0.926930\pi\)
\(18\) 0 0
\(19\) 731.455 0.464840 0.232420 0.972616i \(-0.425336\pi\)
0.232420 + 0.972616i \(0.425336\pi\)
\(20\) 0 0
\(21\) 883.548 0.437202
\(22\) 0 0
\(23\) 1993.90i 0.785931i 0.919553 + 0.392966i \(0.128551\pi\)
−0.919553 + 0.392966i \(0.871449\pi\)
\(24\) 0 0
\(25\) 3059.02 638.788i 0.978885 0.204412i
\(26\) 0 0
\(27\) 729.000i 0.192450i
\(28\) 0 0
\(29\) 7208.45 1.59165 0.795824 0.605528i \(-0.207038\pi\)
0.795824 + 0.605528i \(0.207038\pi\)
\(30\) 0 0
\(31\) −7156.48 −1.33750 −0.668752 0.743485i \(-0.733171\pi\)
−0.668752 + 0.743485i \(0.733171\pi\)
\(32\) 0 0
\(33\) 3870.35i 0.618680i
\(34\) 0 0
\(35\) −563.889 5458.93i −0.0778079 0.753247i
\(36\) 0 0
\(37\) 8199.54i 0.984657i 0.870409 + 0.492329i \(0.163854\pi\)
−0.870409 + 0.492329i \(0.836146\pi\)
\(38\) 0 0
\(39\) −6809.29 −0.716870
\(40\) 0 0
\(41\) 3623.74 0.336664 0.168332 0.985730i \(-0.446162\pi\)
0.168332 + 0.985730i \(0.446162\pi\)
\(42\) 0 0
\(43\) 14899.5i 1.22886i 0.788973 + 0.614428i \(0.210613\pi\)
−0.788973 + 0.614428i \(0.789387\pi\)
\(44\) 0 0
\(45\) −4504.07 + 465.255i −0.331569 + 0.0342500i
\(46\) 0 0
\(47\) 3274.60i 0.216229i 0.994138 + 0.108115i \(0.0344813\pi\)
−0.994138 + 0.108115i \(0.965519\pi\)
\(48\) 0 0
\(49\) 7169.26 0.426564
\(50\) 0 0
\(51\) −4880.51 −0.262748
\(52\) 0 0
\(53\) 30198.3i 1.47670i 0.674416 + 0.738352i \(0.264395\pi\)
−0.674416 + 0.738352i \(0.735605\pi\)
\(54\) 0 0
\(55\) −23912.7 + 2470.10i −1.06591 + 0.110105i
\(56\) 0 0
\(57\) 6583.09i 0.268376i
\(58\) 0 0
\(59\) 13968.2 0.522409 0.261205 0.965283i \(-0.415880\pi\)
0.261205 + 0.965283i \(0.415880\pi\)
\(60\) 0 0
\(61\) −19116.3 −0.657778 −0.328889 0.944369i \(-0.606674\pi\)
−0.328889 + 0.944369i \(0.606674\pi\)
\(62\) 0 0
\(63\) 7951.93i 0.252418i
\(64\) 0 0
\(65\) 4345.76 + 42070.7i 0.127580 + 1.23508i
\(66\) 0 0
\(67\) 44151.1i 1.20159i 0.799405 + 0.600793i \(0.205148\pi\)
−0.799405 + 0.600793i \(0.794852\pi\)
\(68\) 0 0
\(69\) −17945.1 −0.453758
\(70\) 0 0
\(71\) −28917.7 −0.680798 −0.340399 0.940281i \(-0.610562\pi\)
−0.340399 + 0.940281i \(0.610562\pi\)
\(72\) 0 0
\(73\) 34137.8i 0.749770i −0.927071 0.374885i \(-0.877682\pi\)
0.927071 0.374885i \(-0.122318\pi\)
\(74\) 0 0
\(75\) 5749.09 + 27531.1i 0.118017 + 0.565159i
\(76\) 0 0
\(77\) 42217.8i 0.811463i
\(78\) 0 0
\(79\) 76490.6 1.37892 0.689462 0.724322i \(-0.257847\pi\)
0.689462 + 0.724322i \(0.257847\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 34315.0i 0.546750i 0.961908 + 0.273375i \(0.0881400\pi\)
−0.961908 + 0.273375i \(0.911860\pi\)
\(84\) 0 0
\(85\) 3114.79 + 30153.8i 0.0467607 + 0.452684i
\(86\) 0 0
\(87\) 64876.1i 0.918939i
\(88\) 0 0
\(89\) −148918. −1.99284 −0.996422 0.0845227i \(-0.973063\pi\)
−0.996422 + 0.0845227i \(0.973063\pi\)
\(90\) 0 0
\(91\) 74275.7 0.940250
\(92\) 0 0
\(93\) 64408.3i 0.772208i
\(94\) 0 0
\(95\) 40673.1 4201.40i 0.462380 0.0477623i
\(96\) 0 0
\(97\) 40117.3i 0.432915i 0.976292 + 0.216458i \(0.0694503\pi\)
−0.976292 + 0.216458i \(0.930550\pi\)
\(98\) 0 0
\(99\) 34833.2 0.357195
\(100\) 0 0
\(101\) −76979.5 −0.750882 −0.375441 0.926846i \(-0.622509\pi\)
−0.375441 + 0.926846i \(0.622509\pi\)
\(102\) 0 0
\(103\) 7245.94i 0.0672980i 0.999434 + 0.0336490i \(0.0107128\pi\)
−0.999434 + 0.0336490i \(0.989287\pi\)
\(104\) 0 0
\(105\) 49130.4 5075.00i 0.434888 0.0449224i
\(106\) 0 0
\(107\) 213563.i 1.80329i −0.432474 0.901646i \(-0.642359\pi\)
0.432474 0.901646i \(-0.357641\pi\)
\(108\) 0 0
\(109\) 84468.7 0.680973 0.340486 0.940249i \(-0.389408\pi\)
0.340486 + 0.940249i \(0.389408\pi\)
\(110\) 0 0
\(111\) −73795.9 −0.568492
\(112\) 0 0
\(113\) 203010.i 1.49562i 0.663911 + 0.747811i \(0.268895\pi\)
−0.663911 + 0.747811i \(0.731105\pi\)
\(114\) 0 0
\(115\) 11452.8 + 110873.i 0.0807543 + 0.781771i
\(116\) 0 0
\(117\) 61283.6i 0.413885i
\(118\) 0 0
\(119\) 53236.5 0.344622
\(120\) 0 0
\(121\) 23882.8 0.148293
\(122\) 0 0
\(123\) 32613.7i 0.194373i
\(124\) 0 0
\(125\) 166430. 53091.0i 0.952701 0.303911i
\(126\) 0 0
\(127\) 224433.i 1.23475i 0.786670 + 0.617374i \(0.211803\pi\)
−0.786670 + 0.617374i \(0.788197\pi\)
\(128\) 0 0
\(129\) −134096. −0.709481
\(130\) 0 0
\(131\) −190194. −0.968319 −0.484159 0.874980i \(-0.660874\pi\)
−0.484159 + 0.874980i \(0.660874\pi\)
\(132\) 0 0
\(133\) 71808.4i 0.352003i
\(134\) 0 0
\(135\) −4187.30 40536.6i −0.0197742 0.191431i
\(136\) 0 0
\(137\) 136236.i 0.620141i 0.950714 + 0.310070i \(0.100353\pi\)
−0.950714 + 0.310070i \(0.899647\pi\)
\(138\) 0 0
\(139\) 319350. 1.40194 0.700971 0.713189i \(-0.252750\pi\)
0.700971 + 0.713189i \(0.252750\pi\)
\(140\) 0 0
\(141\) −29471.4 −0.124840
\(142\) 0 0
\(143\) 325362.i 1.33054i
\(144\) 0 0
\(145\) 400832. 41404.6i 1.58322 0.163542i
\(146\) 0 0
\(147\) 64523.4i 0.246277i
\(148\) 0 0
\(149\) −217019. −0.800813 −0.400407 0.916338i \(-0.631131\pi\)
−0.400407 + 0.916338i \(0.631131\pi\)
\(150\) 0 0
\(151\) −398484. −1.42223 −0.711113 0.703078i \(-0.751808\pi\)
−0.711113 + 0.703078i \(0.751808\pi\)
\(152\) 0 0
\(153\) 43924.6i 0.151698i
\(154\) 0 0
\(155\) −397942. + 41106.1i −1.33043 + 0.137428i
\(156\) 0 0
\(157\) 408704.i 1.32330i −0.749811 0.661652i \(-0.769855\pi\)
0.749811 0.661652i \(-0.230145\pi\)
\(158\) 0 0
\(159\) −271785. −0.852575
\(160\) 0 0
\(161\) 195745. 0.595151
\(162\) 0 0
\(163\) 282690.i 0.833376i −0.909050 0.416688i \(-0.863191\pi\)
0.909050 0.416688i \(-0.136809\pi\)
\(164\) 0 0
\(165\) −22230.9 215214.i −0.0635693 0.615405i
\(166\) 0 0
\(167\) 236370.i 0.655844i −0.944705 0.327922i \(-0.893652\pi\)
0.944705 0.327922i \(-0.106348\pi\)
\(168\) 0 0
\(169\) −201132. −0.541707
\(170\) 0 0
\(171\) −59247.8 −0.154947
\(172\) 0 0
\(173\) 491653.i 1.24894i −0.781047 0.624472i \(-0.785314\pi\)
0.781047 0.624472i \(-0.214686\pi\)
\(174\) 0 0
\(175\) −62711.1 300310.i −0.154792 0.741266i
\(176\) 0 0
\(177\) 125714.i 0.301613i
\(178\) 0 0
\(179\) 123617. 0.288367 0.144183 0.989551i \(-0.453945\pi\)
0.144183 + 0.989551i \(0.453945\pi\)
\(180\) 0 0
\(181\) 824818. 1.87138 0.935689 0.352825i \(-0.114779\pi\)
0.935689 + 0.352825i \(0.114779\pi\)
\(182\) 0 0
\(183\) 172047.i 0.379768i
\(184\) 0 0
\(185\) 47097.3 + 455942.i 0.101173 + 0.979446i
\(186\) 0 0
\(187\) 233201.i 0.487670i
\(188\) 0 0
\(189\) −71567.4 −0.145734
\(190\) 0 0
\(191\) 12418.8 0.0246318 0.0123159 0.999924i \(-0.496080\pi\)
0.0123159 + 0.999924i \(0.496080\pi\)
\(192\) 0 0
\(193\) 114127.i 0.220544i −0.993901 0.110272i \(-0.964828\pi\)
0.993901 0.110272i \(-0.0351722\pi\)
\(194\) 0 0
\(195\) −378636. + 39111.8i −0.713076 + 0.0736583i
\(196\) 0 0
\(197\) 703659.i 1.29180i −0.763421 0.645902i \(-0.776482\pi\)
0.763421 0.645902i \(-0.223518\pi\)
\(198\) 0 0
\(199\) 1.06174e6 1.90057 0.950285 0.311383i \(-0.100792\pi\)
0.950285 + 0.311383i \(0.100792\pi\)
\(200\) 0 0
\(201\) −397360. −0.693736
\(202\) 0 0
\(203\) 707668.i 1.20528i
\(204\) 0 0
\(205\) 201501. 20814.4i 0.334883 0.0345922i
\(206\) 0 0
\(207\) 161506.i 0.261977i
\(208\) 0 0
\(209\) −314554. −0.498115
\(210\) 0 0
\(211\) 704961. 1.09008 0.545040 0.838410i \(-0.316514\pi\)
0.545040 + 0.838410i \(0.316514\pi\)
\(212\) 0 0
\(213\) 260259.i 0.393059i
\(214\) 0 0
\(215\) 85581.3 + 828500.i 0.126265 + 1.22235i
\(216\) 0 0
\(217\) 702566.i 1.01283i
\(218\) 0 0
\(219\) 307240. 0.432880
\(220\) 0 0
\(221\) −410281. −0.565068
\(222\) 0 0
\(223\) 564437.i 0.760070i −0.924972 0.380035i \(-0.875912\pi\)
0.924972 0.380035i \(-0.124088\pi\)
\(224\) 0 0
\(225\) −247780. + 51741.8i −0.326295 + 0.0681374i
\(226\) 0 0
\(227\) 899921.i 1.15915i 0.814919 + 0.579575i \(0.196781\pi\)
−0.814919 + 0.579575i \(0.803219\pi\)
\(228\) 0 0
\(229\) −496492. −0.625639 −0.312820 0.949813i \(-0.601274\pi\)
−0.312820 + 0.949813i \(0.601274\pi\)
\(230\) 0 0
\(231\) −379960. −0.468498
\(232\) 0 0
\(233\) 1.29202e6i 1.55912i −0.626325 0.779562i \(-0.715442\pi\)
0.626325 0.779562i \(-0.284558\pi\)
\(234\) 0 0
\(235\) 18809.0 + 182087.i 0.0222175 + 0.215085i
\(236\) 0 0
\(237\) 688415.i 0.796122i
\(238\) 0 0
\(239\) 963704. 1.09131 0.545656 0.838009i \(-0.316281\pi\)
0.545656 + 0.838009i \(0.316281\pi\)
\(240\) 0 0
\(241\) 356398. 0.395269 0.197635 0.980276i \(-0.436674\pi\)
0.197635 + 0.980276i \(0.436674\pi\)
\(242\) 0 0
\(243\) 59049.0i 0.0641500i
\(244\) 0 0
\(245\) 398653. 41179.5i 0.424306 0.0438294i
\(246\) 0 0
\(247\) 553410.i 0.577171i
\(248\) 0 0
\(249\) −308835. −0.315666
\(250\) 0 0
\(251\) −738019. −0.739406 −0.369703 0.929150i \(-0.620541\pi\)
−0.369703 + 0.929150i \(0.620541\pi\)
\(252\) 0 0
\(253\) 857457.i 0.842192i
\(254\) 0 0
\(255\) −271385. + 28033.1i −0.261357 + 0.0269973i
\(256\) 0 0
\(257\) 891006.i 0.841488i 0.907179 + 0.420744i \(0.138231\pi\)
−0.907179 + 0.420744i \(0.861769\pi\)
\(258\) 0 0
\(259\) 804965. 0.745637
\(260\) 0 0
\(261\) −583885. −0.530549
\(262\) 0 0
\(263\) 1.23488e6i 1.10087i 0.834877 + 0.550436i \(0.185539\pi\)
−0.834877 + 0.550436i \(0.814461\pi\)
\(264\) 0 0
\(265\) 173456. + 1.67920e6i 0.151731 + 1.46889i
\(266\) 0 0
\(267\) 1.34026e6i 1.15057i
\(268\) 0 0
\(269\) −1.52614e6 −1.28592 −0.642960 0.765900i \(-0.722294\pi\)
−0.642960 + 0.765900i \(0.722294\pi\)
\(270\) 0 0
\(271\) 1.26507e6 1.04639 0.523193 0.852214i \(-0.324741\pi\)
0.523193 + 0.852214i \(0.324741\pi\)
\(272\) 0 0
\(273\) 668481.i 0.542854i
\(274\) 0 0
\(275\) −1.31550e6 + 274704.i −1.04896 + 0.219045i
\(276\) 0 0
\(277\) 593191.i 0.464510i −0.972655 0.232255i \(-0.925390\pi\)
0.972655 0.232255i \(-0.0746104\pi\)
\(278\) 0 0
\(279\) 579675. 0.445835
\(280\) 0 0
\(281\) −643782. −0.486377 −0.243189 0.969979i \(-0.578193\pi\)
−0.243189 + 0.969979i \(0.578193\pi\)
\(282\) 0 0
\(283\) 464286.i 0.344603i −0.985044 0.172302i \(-0.944880\pi\)
0.985044 0.172302i \(-0.0551203\pi\)
\(284\) 0 0
\(285\) 37812.6 + 366058.i 0.0275756 + 0.266955i
\(286\) 0 0
\(287\) 355750.i 0.254941i
\(288\) 0 0
\(289\) 1.12579e6 0.792890
\(290\) 0 0
\(291\) −361056. −0.249944
\(292\) 0 0
\(293\) 1.87511e6i 1.27602i −0.770028 0.638010i \(-0.779758\pi\)
0.770028 0.638010i \(-0.220242\pi\)
\(294\) 0 0
\(295\) 776714. 80232.0i 0.519644 0.0536775i
\(296\) 0 0
\(297\) 313499.i 0.206227i
\(298\) 0 0
\(299\) −1.50856e6 −0.975855
\(300\) 0 0
\(301\) 1.46272e6 0.930558
\(302\) 0 0
\(303\) 692816.i 0.433522i
\(304\) 0 0
\(305\) −1.06298e6 + 109802.i −0.654296 + 0.0675866i
\(306\) 0 0
\(307\) 2.58035e6i 1.56254i 0.624190 + 0.781272i \(0.285429\pi\)
−0.624190 + 0.781272i \(0.714571\pi\)
\(308\) 0 0
\(309\) −65213.5 −0.0388545
\(310\) 0 0
\(311\) −796125. −0.466746 −0.233373 0.972387i \(-0.574976\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(312\) 0 0
\(313\) 2.81857e6i 1.62618i 0.582138 + 0.813090i \(0.302216\pi\)
−0.582138 + 0.813090i \(0.697784\pi\)
\(314\) 0 0
\(315\) 45675.0 + 442174.i 0.0259360 + 0.251082i
\(316\) 0 0
\(317\) 148948.i 0.0832506i 0.999133 + 0.0416253i \(0.0132536\pi\)
−0.999133 + 0.0416253i \(0.986746\pi\)
\(318\) 0 0
\(319\) −3.09992e6 −1.70559
\(320\) 0 0
\(321\) 1.92207e6 1.04113
\(322\) 0 0
\(323\) 396652.i 0.211545i
\(324\) 0 0
\(325\) 483299. + 2.31441e6i 0.253809 + 1.21544i
\(326\) 0 0
\(327\) 760218.i 0.393160i
\(328\) 0 0
\(329\) 321474. 0.163741
\(330\) 0 0
\(331\) 538832. 0.270323 0.135162 0.990824i \(-0.456845\pi\)
0.135162 + 0.990824i \(0.456845\pi\)
\(332\) 0 0
\(333\) 664163.i 0.328219i
\(334\) 0 0
\(335\) 253599. + 2.45506e6i 0.123463 + 1.19523i
\(336\) 0 0
\(337\) 1.61866e6i 0.776391i 0.921577 + 0.388195i \(0.126901\pi\)
−0.921577 + 0.388195i \(0.873099\pi\)
\(338\) 0 0
\(339\) −1.82709e6 −0.863498
\(340\) 0 0
\(341\) 3.07757e6 1.43325
\(342\) 0 0
\(343\) 2.35380e6i 1.08027i
\(344\) 0 0
\(345\) −997854. + 103075.i −0.451356 + 0.0466235i
\(346\) 0 0
\(347\) 2.47998e6i 1.10567i 0.833291 + 0.552834i \(0.186454\pi\)
−0.833291 + 0.552834i \(0.813546\pi\)
\(348\) 0 0
\(349\) 829390. 0.364498 0.182249 0.983252i \(-0.441662\pi\)
0.182249 + 0.983252i \(0.441662\pi\)
\(350\) 0 0
\(351\) 551552. 0.238957
\(352\) 0 0
\(353\) 1.22488e6i 0.523186i 0.965178 + 0.261593i \(0.0842478\pi\)
−0.965178 + 0.261593i \(0.915752\pi\)
\(354\) 0 0
\(355\) −1.60799e6 + 166100.i −0.677195 + 0.0699519i
\(356\) 0 0
\(357\) 479129.i 0.198967i
\(358\) 0 0
\(359\) −4.18958e6 −1.71567 −0.857836 0.513924i \(-0.828191\pi\)
−0.857836 + 0.513924i \(0.828191\pi\)
\(360\) 0 0
\(361\) −1.94107e6 −0.783924
\(362\) 0 0
\(363\) 214945.i 0.0856172i
\(364\) 0 0
\(365\) −196084. 1.89826e6i −0.0770388 0.745802i
\(366\) 0 0
\(367\) 2.18983e6i 0.848684i 0.905502 + 0.424342i \(0.139495\pi\)
−0.905502 + 0.424342i \(0.860505\pi\)
\(368\) 0 0
\(369\) −293523. −0.112221
\(370\) 0 0
\(371\) 2.96463e6 1.11824
\(372\) 0 0
\(373\) 5.07922e6i 1.89027i −0.326673 0.945137i \(-0.605928\pi\)
0.326673 0.945137i \(-0.394072\pi\)
\(374\) 0 0
\(375\) 477819. + 1.49787e6i 0.175463 + 0.550042i
\(376\) 0 0
\(377\) 5.45383e6i 1.97628i
\(378\) 0 0
\(379\) 3.29383e6 1.17789 0.588943 0.808175i \(-0.299544\pi\)
0.588943 + 0.808175i \(0.299544\pi\)
\(380\) 0 0
\(381\) −2.01990e6 −0.712882
\(382\) 0 0
\(383\) 2.20927e6i 0.769576i −0.923005 0.384788i \(-0.874275\pi\)
0.923005 0.384788i \(-0.125725\pi\)
\(384\) 0 0
\(385\) 242495. + 2.34756e6i 0.0833778 + 0.807168i
\(386\) 0 0
\(387\) 1.20686e6i 0.409619i
\(388\) 0 0
\(389\) 2.83486e6 0.949856 0.474928 0.880025i \(-0.342474\pi\)
0.474928 + 0.880025i \(0.342474\pi\)
\(390\) 0 0
\(391\) −1.08125e6 −0.357672
\(392\) 0 0
\(393\) 1.71174e6i 0.559059i
\(394\) 0 0
\(395\) 4.25332e6 439354.i 1.37163 0.141684i
\(396\) 0 0
\(397\) 5.64498e6i 1.79757i −0.438388 0.898786i \(-0.644450\pi\)
0.438388 0.898786i \(-0.355550\pi\)
\(398\) 0 0
\(399\) 646275. 0.203229
\(400\) 0 0
\(401\) 773543. 0.240228 0.120114 0.992760i \(-0.461674\pi\)
0.120114 + 0.992760i \(0.461674\pi\)
\(402\) 0 0
\(403\) 5.41450e6i 1.66072i
\(404\) 0 0
\(405\) 364830. 37685.7i 0.110523 0.0114167i
\(406\) 0 0
\(407\) 3.52612e6i 1.05514i
\(408\) 0 0
\(409\) 1.34855e6 0.398621 0.199310 0.979936i \(-0.436130\pi\)
0.199310 + 0.979936i \(0.436130\pi\)
\(410\) 0 0
\(411\) −1.22612e6 −0.358038
\(412\) 0 0
\(413\) 1.37129e6i 0.395597i
\(414\) 0 0
\(415\) 197102. + 1.90811e6i 0.0561785 + 0.543856i
\(416\) 0 0
\(417\) 2.87415e6i 0.809412i
\(418\) 0 0
\(419\) 2.51681e6 0.700349 0.350175 0.936684i \(-0.386122\pi\)
0.350175 + 0.936684i \(0.386122\pi\)
\(420\) 0 0
\(421\) −3.09143e6 −0.850070 −0.425035 0.905177i \(-0.639738\pi\)
−0.425035 + 0.905177i \(0.639738\pi\)
\(422\) 0 0
\(423\) 265243.i 0.0720764i
\(424\) 0 0
\(425\) 346401. + 1.65884e6i 0.0930265 + 0.445484i
\(426\) 0 0
\(427\) 1.87669e6i 0.498106i
\(428\) 0 0
\(429\) 2.92826e6 0.768187
\(430\) 0 0
\(431\) 4.22770e6 1.09625 0.548127 0.836395i \(-0.315341\pi\)
0.548127 + 0.836395i \(0.315341\pi\)
\(432\) 0 0
\(433\) 1.49557e6i 0.383344i −0.981459 0.191672i \(-0.938609\pi\)
0.981459 0.191672i \(-0.0613909\pi\)
\(434\) 0 0
\(435\) 372641. + 3.60749e6i 0.0944208 + 0.914075i
\(436\) 0 0
\(437\) 1.45845e6i 0.365332i
\(438\) 0 0
\(439\) −4.20364e6 −1.04103 −0.520516 0.853852i \(-0.674260\pi\)
−0.520516 + 0.853852i \(0.674260\pi\)
\(440\) 0 0
\(441\) −580710. −0.142188
\(442\) 0 0
\(443\) 6.99329e6i 1.69306i −0.532342 0.846529i \(-0.678688\pi\)
0.532342 0.846529i \(-0.321312\pi\)
\(444\) 0 0
\(445\) −8.28073e6 + 855371.i −1.98230 + 0.204764i
\(446\) 0 0
\(447\) 1.95317e6i 0.462350i
\(448\) 0 0
\(449\) −2.13051e6 −0.498732 −0.249366 0.968409i \(-0.580222\pi\)
−0.249366 + 0.968409i \(0.580222\pi\)
\(450\) 0 0
\(451\) −1.55835e6 −0.360764
\(452\) 0 0
\(453\) 3.58636e6i 0.821122i
\(454\) 0 0
\(455\) 4.13016e6 426632.i 0.935273 0.0966106i
\(456\) 0 0
\(457\) 7.46601e6i 1.67224i −0.548548 0.836119i \(-0.684819\pi\)
0.548548 0.836119i \(-0.315181\pi\)
\(458\) 0 0
\(459\) 395321. 0.0875827
\(460\) 0 0
\(461\) −8.35600e6 −1.83124 −0.915622 0.402040i \(-0.868301\pi\)
−0.915622 + 0.402040i \(0.868301\pi\)
\(462\) 0 0
\(463\) 10090.1i 0.00218748i 0.999999 + 0.00109374i \(0.000348148\pi\)
−0.999999 + 0.00109374i \(0.999652\pi\)
\(464\) 0 0
\(465\) −369955. 3.58148e6i −0.0793443 0.768121i
\(466\) 0 0
\(467\) 1.30989e6i 0.277934i −0.990297 0.138967i \(-0.955622\pi\)
0.990297 0.138967i \(-0.0443782\pi\)
\(468\) 0 0
\(469\) 4.33440e6 0.909907
\(470\) 0 0
\(471\) 3.67834e6 0.764010
\(472\) 0 0
\(473\) 6.40738e6i 1.31682i
\(474\) 0 0
\(475\) 2.23753e6 467244.i 0.455025 0.0950189i
\(476\) 0 0
\(477\) 2.44606e6i 0.492234i
\(478\) 0 0
\(479\) −5.05350e6 −1.00636 −0.503180 0.864181i \(-0.667837\pi\)
−0.503180 + 0.864181i \(0.667837\pi\)
\(480\) 0 0
\(481\) −6.20367e6 −1.22260
\(482\) 0 0
\(483\) 1.76171e6i 0.343610i
\(484\) 0 0
\(485\) 230430. + 2.23076e6i 0.0444820 + 0.430624i
\(486\) 0 0
\(487\) 5.19810e6i 0.993167i 0.867989 + 0.496583i \(0.165412\pi\)
−0.867989 + 0.496583i \(0.834588\pi\)
\(488\) 0 0
\(489\) 2.54421e6 0.481150
\(490\) 0 0
\(491\) −3.45964e6 −0.647630 −0.323815 0.946120i \(-0.604966\pi\)
−0.323815 + 0.946120i \(0.604966\pi\)
\(492\) 0 0
\(493\) 3.90899e6i 0.724348i
\(494\) 0 0
\(495\) 1.93693e6 200078.i 0.355304 0.0367017i
\(496\) 0 0
\(497\) 2.83891e6i 0.515538i
\(498\) 0 0
\(499\) 223651. 0.0402086 0.0201043 0.999798i \(-0.493600\pi\)
0.0201043 + 0.999798i \(0.493600\pi\)
\(500\) 0 0
\(501\) 2.12733e6 0.378651
\(502\) 0 0
\(503\) 7.20345e6i 1.26946i −0.772732 0.634732i \(-0.781111\pi\)
0.772732 0.634732i \(-0.218889\pi\)
\(504\) 0 0
\(505\) −4.28051e6 + 442162.i −0.746908 + 0.0771530i
\(506\) 0 0
\(507\) 1.81019e6i 0.312755i
\(508\) 0 0
\(509\) 3.81092e6 0.651982 0.325991 0.945373i \(-0.394302\pi\)
0.325991 + 0.945373i \(0.394302\pi\)
\(510\) 0 0
\(511\) −3.35137e6 −0.567768
\(512\) 0 0
\(513\) 533231.i 0.0894585i
\(514\) 0 0
\(515\) 41619.9 + 402917.i 0.00691486 + 0.0669418i
\(516\) 0 0
\(517\) 1.40821e6i 0.231708i
\(518\) 0 0
\(519\) 4.42487e6 0.721079
\(520\) 0 0
\(521\) 4.26468e6 0.688322 0.344161 0.938911i \(-0.388163\pi\)
0.344161 + 0.938911i \(0.388163\pi\)
\(522\) 0 0
\(523\) 2.86274e6i 0.457644i 0.973468 + 0.228822i \(0.0734874\pi\)
−0.973468 + 0.228822i \(0.926513\pi\)
\(524\) 0 0
\(525\) 2.70279e6 564400.i 0.427970 0.0893693i
\(526\) 0 0
\(527\) 3.88080e6i 0.608689i
\(528\) 0 0
\(529\) 2.46069e6 0.382312
\(530\) 0 0
\(531\) −1.13143e6 −0.174136
\(532\) 0 0
\(533\) 2.74168e6i 0.418021i
\(534\) 0 0
\(535\) −1.22668e6 1.18753e7i −0.185288 1.79375i
\(536\) 0 0
\(537\) 1.11255e6i 0.166489i
\(538\) 0 0
\(539\) −3.08307e6 −0.457100
\(540\) 0 0
\(541\) 4.59224e6 0.674576 0.337288 0.941401i \(-0.390490\pi\)
0.337288 + 0.941401i \(0.390490\pi\)
\(542\) 0 0
\(543\) 7.42336e6i 1.08044i
\(544\) 0 0
\(545\) 4.69695e6 485179.i 0.677368 0.0699699i
\(546\) 0 0
\(547\) 32883.2i 0.00469900i 0.999997 + 0.00234950i \(0.000747870\pi\)
−0.999997 + 0.00234950i \(0.999252\pi\)
\(548\) 0 0
\(549\) 1.54842e6 0.219259
\(550\) 0 0
\(551\) 5.27266e6 0.739862
\(552\) 0 0
\(553\) 7.50923e6i 1.04420i
\(554\) 0 0
\(555\) −4.10348e6 + 423876.i −0.565483 + 0.0584125i
\(556\) 0 0
\(557\) 2.37300e6i 0.324085i 0.986784 + 0.162042i \(0.0518082\pi\)
−0.986784 + 0.162042i \(0.948192\pi\)
\(558\) 0 0
\(559\) −1.12728e7 −1.52582
\(560\) 0 0
\(561\) 2.09881e6 0.281557
\(562\) 0 0
\(563\) 5.20699e6i 0.692334i 0.938173 + 0.346167i \(0.112517\pi\)
−0.938173 + 0.346167i \(0.887483\pi\)
\(564\) 0 0
\(565\) 1.16607e6 + 1.12886e7i 0.153675 + 1.48771i
\(566\) 0 0
\(567\) 644106.i 0.0841395i
\(568\) 0 0
\(569\) 4.63746e6 0.600482 0.300241 0.953863i \(-0.402933\pi\)
0.300241 + 0.953863i \(0.402933\pi\)
\(570\) 0 0
\(571\) −6.26440e6 −0.804061 −0.402031 0.915626i \(-0.631695\pi\)
−0.402031 + 0.915626i \(0.631695\pi\)
\(572\) 0 0
\(573\) 111769.i 0.0142212i
\(574\) 0 0
\(575\) 1.27368e6 + 6.09938e6i 0.160654 + 0.769336i
\(576\) 0 0
\(577\) 9.42064e6i 1.17799i −0.808137 0.588994i \(-0.799524\pi\)
0.808137 0.588994i \(-0.200476\pi\)
\(578\) 0 0
\(579\) 1.02714e6 0.127331
\(580\) 0 0
\(581\) 3.36877e6 0.414030
\(582\) 0 0
\(583\) 1.29865e7i 1.58241i
\(584\) 0 0
\(585\) −352007. 3.40773e6i −0.0425266 0.411694i
\(586\) 0 0
\(587\) 1.31865e7i 1.57955i −0.613394 0.789777i \(-0.710196\pi\)
0.613394 0.789777i \(-0.289804\pi\)
\(588\) 0 0
\(589\) −5.23464e6 −0.621726
\(590\) 0 0
\(591\) 6.33293e6 0.745823
\(592\) 0 0
\(593\) 9.77475e6i 1.14148i −0.821130 0.570741i \(-0.806656\pi\)
0.821130 0.570741i \(-0.193344\pi\)
\(594\) 0 0
\(595\) 2.96026e6 305785.i 0.342798 0.0354098i
\(596\) 0 0
\(597\) 9.55562e6i 1.09729i
\(598\) 0 0
\(599\) 1.76512e6 0.201005 0.100503 0.994937i \(-0.467955\pi\)
0.100503 + 0.994937i \(0.467955\pi\)
\(600\) 0 0
\(601\) −5.21462e6 −0.588893 −0.294446 0.955668i \(-0.595135\pi\)
−0.294446 + 0.955668i \(0.595135\pi\)
\(602\) 0 0
\(603\) 3.57624e6i 0.400529i
\(604\) 0 0
\(605\) 1.32802e6 137180.i 0.147508 0.0152371i
\(606\) 0 0
\(607\) 1.78378e7i 1.96503i 0.186188 + 0.982514i \(0.440387\pi\)
−0.186188 + 0.982514i \(0.559613\pi\)
\(608\) 0 0
\(609\) 6.36901e6 0.695871
\(610\) 0 0
\(611\) −2.47753e6 −0.268482
\(612\) 0 0
\(613\) 933298.i 0.100316i 0.998741 + 0.0501579i \(0.0159725\pi\)
−0.998741 + 0.0501579i \(0.984028\pi\)
\(614\) 0 0
\(615\) 187329. + 1.81351e6i 0.0199718 + 0.193345i
\(616\) 0 0
\(617\) 1.16331e7i 1.23022i 0.788442 + 0.615109i \(0.210888\pi\)
−0.788442 + 0.615109i \(0.789112\pi\)
\(618\) 0 0
\(619\) 2.70476e6 0.283728 0.141864 0.989886i \(-0.454690\pi\)
0.141864 + 0.989886i \(0.454690\pi\)
\(620\) 0 0
\(621\) 1.45356e6 0.151253
\(622\) 0 0
\(623\) 1.46196e7i 1.50909i
\(624\) 0 0
\(625\) 8.94953e6 3.90812e6i 0.916431 0.400192i
\(626\) 0 0
\(627\) 2.83099e6i 0.287587i
\(628\) 0 0
\(629\) −4.44643e6 −0.448111
\(630\) 0 0
\(631\) −1.10675e7 −1.10657 −0.553284 0.832993i \(-0.686625\pi\)
−0.553284 + 0.832993i \(0.686625\pi\)
\(632\) 0 0
\(633\) 6.34464e6i 0.629358i
\(634\) 0 0
\(635\) 1.28912e6 + 1.24798e7i 0.126870 + 1.22821i
\(636\) 0 0
\(637\) 5.42418e6i 0.529646i
\(638\) 0 0
\(639\) 2.34234e6 0.226933
\(640\) 0 0
\(641\) 6.17000e6 0.593117 0.296559 0.955015i \(-0.404161\pi\)
0.296559 + 0.955015i \(0.404161\pi\)
\(642\) 0 0
\(643\) 2.89248e6i 0.275895i 0.990440 + 0.137947i \(0.0440504\pi\)
−0.990440 + 0.137947i \(0.955950\pi\)
\(644\) 0 0
\(645\) −7.45650e6 + 770231.i −0.705725 + 0.0728990i
\(646\) 0 0
\(647\) 7.80156e6i 0.732691i 0.930479 + 0.366345i \(0.119391\pi\)
−0.930479 + 0.366345i \(0.880609\pi\)
\(648\) 0 0
\(649\) −6.00688e6 −0.559806
\(650\) 0 0
\(651\) −6.32309e6 −0.584759
\(652\) 0 0
\(653\) 1.17587e7i 1.07914i 0.841942 + 0.539568i \(0.181413\pi\)
−0.841942 + 0.539568i \(0.818587\pi\)
\(654\) 0 0
\(655\) −1.05759e7 + 1.09245e6i −0.963194 + 0.0994946i
\(656\) 0 0
\(657\) 2.76516e6i 0.249923i
\(658\) 0 0
\(659\) −9.18873e6 −0.824218 −0.412109 0.911135i \(-0.635208\pi\)
−0.412109 + 0.911135i \(0.635208\pi\)
\(660\) 0 0
\(661\) −1.01023e7 −0.899323 −0.449662 0.893199i \(-0.648455\pi\)
−0.449662 + 0.893199i \(0.648455\pi\)
\(662\) 0 0
\(663\) 3.69253e6i 0.326242i
\(664\) 0 0
\(665\) −412460. 3.99296e6i −0.0361682 0.350140i
\(666\) 0 0
\(667\) 1.43730e7i 1.25093i
\(668\) 0 0
\(669\) 5.07993e6 0.438826
\(670\) 0 0
\(671\) 8.22076e6 0.704865
\(672\) 0 0
\(673\) 1.87926e7i 1.59937i 0.600419 + 0.799686i \(0.295000\pi\)
−0.600419 + 0.799686i \(0.705000\pi\)
\(674\) 0 0
\(675\) −465676. 2.23002e6i −0.0393391 0.188386i
\(676\) 0 0
\(677\) 5.30871e6i 0.445161i −0.974914 0.222581i \(-0.928552\pi\)
0.974914 0.222581i \(-0.0714481\pi\)
\(678\) 0 0
\(679\) 3.93840e6 0.327827
\(680\) 0 0
\(681\) −8.09929e6 −0.669236
\(682\) 0 0
\(683\) 9.15255e6i 0.750742i 0.926875 + 0.375371i \(0.122485\pi\)
−0.926875 + 0.375371i \(0.877515\pi\)
\(684\) 0 0
\(685\) 782524. + 7.57551e6i 0.0637194 + 0.616858i
\(686\) 0 0
\(687\) 4.46843e6i 0.361213i
\(688\) 0 0
\(689\) −2.28477e7 −1.83356
\(690\) 0 0
\(691\) 1.67488e7 1.33441 0.667203 0.744876i \(-0.267492\pi\)
0.667203 + 0.744876i \(0.267492\pi\)
\(692\) 0 0
\(693\) 3.41964e6i 0.270488i
\(694\) 0 0
\(695\) 1.77577e7 1.83431e6i 1.39452 0.144049i
\(696\) 0 0
\(697\) 1.96508e6i 0.153214i
\(698\) 0 0
\(699\) 1.16282e7 0.900161
\(700\) 0 0
\(701\) 6.07936e6 0.467265 0.233632 0.972325i \(-0.424939\pi\)
0.233632 + 0.972325i \(0.424939\pi\)
\(702\) 0 0
\(703\) 5.99759e6i 0.457708i
\(704\) 0 0
\(705\) −1.63878e6 + 169281.i −0.124179 + 0.0128273i
\(706\) 0 0
\(707\) 7.55723e6i 0.568609i
\(708\) 0 0
\(709\) −2.31099e7 −1.72657 −0.863283 0.504721i \(-0.831595\pi\)
−0.863283 + 0.504721i \(0.831595\pi\)
\(710\) 0 0
\(711\) −6.19574e6 −0.459641
\(712\) 0 0
\(713\) 1.42693e7i 1.05119i
\(714\) 0 0
\(715\) −1.86885e6 1.80920e7i −0.136713 1.32350i
\(716\) 0 0
\(717\) 8.67333e6i 0.630069i
\(718\) 0 0
\(719\) 1.04614e7 0.754687 0.377344 0.926073i \(-0.376838\pi\)
0.377344 + 0.926073i \(0.376838\pi\)
\(720\) 0 0
\(721\) 711349. 0.0509618
\(722\) 0 0
\(723\) 3.20758e6i 0.228209i
\(724\) 0 0
\(725\) 2.20508e7 4.60467e6i 1.55804 0.325352i
\(726\) 0 0
\(727\) 2.41813e7i 1.69685i −0.529312 0.848427i \(-0.677550\pi\)
0.529312 0.848427i \(-0.322450\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) −8.07969e6 −0.559244
\(732\) 0 0
\(733\) 2.85033e7i 1.95945i 0.200339 + 0.979727i \(0.435796\pi\)
−0.200339 + 0.979727i \(0.564204\pi\)
\(734\) 0 0
\(735\) 370615. + 3.58788e6i 0.0253049 + 0.244973i
\(736\) 0 0
\(737\) 1.89867e7i 1.28760i
\(738\) 0 0
\(739\) 2.38372e7 1.60562 0.802811 0.596233i \(-0.203337\pi\)
0.802811 + 0.596233i \(0.203337\pi\)
\(740\) 0 0
\(741\) −4.98069e6 −0.333230
\(742\) 0 0
\(743\) 8.90275e6i 0.591633i 0.955245 + 0.295816i \(0.0955916\pi\)
−0.955245 + 0.295816i \(0.904408\pi\)
\(744\) 0 0
\(745\) −1.20675e7 + 1.24653e6i −0.796575 + 0.0822835i
\(746\) 0 0
\(747\) 2.77952e6i 0.182250i
\(748\) 0 0
\(749\) −2.09659e7 −1.36555
\(750\) 0 0
\(751\) −4.81345e6 −0.311427 −0.155714 0.987802i \(-0.549768\pi\)
−0.155714 + 0.987802i \(0.549768\pi\)
\(752\) 0 0
\(753\) 6.64217e6i 0.426896i
\(754\) 0 0
\(755\) −2.21580e7 + 2.28885e6i −1.41470 + 0.146134i
\(756\) 0 0
\(757\) 2.20098e7i 1.39597i −0.716111 0.697987i \(-0.754079\pi\)
0.716111 0.697987i \(-0.245921\pi\)
\(758\) 0 0
\(759\) 7.71711e6 0.486240
\(760\) 0 0
\(761\) 3.57721e6 0.223915 0.111957 0.993713i \(-0.464288\pi\)
0.111957 + 0.993713i \(0.464288\pi\)
\(762\) 0 0
\(763\) 8.29246e6i 0.515670i
\(764\) 0 0
\(765\) −252298. 2.44246e6i −0.0155869 0.150895i
\(766\) 0 0
\(767\) 1.05682e7i 0.648652i
\(768\) 0 0
\(769\) 7.00739e6 0.427308 0.213654 0.976909i \(-0.431464\pi\)
0.213654 + 0.976909i \(0.431464\pi\)
\(770\) 0 0
\(771\) −8.01906e6 −0.485833
\(772\) 0 0
\(773\) 3.24711e7i 1.95456i 0.211955 + 0.977279i \(0.432017\pi\)
−0.211955 + 0.977279i \(0.567983\pi\)
\(774\) 0 0
\(775\) −2.18918e7 + 4.57147e6i −1.30926 + 0.273402i
\(776\) 0 0
\(777\) 7.24468e6i 0.430494i
\(778\) 0 0
\(779\) 2.65060e6 0.156495
\(780\) 0 0
\(781\) 1.24358e7 0.729532
\(782\) 0 0
\(783\) 5.25496e6i 0.306313i
\(784\) 0 0
\(785\) −2.34755e6 2.27263e7i −0.135969 1.31630i
\(786\) 0 0
\(787\) 2.07810e7i 1.19600i 0.801498 + 0.597998i \(0.204037\pi\)
−0.801498 + 0.597998i \(0.795963\pi\)
\(788\) 0 0
\(789\) −1.11140e7 −0.635589
\(790\) 0 0
\(791\) 1.99299e7 1.13257
\(792\) 0 0
\(793\) 1.44632e7i 0.816733i
\(794\) 0 0
\(795\) −1.51128e7 + 1.56110e6i −0.848062 + 0.0876020i
\(796\) 0 0
\(797\) 1.78055e7i 0.992907i −0.868063 0.496454i \(-0.834635\pi\)
0.868063 0.496454i \(-0.165365\pi\)
\(798\) 0 0
\(799\) −1.77575e6 −0.0984043
\(800\) 0 0
\(801\) 1.20624e7 0.664281
\(802\) 0 0
\(803\) 1.46806e7i 0.803442i
\(804\) 0 0
\(805\) 1.08846e7 1.12434e6i 0.592001 0.0611517i
\(806\) 0 0
\(807\) 1.37353e7i 0.742426i
\(808\) 0 0
\(809\) 439992. 0.0236360 0.0118180 0.999930i \(-0.496238\pi\)
0.0118180 + 0.999930i \(0.496238\pi\)
\(810\) 0 0
\(811\) 2.69214e7 1.43730 0.718648 0.695374i \(-0.244761\pi\)
0.718648 + 0.695374i \(0.244761\pi\)
\(812\) 0 0
\(813\) 1.13857e7i 0.604132i
\(814\) 0 0
\(815\) −1.62374e6 1.57192e7i −0.0856293 0.828965i
\(816\) 0 0
\(817\) 1.08983e7i 0.571222i
\(818\) 0 0
\(819\) −6.01633e6 −0.313417
\(820\) 0 0
\(821\) 1.68848e7 0.874253 0.437127 0.899400i \(-0.355996\pi\)
0.437127 + 0.899400i \(0.355996\pi\)
\(822\) 0 0
\(823\) 6.16037e6i 0.317035i 0.987356 + 0.158517i \(0.0506714\pi\)
−0.987356 + 0.158517i \(0.949329\pi\)
\(824\) 0 0
\(825\) −2.47234e6 1.18395e7i −0.126466 0.605616i
\(826\) 0 0
\(827\) 3.05061e7i 1.55104i −0.631324 0.775519i \(-0.717488\pi\)
0.631324 0.775519i \(-0.282512\pi\)
\(828\) 0 0
\(829\) 3.55918e7 1.79872 0.899360 0.437209i \(-0.144033\pi\)
0.899360 + 0.437209i \(0.144033\pi\)
\(830\) 0 0
\(831\) 5.33872e6 0.268185
\(832\) 0 0
\(833\) 3.88774e6i 0.194126i
\(834\) 0 0
\(835\) −1.35768e6 1.31435e7i −0.0673879 0.652372i
\(836\) 0 0
\(837\) 5.21707e6i 0.257403i
\(838\) 0 0
\(839\) −1.13197e7 −0.555175 −0.277588 0.960700i \(-0.589535\pi\)
−0.277588 + 0.960700i \(0.589535\pi\)
\(840\) 0 0
\(841\) 3.14507e7 1.53334
\(842\) 0 0
\(843\) 5.79404e6i 0.280810i
\(844\) 0 0
\(845\) −1.11841e7 + 1.15528e6i −0.538840 + 0.0556603i
\(846\) 0 0
\(847\) 2.34462e6i 0.112296i
\(848\) 0 0
\(849\) 4.17857e6 0.198957
\(850\) 0 0
\(851\) −1.63491e7 −0.773873
\(852\) 0 0
\(853\) 1.56521e7i 0.736546i 0.929718 + 0.368273i \(0.120051\pi\)
−0.929718 + 0.368273i \(0.879949\pi\)
\(854\) 0 0
\(855\) −3.29452e6 + 340313.i −0.154127 + 0.0159208i
\(856\) 0 0
\(857\) 974421.i 0.0453205i −0.999743 0.0226602i \(-0.992786\pi\)
0.999743 0.0226602i \(-0.00721360\pi\)
\(858\) 0 0
\(859\) 4.18796e7 1.93651 0.968254 0.249967i \(-0.0804198\pi\)
0.968254 + 0.249967i \(0.0804198\pi\)
\(860\) 0 0
\(861\) 3.20175e6 0.147190
\(862\) 0 0
\(863\) 1.57024e7i 0.717695i 0.933396 + 0.358848i \(0.116830\pi\)
−0.933396 + 0.358848i \(0.883170\pi\)
\(864\) 0 0
\(865\) −2.82400e6 2.73388e7i −0.128329 1.24233i
\(866\) 0 0
\(867\) 1.01321e7i 0.457776i
\(868\) 0 0
\(869\) −3.28940e7 −1.47763
\(870\) 0 0
\(871\) −3.34042e7 −1.49195
\(872\) 0 0
\(873\) 3.24951e6i 0.144305i
\(874\) 0 0
\(875\) −5.21205e6 1.63388e7i −0.230138 0.721438i
\(876\) 0 0
\(877\) 2.33389e7i 1.02467i −0.858787 0.512333i \(-0.828781\pi\)
0.858787 0.512333i \(-0.171219\pi\)
\(878\) 0 0
\(879\) 1.68760e7 0.736710
\(880\) 0 0
\(881\) −2.87114e6 −0.124628 −0.0623138 0.998057i \(-0.519848\pi\)
−0.0623138 + 0.998057i \(0.519848\pi\)
\(882\) 0 0
\(883\) 1.69806e7i 0.732913i 0.930435 + 0.366456i \(0.119429\pi\)
−0.930435 + 0.366456i \(0.880571\pi\)
\(884\) 0 0
\(885\) 722088. + 6.99043e6i 0.0309907 + 0.300017i
\(886\) 0 0
\(887\) 3.41812e7i 1.45874i −0.684119 0.729371i \(-0.739813\pi\)
0.684119 0.729371i \(-0.260187\pi\)
\(888\) 0 0
\(889\) 2.20331e7 0.935020
\(890\) 0 0
\(891\) −2.82149e6 −0.119065
\(892\) 0 0
\(893\) 2.39523e6i 0.100512i
\(894\) 0 0
\(895\) 6.87381e6 710042.i 0.286840 0.0296296i
\(896\) 0 0
\(897\) 1.35771e7i 0.563410i
\(898\) 0 0
\(899\) −5.15872e7 −2.12884
\(900\) 0 0
\(901\) −1.63759e7 −0.672037
\(902\) 0 0
\(903\) 1.31644e7i 0.537258i
\(904\) 0 0
\(905\) 4.58647e7 4.73767e6i 1.86147 0.192284i
\(906\) 0 0
\(907\) 4.27598e7i 1.72591i −0.505283 0.862954i \(-0.668612\pi\)
0.505283 0.862954i \(-0.331388\pi\)
\(908\) 0 0
\(909\) 6.23534e6 0.250294
\(910\) 0 0
\(911\) −3.98612e7 −1.59131 −0.795654 0.605751i \(-0.792873\pi\)
−0.795654 + 0.605751i \(0.792873\pi\)
\(912\) 0 0
\(913\) 1.47568e7i 0.585889i
\(914\) 0 0
\(915\) −988218. 9.56680e6i −0.0390212 0.377758i
\(916\) 0 0
\(917\) 1.86717e7i 0.733265i
\(918\) 0 0
\(919\) 4.59245e6 0.179373 0.0896863 0.995970i \(-0.471414\pi\)
0.0896863 + 0.995970i \(0.471414\pi\)
\(920\) 0 0
\(921\) −2.32231e7 −0.902136
\(922\) 0 0
\(923\) 2.18788e7i 0.845316i
\(924\) 0 0
\(925\) 5.23777e6 + 2.50825e7i 0.201276 + 0.963866i
\(926\) 0 0
\(927\) 586921.i 0.0224327i
\(928\) 0 0
\(929\) −3.54063e7 −1.34599 −0.672994 0.739648i \(-0.734992\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(930\) 0 0
\(931\) 5.24399e6 0.198284
\(932\) 0 0
\(933\) 7.16512e6i 0.269476i
\(934\) 0 0
\(935\) −1.33948e6 1.29673e7i −0.0501081 0.485089i
\(936\) 0 0
\(937\) 1.01939e7i 0.379306i −0.981851 0.189653i \(-0.939264\pi\)
0.981851 0.189653i \(-0.0607363\pi\)
\(938\) 0 0
\(939\) −2.53672e7 −0.938875
\(940\) 0 0
\(941\) 6.06141e6 0.223152 0.111576 0.993756i \(-0.464410\pi\)
0.111576 + 0.993756i \(0.464410\pi\)
\(942\) 0 0
\(943\) 7.22538e6i 0.264595i
\(944\) 0 0
\(945\) −3.97956e6 + 411075.i −0.144963 + 0.0149741i
\(946\) 0 0
\(947\) 6.61820e6i 0.239809i 0.992785 + 0.119904i \(0.0382588\pi\)
−0.992785 + 0.119904i \(0.961741\pi\)
\(948\) 0 0
\(949\) 2.58282e7 0.930956
\(950\) 0 0
\(951\) −1.34053e6 −0.0480648
\(952\) 0 0
\(953\) 2.15434e7i 0.768391i −0.923252 0.384196i \(-0.874479\pi\)
0.923252 0.384196i \(-0.125521\pi\)
\(954\) 0 0
\(955\) 690558. 71332.4i 0.0245015 0.00253092i
\(956\) 0 0
\(957\) 2.78993e7i 0.984720i
\(958\) 0 0
\(959\) 1.33745e7 0.469605
\(960\) 0 0
\(961\) 2.25860e7 0.788918
\(962\) 0 0
\(963\) 1.72986e7i 0.601098i
\(964\) 0 0
\(965\) −655533. 6.34612e6i −0.0226608 0.219376i
\(966\) 0 0
\(967\) 2.96402e6i 0.101933i −0.998700 0.0509666i \(-0.983770\pi\)
0.998700 0.0509666i \(-0.0162302\pi\)
\(968\) 0 0
\(969\) −3.56987e6 −0.122136
\(970\) 0 0
\(971\) 4.76132e7 1.62061 0.810306 0.586007i \(-0.199301\pi\)
0.810306 + 0.586007i \(0.199301\pi\)
\(972\) 0 0
\(973\) 3.13512e7i 1.06163i
\(974\) 0 0
\(975\) −2.08297e7 + 4.34969e6i −0.701733 + 0.146537i
\(976\) 0 0
\(977\) 3.65168e7i 1.22393i 0.790886 + 0.611964i \(0.209620\pi\)
−0.790886 + 0.611964i \(0.790380\pi\)
\(978\) 0 0
\(979\) 6.40407e7 2.13550
\(980\) 0 0
\(981\) −6.84197e6 −0.226991
\(982\) 0 0
\(983\) 3.76835e7i 1.24385i −0.783078 0.621924i \(-0.786351\pi\)
0.783078 0.621924i \(-0.213649\pi\)
\(984\) 0 0
\(985\) −4.04174e6 3.91275e7i −0.132733 1.28497i
\(986\) 0 0
\(987\) 2.89327e6i 0.0945357i
\(988\) 0 0
\(989\) −2.97082e7 −0.965796
\(990\) 0 0
\(991\) −2.51273e7 −0.812758 −0.406379 0.913705i \(-0.633209\pi\)
−0.406379 + 0.913705i \(0.633209\pi\)
\(992\) 0 0
\(993\) 4.84949e6i 0.156071i
\(994\) 0 0
\(995\) 5.90387e7 6.09850e6i 1.89051 0.195283i
\(996\) 0 0
\(997\) 1.37723e7i 0.438803i −0.975635 0.219401i \(-0.929590\pi\)
0.975635 0.219401i \(-0.0704104\pi\)
\(998\) 0 0
\(999\) 5.97746e6 0.189497
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.6.f.f.49.8 8
3.2 odd 2 720.6.f.o.289.2 8
4.3 odd 2 120.6.f.b.49.4 8
5.4 even 2 inner 240.6.f.f.49.4 8
12.11 even 2 360.6.f.c.289.2 8
15.14 odd 2 720.6.f.o.289.1 8
20.3 even 4 600.6.a.w.1.3 4
20.7 even 4 600.6.a.v.1.2 4
20.19 odd 2 120.6.f.b.49.8 yes 8
60.59 even 2 360.6.f.c.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.f.b.49.4 8 4.3 odd 2
120.6.f.b.49.8 yes 8 20.19 odd 2
240.6.f.f.49.4 8 5.4 even 2 inner
240.6.f.f.49.8 8 1.1 even 1 trivial
360.6.f.c.289.1 8 60.59 even 2
360.6.f.c.289.2 8 12.11 even 2
600.6.a.v.1.2 4 20.7 even 4
600.6.a.w.1.3 4 20.3 even 4
720.6.f.o.289.1 8 15.14 odd 2
720.6.f.o.289.2 8 3.2 odd 2