Properties

Label 240.8.a.e.1.1
Level $240$
Weight $8$
Character 240.1
Self dual yes
Analytic conductor $74.972$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} +125.000 q^{5} +232.000 q^{7} +729.000 q^{9} +60.0000 q^{11} +14054.0 q^{13} -3375.00 q^{15} +13938.0 q^{17} -53564.0 q^{19} -6264.00 q^{21} +27000.0 q^{23} +15625.0 q^{25} -19683.0 q^{27} -88554.0 q^{29} +120352. q^{31} -1620.00 q^{33} +29000.0 q^{35} +469646. q^{37} -379458. q^{39} -510246. q^{41} -145412. q^{43} +91125.0 q^{45} -304560. q^{47} -769719. q^{49} -376326. q^{51} +94398.0 q^{53} +7500.00 q^{55} +1.44623e6 q^{57} +1.88574e6 q^{59} -271690. q^{61} +169128. q^{63} +1.75675e6 q^{65} -1.07467e6 q^{67} -729000. q^{69} +2.50548e6 q^{71} -2.95457e6 q^{73} -421875. q^{75} +13920.0 q^{77} +7.35477e6 q^{79} +531441. q^{81} +3.84676e6 q^{83} +1.74225e6 q^{85} +2.39096e6 q^{87} +5.68516e6 q^{89} +3.26053e6 q^{91} -3.24950e6 q^{93} -6.69550e6 q^{95} +7.98135e6 q^{97} +43740.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) 232.000 0.255649 0.127825 0.991797i \(-0.459201\pi\)
0.127825 + 0.991797i \(0.459201\pi\)
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 60.0000 0.0135918 0.00679590 0.999977i \(-0.497837\pi\)
0.00679590 + 0.999977i \(0.497837\pi\)
\(12\) 0 0
\(13\) 14054.0 1.77418 0.887091 0.461594i \(-0.152722\pi\)
0.887091 + 0.461594i \(0.152722\pi\)
\(14\) 0 0
\(15\) −3375.00 −0.258199
\(16\) 0 0
\(17\) 13938.0 0.688065 0.344032 0.938958i \(-0.388207\pi\)
0.344032 + 0.938958i \(0.388207\pi\)
\(18\) 0 0
\(19\) −53564.0 −1.79158 −0.895788 0.444481i \(-0.853388\pi\)
−0.895788 + 0.444481i \(0.853388\pi\)
\(20\) 0 0
\(21\) −6264.00 −0.147599
\(22\) 0 0
\(23\) 27000.0 0.462718 0.231359 0.972868i \(-0.425683\pi\)
0.231359 + 0.972868i \(0.425683\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) −88554.0 −0.674241 −0.337121 0.941461i \(-0.609453\pi\)
−0.337121 + 0.941461i \(0.609453\pi\)
\(30\) 0 0
\(31\) 120352. 0.725583 0.362792 0.931870i \(-0.381824\pi\)
0.362792 + 0.931870i \(0.381824\pi\)
\(32\) 0 0
\(33\) −1620.00 −0.00784723
\(34\) 0 0
\(35\) 29000.0 0.114330
\(36\) 0 0
\(37\) 469646. 1.52428 0.762140 0.647413i \(-0.224149\pi\)
0.762140 + 0.647413i \(0.224149\pi\)
\(38\) 0 0
\(39\) −379458. −1.02432
\(40\) 0 0
\(41\) −510246. −1.15621 −0.578104 0.815963i \(-0.696207\pi\)
−0.578104 + 0.815963i \(0.696207\pi\)
\(42\) 0 0
\(43\) −145412. −0.278908 −0.139454 0.990229i \(-0.544535\pi\)
−0.139454 + 0.990229i \(0.544535\pi\)
\(44\) 0 0
\(45\) 91125.0 0.149071
\(46\) 0 0
\(47\) −304560. −0.427888 −0.213944 0.976846i \(-0.568631\pi\)
−0.213944 + 0.976846i \(0.568631\pi\)
\(48\) 0 0
\(49\) −769719. −0.934643
\(50\) 0 0
\(51\) −376326. −0.397254
\(52\) 0 0
\(53\) 94398.0 0.0870958 0.0435479 0.999051i \(-0.486134\pi\)
0.0435479 + 0.999051i \(0.486134\pi\)
\(54\) 0 0
\(55\) 7500.00 0.00607844
\(56\) 0 0
\(57\) 1.44623e6 1.03437
\(58\) 0 0
\(59\) 1.88574e6 1.19536 0.597681 0.801734i \(-0.296089\pi\)
0.597681 + 0.801734i \(0.296089\pi\)
\(60\) 0 0
\(61\) −271690. −0.153257 −0.0766283 0.997060i \(-0.524415\pi\)
−0.0766283 + 0.997060i \(0.524415\pi\)
\(62\) 0 0
\(63\) 169128. 0.0852165
\(64\) 0 0
\(65\) 1.75675e6 0.793438
\(66\) 0 0
\(67\) −1.07467e6 −0.436528 −0.218264 0.975890i \(-0.570039\pi\)
−0.218264 + 0.975890i \(0.570039\pi\)
\(68\) 0 0
\(69\) −729000. −0.267150
\(70\) 0 0
\(71\) 2.50548e6 0.830781 0.415391 0.909643i \(-0.363645\pi\)
0.415391 + 0.909643i \(0.363645\pi\)
\(72\) 0 0
\(73\) −2.95457e6 −0.888922 −0.444461 0.895798i \(-0.646605\pi\)
−0.444461 + 0.895798i \(0.646605\pi\)
\(74\) 0 0
\(75\) −421875. −0.115470
\(76\) 0 0
\(77\) 13920.0 0.00347474
\(78\) 0 0
\(79\) 7.35477e6 1.67832 0.839159 0.543886i \(-0.183048\pi\)
0.839159 + 0.543886i \(0.183048\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 3.84676e6 0.738450 0.369225 0.929340i \(-0.379623\pi\)
0.369225 + 0.929340i \(0.379623\pi\)
\(84\) 0 0
\(85\) 1.74225e6 0.307712
\(86\) 0 0
\(87\) 2.39096e6 0.389273
\(88\) 0 0
\(89\) 5.68516e6 0.854826 0.427413 0.904056i \(-0.359425\pi\)
0.427413 + 0.904056i \(0.359425\pi\)
\(90\) 0 0
\(91\) 3.26053e6 0.453569
\(92\) 0 0
\(93\) −3.24950e6 −0.418916
\(94\) 0 0
\(95\) −6.69550e6 −0.801217
\(96\) 0 0
\(97\) 7.98135e6 0.887923 0.443961 0.896046i \(-0.353573\pi\)
0.443961 + 0.896046i \(0.353573\pi\)
\(98\) 0 0
\(99\) 43740.0 0.00453060
\(100\) 0 0
\(101\) 1.54628e7 1.49336 0.746678 0.665186i \(-0.231648\pi\)
0.746678 + 0.665186i \(0.231648\pi\)
\(102\) 0 0
\(103\) 2.09024e7 1.88480 0.942402 0.334483i \(-0.108562\pi\)
0.942402 + 0.334483i \(0.108562\pi\)
\(104\) 0 0
\(105\) −783000. −0.0660084
\(106\) 0 0
\(107\) −2.05645e7 −1.62284 −0.811418 0.584466i \(-0.801304\pi\)
−0.811418 + 0.584466i \(0.801304\pi\)
\(108\) 0 0
\(109\) 1.39850e7 1.03436 0.517179 0.855877i \(-0.326982\pi\)
0.517179 + 0.855877i \(0.326982\pi\)
\(110\) 0 0
\(111\) −1.26804e7 −0.880043
\(112\) 0 0
\(113\) 2.64438e7 1.72405 0.862024 0.506868i \(-0.169197\pi\)
0.862024 + 0.506868i \(0.169197\pi\)
\(114\) 0 0
\(115\) 3.37500e6 0.206934
\(116\) 0 0
\(117\) 1.02454e7 0.591394
\(118\) 0 0
\(119\) 3.23362e6 0.175903
\(120\) 0 0
\(121\) −1.94836e7 −0.999815
\(122\) 0 0
\(123\) 1.37766e7 0.667537
\(124\) 0 0
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) 9.34000e6 0.404607 0.202304 0.979323i \(-0.435157\pi\)
0.202304 + 0.979323i \(0.435157\pi\)
\(128\) 0 0
\(129\) 3.92612e6 0.161027
\(130\) 0 0
\(131\) 4.46795e7 1.73644 0.868219 0.496182i \(-0.165265\pi\)
0.868219 + 0.496182i \(0.165265\pi\)
\(132\) 0 0
\(133\) −1.24268e7 −0.458016
\(134\) 0 0
\(135\) −2.46038e6 −0.0860663
\(136\) 0 0
\(137\) −5.69929e7 −1.89365 −0.946823 0.321755i \(-0.895727\pi\)
−0.946823 + 0.321755i \(0.895727\pi\)
\(138\) 0 0
\(139\) −3.06822e7 −0.969026 −0.484513 0.874784i \(-0.661003\pi\)
−0.484513 + 0.874784i \(0.661003\pi\)
\(140\) 0 0
\(141\) 8.22312e6 0.247041
\(142\) 0 0
\(143\) 843240. 0.0241143
\(144\) 0 0
\(145\) −1.10692e7 −0.301530
\(146\) 0 0
\(147\) 2.07824e7 0.539617
\(148\) 0 0
\(149\) 2.83628e7 0.702422 0.351211 0.936296i \(-0.385770\pi\)
0.351211 + 0.936296i \(0.385770\pi\)
\(150\) 0 0
\(151\) 3.45653e7 0.816997 0.408499 0.912759i \(-0.366052\pi\)
0.408499 + 0.912759i \(0.366052\pi\)
\(152\) 0 0
\(153\) 1.01608e7 0.229355
\(154\) 0 0
\(155\) 1.50440e7 0.324491
\(156\) 0 0
\(157\) 5.00660e7 1.03251 0.516255 0.856435i \(-0.327326\pi\)
0.516255 + 0.856435i \(0.327326\pi\)
\(158\) 0 0
\(159\) −2.54875e6 −0.0502848
\(160\) 0 0
\(161\) 6.26400e6 0.118294
\(162\) 0 0
\(163\) 1.63359e6 0.0295451 0.0147726 0.999891i \(-0.495298\pi\)
0.0147726 + 0.999891i \(0.495298\pi\)
\(164\) 0 0
\(165\) −202500. −0.00350939
\(166\) 0 0
\(167\) 9.94818e7 1.65286 0.826430 0.563040i \(-0.190368\pi\)
0.826430 + 0.563040i \(0.190368\pi\)
\(168\) 0 0
\(169\) 1.34766e8 2.14772
\(170\) 0 0
\(171\) −3.90482e7 −0.597192
\(172\) 0 0
\(173\) −1.00775e8 −1.47976 −0.739881 0.672738i \(-0.765118\pi\)
−0.739881 + 0.672738i \(0.765118\pi\)
\(174\) 0 0
\(175\) 3.62500e6 0.0511299
\(176\) 0 0
\(177\) −5.09150e7 −0.690143
\(178\) 0 0
\(179\) −8.59163e7 −1.11967 −0.559835 0.828604i \(-0.689135\pi\)
−0.559835 + 0.828604i \(0.689135\pi\)
\(180\) 0 0
\(181\) −7.34951e6 −0.0921262 −0.0460631 0.998939i \(-0.514668\pi\)
−0.0460631 + 0.998939i \(0.514668\pi\)
\(182\) 0 0
\(183\) 7.33563e6 0.0884827
\(184\) 0 0
\(185\) 5.87058e7 0.681678
\(186\) 0 0
\(187\) 836280. 0.00935203
\(188\) 0 0
\(189\) −4.56646e6 −0.0491998
\(190\) 0 0
\(191\) −2.55529e7 −0.265353 −0.132676 0.991159i \(-0.542357\pi\)
−0.132676 + 0.991159i \(0.542357\pi\)
\(192\) 0 0
\(193\) 1.36815e8 1.36988 0.684940 0.728600i \(-0.259828\pi\)
0.684940 + 0.728600i \(0.259828\pi\)
\(194\) 0 0
\(195\) −4.74322e7 −0.458092
\(196\) 0 0
\(197\) −1.38053e8 −1.28651 −0.643255 0.765652i \(-0.722417\pi\)
−0.643255 + 0.765652i \(0.722417\pi\)
\(198\) 0 0
\(199\) −6.20415e6 −0.0558080 −0.0279040 0.999611i \(-0.508883\pi\)
−0.0279040 + 0.999611i \(0.508883\pi\)
\(200\) 0 0
\(201\) 2.90160e7 0.252030
\(202\) 0 0
\(203\) −2.05445e7 −0.172369
\(204\) 0 0
\(205\) −6.37808e7 −0.517072
\(206\) 0 0
\(207\) 1.96830e7 0.154239
\(208\) 0 0
\(209\) −3.21384e6 −0.0243507
\(210\) 0 0
\(211\) 1.65042e8 1.20950 0.604750 0.796416i \(-0.293273\pi\)
0.604750 + 0.796416i \(0.293273\pi\)
\(212\) 0 0
\(213\) −6.76480e7 −0.479652
\(214\) 0 0
\(215\) −1.81765e7 −0.124731
\(216\) 0 0
\(217\) 2.79217e7 0.185495
\(218\) 0 0
\(219\) 7.97733e7 0.513219
\(220\) 0 0
\(221\) 1.95885e8 1.22075
\(222\) 0 0
\(223\) 5.43117e7 0.327964 0.163982 0.986463i \(-0.447566\pi\)
0.163982 + 0.986463i \(0.447566\pi\)
\(224\) 0 0
\(225\) 1.13906e7 0.0666667
\(226\) 0 0
\(227\) −1.33928e8 −0.759942 −0.379971 0.924998i \(-0.624066\pi\)
−0.379971 + 0.924998i \(0.624066\pi\)
\(228\) 0 0
\(229\) 2.09843e7 0.115470 0.0577351 0.998332i \(-0.481612\pi\)
0.0577351 + 0.998332i \(0.481612\pi\)
\(230\) 0 0
\(231\) −375840. −0.00200614
\(232\) 0 0
\(233\) 1.21685e7 0.0630217 0.0315109 0.999503i \(-0.489968\pi\)
0.0315109 + 0.999503i \(0.489968\pi\)
\(234\) 0 0
\(235\) −3.80700e7 −0.191357
\(236\) 0 0
\(237\) −1.98579e8 −0.968977
\(238\) 0 0
\(239\) 4.69235e7 0.222330 0.111165 0.993802i \(-0.464542\pi\)
0.111165 + 0.993802i \(0.464542\pi\)
\(240\) 0 0
\(241\) −2.29327e8 −1.05535 −0.527674 0.849447i \(-0.676936\pi\)
−0.527674 + 0.849447i \(0.676936\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) −9.62149e7 −0.417985
\(246\) 0 0
\(247\) −7.52788e8 −3.17858
\(248\) 0 0
\(249\) −1.03862e8 −0.426345
\(250\) 0 0
\(251\) −4.50379e8 −1.79771 −0.898857 0.438242i \(-0.855601\pi\)
−0.898857 + 0.438242i \(0.855601\pi\)
\(252\) 0 0
\(253\) 1.62000e6 0.00628917
\(254\) 0 0
\(255\) −4.70408e7 −0.177658
\(256\) 0 0
\(257\) 6.65252e7 0.244467 0.122233 0.992501i \(-0.460994\pi\)
0.122233 + 0.992501i \(0.460994\pi\)
\(258\) 0 0
\(259\) 1.08958e8 0.389681
\(260\) 0 0
\(261\) −6.45559e7 −0.224747
\(262\) 0 0
\(263\) 1.10723e8 0.375312 0.187656 0.982235i \(-0.439911\pi\)
0.187656 + 0.982235i \(0.439911\pi\)
\(264\) 0 0
\(265\) 1.17998e7 0.0389504
\(266\) 0 0
\(267\) −1.53499e8 −0.493534
\(268\) 0 0
\(269\) −1.31054e8 −0.410504 −0.205252 0.978709i \(-0.565801\pi\)
−0.205252 + 0.978709i \(0.565801\pi\)
\(270\) 0 0
\(271\) 5.66890e8 1.73024 0.865119 0.501566i \(-0.167243\pi\)
0.865119 + 0.501566i \(0.167243\pi\)
\(272\) 0 0
\(273\) −8.80343e7 −0.261868
\(274\) 0 0
\(275\) 937500. 0.00271836
\(276\) 0 0
\(277\) 1.30574e8 0.369129 0.184565 0.982820i \(-0.440912\pi\)
0.184565 + 0.982820i \(0.440912\pi\)
\(278\) 0 0
\(279\) 8.77366e7 0.241861
\(280\) 0 0
\(281\) −2.70368e8 −0.726914 −0.363457 0.931611i \(-0.618404\pi\)
−0.363457 + 0.931611i \(0.618404\pi\)
\(282\) 0 0
\(283\) 9.11074e7 0.238947 0.119473 0.992837i \(-0.461879\pi\)
0.119473 + 0.992837i \(0.461879\pi\)
\(284\) 0 0
\(285\) 1.80778e8 0.462583
\(286\) 0 0
\(287\) −1.18377e8 −0.295584
\(288\) 0 0
\(289\) −2.16071e8 −0.526567
\(290\) 0 0
\(291\) −2.15496e8 −0.512642
\(292\) 0 0
\(293\) −6.22671e8 −1.44618 −0.723090 0.690754i \(-0.757279\pi\)
−0.723090 + 0.690754i \(0.757279\pi\)
\(294\) 0 0
\(295\) 2.35717e8 0.534583
\(296\) 0 0
\(297\) −1.18098e6 −0.00261574
\(298\) 0 0
\(299\) 3.79458e8 0.820946
\(300\) 0 0
\(301\) −3.37356e7 −0.0713026
\(302\) 0 0
\(303\) −4.17496e8 −0.862189
\(304\) 0 0
\(305\) −3.39612e7 −0.0685384
\(306\) 0 0
\(307\) 1.13282e8 0.223447 0.111724 0.993739i \(-0.464363\pi\)
0.111724 + 0.993739i \(0.464363\pi\)
\(308\) 0 0
\(309\) −5.64365e8 −1.08819
\(310\) 0 0
\(311\) −3.78344e8 −0.713222 −0.356611 0.934253i \(-0.616068\pi\)
−0.356611 + 0.934253i \(0.616068\pi\)
\(312\) 0 0
\(313\) −1.11400e8 −0.205344 −0.102672 0.994715i \(-0.532739\pi\)
−0.102672 + 0.994715i \(0.532739\pi\)
\(314\) 0 0
\(315\) 2.11410e7 0.0381100
\(316\) 0 0
\(317\) −6.70098e8 −1.18149 −0.590746 0.806857i \(-0.701167\pi\)
−0.590746 + 0.806857i \(0.701167\pi\)
\(318\) 0 0
\(319\) −5.31324e6 −0.00916415
\(320\) 0 0
\(321\) 5.55241e8 0.936945
\(322\) 0 0
\(323\) −7.46575e8 −1.23272
\(324\) 0 0
\(325\) 2.19594e8 0.354836
\(326\) 0 0
\(327\) −3.77596e8 −0.597187
\(328\) 0 0
\(329\) −7.06579e7 −0.109389
\(330\) 0 0
\(331\) 5.44096e8 0.824665 0.412332 0.911033i \(-0.364714\pi\)
0.412332 + 0.911033i \(0.364714\pi\)
\(332\) 0 0
\(333\) 3.42372e8 0.508093
\(334\) 0 0
\(335\) −1.34334e8 −0.195221
\(336\) 0 0
\(337\) 9.62374e8 1.36974 0.684872 0.728664i \(-0.259858\pi\)
0.684872 + 0.728664i \(0.259858\pi\)
\(338\) 0 0
\(339\) −7.13982e8 −0.995379
\(340\) 0 0
\(341\) 7.22112e6 0.00986198
\(342\) 0 0
\(343\) −3.69637e8 −0.494590
\(344\) 0 0
\(345\) −9.11250e7 −0.119473
\(346\) 0 0
\(347\) 5.92829e8 0.761686 0.380843 0.924640i \(-0.375634\pi\)
0.380843 + 0.924640i \(0.375634\pi\)
\(348\) 0 0
\(349\) −9.73268e8 −1.22558 −0.612792 0.790244i \(-0.709954\pi\)
−0.612792 + 0.790244i \(0.709954\pi\)
\(350\) 0 0
\(351\) −2.76625e8 −0.341442
\(352\) 0 0
\(353\) 1.59127e9 1.92545 0.962723 0.270491i \(-0.0871859\pi\)
0.962723 + 0.270491i \(0.0871859\pi\)
\(354\) 0 0
\(355\) 3.13185e8 0.371537
\(356\) 0 0
\(357\) −8.73076e7 −0.101558
\(358\) 0 0
\(359\) −8.37928e8 −0.955820 −0.477910 0.878409i \(-0.658606\pi\)
−0.477910 + 0.878409i \(0.658606\pi\)
\(360\) 0 0
\(361\) 1.97523e9 2.20975
\(362\) 0 0
\(363\) 5.26056e8 0.577244
\(364\) 0 0
\(365\) −3.69321e8 −0.397538
\(366\) 0 0
\(367\) 1.14448e9 1.20858 0.604290 0.796765i \(-0.293457\pi\)
0.604290 + 0.796765i \(0.293457\pi\)
\(368\) 0 0
\(369\) −3.71969e8 −0.385403
\(370\) 0 0
\(371\) 2.19003e7 0.0222660
\(372\) 0 0
\(373\) 1.36673e9 1.36365 0.681825 0.731516i \(-0.261187\pi\)
0.681825 + 0.731516i \(0.261187\pi\)
\(374\) 0 0
\(375\) −5.27344e7 −0.0516398
\(376\) 0 0
\(377\) −1.24454e9 −1.19623
\(378\) 0 0
\(379\) 4.91619e8 0.463865 0.231933 0.972732i \(-0.425495\pi\)
0.231933 + 0.972732i \(0.425495\pi\)
\(380\) 0 0
\(381\) −2.52180e8 −0.233600
\(382\) 0 0
\(383\) −5.32012e8 −0.483867 −0.241933 0.970293i \(-0.577782\pi\)
−0.241933 + 0.970293i \(0.577782\pi\)
\(384\) 0 0
\(385\) 1.74000e6 0.00155395
\(386\) 0 0
\(387\) −1.06005e8 −0.0929693
\(388\) 0 0
\(389\) 6.83513e8 0.588739 0.294370 0.955692i \(-0.404890\pi\)
0.294370 + 0.955692i \(0.404890\pi\)
\(390\) 0 0
\(391\) 3.76326e8 0.318380
\(392\) 0 0
\(393\) −1.20635e9 −1.00253
\(394\) 0 0
\(395\) 9.19346e8 0.750566
\(396\) 0 0
\(397\) −1.46842e9 −1.17784 −0.588918 0.808193i \(-0.700446\pi\)
−0.588918 + 0.808193i \(0.700446\pi\)
\(398\) 0 0
\(399\) 3.35525e8 0.264435
\(400\) 0 0
\(401\) 7.08292e8 0.548538 0.274269 0.961653i \(-0.411564\pi\)
0.274269 + 0.961653i \(0.411564\pi\)
\(402\) 0 0
\(403\) 1.69143e9 1.28732
\(404\) 0 0
\(405\) 6.64301e7 0.0496904
\(406\) 0 0
\(407\) 2.81788e7 0.0207177
\(408\) 0 0
\(409\) 2.13603e9 1.54375 0.771873 0.635777i \(-0.219320\pi\)
0.771873 + 0.635777i \(0.219320\pi\)
\(410\) 0 0
\(411\) 1.53881e9 1.09330
\(412\) 0 0
\(413\) 4.37492e8 0.305594
\(414\) 0 0
\(415\) 4.80844e8 0.330245
\(416\) 0 0
\(417\) 8.28421e8 0.559467
\(418\) 0 0
\(419\) −1.22130e9 −0.811098 −0.405549 0.914073i \(-0.632920\pi\)
−0.405549 + 0.914073i \(0.632920\pi\)
\(420\) 0 0
\(421\) −1.17754e8 −0.0769110 −0.0384555 0.999260i \(-0.512244\pi\)
−0.0384555 + 0.999260i \(0.512244\pi\)
\(422\) 0 0
\(423\) −2.22024e8 −0.142629
\(424\) 0 0
\(425\) 2.17781e8 0.137613
\(426\) 0 0
\(427\) −6.30321e7 −0.0391800
\(428\) 0 0
\(429\) −2.27675e7 −0.0139224
\(430\) 0 0
\(431\) 2.92749e9 1.76127 0.880634 0.473797i \(-0.157117\pi\)
0.880634 + 0.473797i \(0.157117\pi\)
\(432\) 0 0
\(433\) −9.22066e8 −0.545826 −0.272913 0.962039i \(-0.587987\pi\)
−0.272913 + 0.962039i \(0.587987\pi\)
\(434\) 0 0
\(435\) 2.98870e8 0.174088
\(436\) 0 0
\(437\) −1.44623e9 −0.828995
\(438\) 0 0
\(439\) 2.69431e9 1.51992 0.759962 0.649967i \(-0.225217\pi\)
0.759962 + 0.649967i \(0.225217\pi\)
\(440\) 0 0
\(441\) −5.61125e8 −0.311548
\(442\) 0 0
\(443\) −1.50928e9 −0.824815 −0.412407 0.911000i \(-0.635312\pi\)
−0.412407 + 0.911000i \(0.635312\pi\)
\(444\) 0 0
\(445\) 7.10645e8 0.382290
\(446\) 0 0
\(447\) −7.65797e8 −0.405543
\(448\) 0 0
\(449\) 7.94655e8 0.414302 0.207151 0.978309i \(-0.433581\pi\)
0.207151 + 0.978309i \(0.433581\pi\)
\(450\) 0 0
\(451\) −3.06148e7 −0.0157149
\(452\) 0 0
\(453\) −9.33262e8 −0.471694
\(454\) 0 0
\(455\) 4.07566e8 0.202842
\(456\) 0 0
\(457\) 1.82270e9 0.893324 0.446662 0.894703i \(-0.352613\pi\)
0.446662 + 0.894703i \(0.352613\pi\)
\(458\) 0 0
\(459\) −2.74342e8 −0.132418
\(460\) 0 0
\(461\) −1.79582e8 −0.0853711 −0.0426855 0.999089i \(-0.513591\pi\)
−0.0426855 + 0.999089i \(0.513591\pi\)
\(462\) 0 0
\(463\) −3.95891e8 −0.185371 −0.0926855 0.995695i \(-0.529545\pi\)
−0.0926855 + 0.995695i \(0.529545\pi\)
\(464\) 0 0
\(465\) −4.06188e8 −0.187345
\(466\) 0 0
\(467\) −5.70281e8 −0.259107 −0.129554 0.991572i \(-0.541354\pi\)
−0.129554 + 0.991572i \(0.541354\pi\)
\(468\) 0 0
\(469\) −2.49323e8 −0.111598
\(470\) 0 0
\(471\) −1.35178e9 −0.596120
\(472\) 0 0
\(473\) −8.72472e6 −0.00379086
\(474\) 0 0
\(475\) −8.36938e8 −0.358315
\(476\) 0 0
\(477\) 6.88161e7 0.0290319
\(478\) 0 0
\(479\) −4.36823e9 −1.81607 −0.908033 0.418900i \(-0.862416\pi\)
−0.908033 + 0.418900i \(0.862416\pi\)
\(480\) 0 0
\(481\) 6.60040e9 2.70435
\(482\) 0 0
\(483\) −1.69128e8 −0.0682968
\(484\) 0 0
\(485\) 9.97668e8 0.397091
\(486\) 0 0
\(487\) −3.29328e8 −0.129204 −0.0646022 0.997911i \(-0.520578\pi\)
−0.0646022 + 0.997911i \(0.520578\pi\)
\(488\) 0 0
\(489\) −4.41069e7 −0.0170579
\(490\) 0 0
\(491\) 2.54666e9 0.970924 0.485462 0.874258i \(-0.338651\pi\)
0.485462 + 0.874258i \(0.338651\pi\)
\(492\) 0 0
\(493\) −1.23427e9 −0.463921
\(494\) 0 0
\(495\) 5.46750e6 0.00202615
\(496\) 0 0
\(497\) 5.81271e8 0.212389
\(498\) 0 0
\(499\) −1.42495e9 −0.513391 −0.256696 0.966492i \(-0.582634\pi\)
−0.256696 + 0.966492i \(0.582634\pi\)
\(500\) 0 0
\(501\) −2.68601e9 −0.954279
\(502\) 0 0
\(503\) 2.18397e9 0.765172 0.382586 0.923920i \(-0.375034\pi\)
0.382586 + 0.923920i \(0.375034\pi\)
\(504\) 0 0
\(505\) 1.93285e9 0.667849
\(506\) 0 0
\(507\) −3.63869e9 −1.23999
\(508\) 0 0
\(509\) −5.25623e9 −1.76670 −0.883349 0.468715i \(-0.844717\pi\)
−0.883349 + 0.468715i \(0.844717\pi\)
\(510\) 0 0
\(511\) −6.85459e8 −0.227252
\(512\) 0 0
\(513\) 1.05430e9 0.344789
\(514\) 0 0
\(515\) 2.61280e9 0.842910
\(516\) 0 0
\(517\) −1.82736e7 −0.00581577
\(518\) 0 0
\(519\) 2.72093e9 0.854340
\(520\) 0 0
\(521\) 3.19481e9 0.989720 0.494860 0.868973i \(-0.335219\pi\)
0.494860 + 0.868973i \(0.335219\pi\)
\(522\) 0 0
\(523\) 1.92219e9 0.587545 0.293772 0.955875i \(-0.405089\pi\)
0.293772 + 0.955875i \(0.405089\pi\)
\(524\) 0 0
\(525\) −9.78750e7 −0.0295199
\(526\) 0 0
\(527\) 1.67747e9 0.499248
\(528\) 0 0
\(529\) −2.67583e9 −0.785892
\(530\) 0 0
\(531\) 1.37470e9 0.398454
\(532\) 0 0
\(533\) −7.17100e9 −2.05132
\(534\) 0 0
\(535\) −2.57056e9 −0.725754
\(536\) 0 0
\(537\) 2.31974e9 0.646442
\(538\) 0 0
\(539\) −4.61831e7 −0.0127035
\(540\) 0 0
\(541\) 1.62352e9 0.440826 0.220413 0.975407i \(-0.429259\pi\)
0.220413 + 0.975407i \(0.429259\pi\)
\(542\) 0 0
\(543\) 1.98437e8 0.0531891
\(544\) 0 0
\(545\) 1.74813e9 0.462579
\(546\) 0 0
\(547\) 8.76824e8 0.229064 0.114532 0.993420i \(-0.463463\pi\)
0.114532 + 0.993420i \(0.463463\pi\)
\(548\) 0 0
\(549\) −1.98062e8 −0.0510855
\(550\) 0 0
\(551\) 4.74331e9 1.20795
\(552\) 0 0
\(553\) 1.70631e9 0.429061
\(554\) 0 0
\(555\) −1.58506e9 −0.393567
\(556\) 0 0
\(557\) −2.29689e8 −0.0563179 −0.0281590 0.999603i \(-0.508964\pi\)
−0.0281590 + 0.999603i \(0.508964\pi\)
\(558\) 0 0
\(559\) −2.04362e9 −0.494833
\(560\) 0 0
\(561\) −2.25796e7 −0.00539940
\(562\) 0 0
\(563\) −7.86151e8 −0.185664 −0.0928318 0.995682i \(-0.529592\pi\)
−0.0928318 + 0.995682i \(0.529592\pi\)
\(564\) 0 0
\(565\) 3.30547e9 0.771017
\(566\) 0 0
\(567\) 1.23294e8 0.0284055
\(568\) 0 0
\(569\) 3.30088e9 0.751166 0.375583 0.926789i \(-0.377442\pi\)
0.375583 + 0.926789i \(0.377442\pi\)
\(570\) 0 0
\(571\) 1.54033e9 0.346248 0.173124 0.984900i \(-0.444614\pi\)
0.173124 + 0.984900i \(0.444614\pi\)
\(572\) 0 0
\(573\) 6.89928e8 0.153201
\(574\) 0 0
\(575\) 4.21875e8 0.0925436
\(576\) 0 0
\(577\) −3.79769e9 −0.823008 −0.411504 0.911408i \(-0.634996\pi\)
−0.411504 + 0.911408i \(0.634996\pi\)
\(578\) 0 0
\(579\) −3.69400e9 −0.790900
\(580\) 0 0
\(581\) 8.92447e8 0.188784
\(582\) 0 0
\(583\) 5.66388e6 0.00118379
\(584\) 0 0
\(585\) 1.28067e9 0.264479
\(586\) 0 0
\(587\) −8.29676e9 −1.69307 −0.846536 0.532332i \(-0.821316\pi\)
−0.846536 + 0.532332i \(0.821316\pi\)
\(588\) 0 0
\(589\) −6.44653e9 −1.29994
\(590\) 0 0
\(591\) 3.72743e9 0.742767
\(592\) 0 0
\(593\) 4.93196e9 0.971243 0.485621 0.874169i \(-0.338593\pi\)
0.485621 + 0.874169i \(0.338593\pi\)
\(594\) 0 0
\(595\) 4.04202e8 0.0786664
\(596\) 0 0
\(597\) 1.67512e8 0.0322208
\(598\) 0 0
\(599\) −6.51152e9 −1.23791 −0.618954 0.785427i \(-0.712443\pi\)
−0.618954 + 0.785427i \(0.712443\pi\)
\(600\) 0 0
\(601\) −4.17460e9 −0.784430 −0.392215 0.919874i \(-0.628291\pi\)
−0.392215 + 0.919874i \(0.628291\pi\)
\(602\) 0 0
\(603\) −7.83433e8 −0.145509
\(604\) 0 0
\(605\) −2.43545e9 −0.447131
\(606\) 0 0
\(607\) −5.46979e9 −0.992682 −0.496341 0.868128i \(-0.665323\pi\)
−0.496341 + 0.868128i \(0.665323\pi\)
\(608\) 0 0
\(609\) 5.54702e8 0.0995175
\(610\) 0 0
\(611\) −4.28029e9 −0.759152
\(612\) 0 0
\(613\) −7.92764e9 −1.39006 −0.695028 0.718982i \(-0.744608\pi\)
−0.695028 + 0.718982i \(0.744608\pi\)
\(614\) 0 0
\(615\) 1.72208e9 0.298532
\(616\) 0 0
\(617\) −9.70277e9 −1.66302 −0.831510 0.555510i \(-0.812523\pi\)
−0.831510 + 0.555510i \(0.812523\pi\)
\(618\) 0 0
\(619\) −5.34840e8 −0.0906373 −0.0453186 0.998973i \(-0.514430\pi\)
−0.0453186 + 0.998973i \(0.514430\pi\)
\(620\) 0 0
\(621\) −5.31441e8 −0.0890501
\(622\) 0 0
\(623\) 1.31896e9 0.218536
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) 8.67737e7 0.0140589
\(628\) 0 0
\(629\) 6.54593e9 1.04880
\(630\) 0 0
\(631\) 8.98145e9 1.42313 0.711563 0.702622i \(-0.247987\pi\)
0.711563 + 0.702622i \(0.247987\pi\)
\(632\) 0 0
\(633\) −4.45613e9 −0.698305
\(634\) 0 0
\(635\) 1.16750e9 0.180946
\(636\) 0 0
\(637\) −1.08176e10 −1.65823
\(638\) 0 0
\(639\) 1.82649e9 0.276927
\(640\) 0 0
\(641\) 6.81488e8 0.102201 0.0511005 0.998694i \(-0.483727\pi\)
0.0511005 + 0.998694i \(0.483727\pi\)
\(642\) 0 0
\(643\) 3.68007e9 0.545906 0.272953 0.962027i \(-0.412000\pi\)
0.272953 + 0.962027i \(0.412000\pi\)
\(644\) 0 0
\(645\) 4.90765e8 0.0720137
\(646\) 0 0
\(647\) −9.03269e9 −1.31115 −0.655574 0.755131i \(-0.727573\pi\)
−0.655574 + 0.755131i \(0.727573\pi\)
\(648\) 0 0
\(649\) 1.13144e8 0.0162471
\(650\) 0 0
\(651\) −7.53885e8 −0.107096
\(652\) 0 0
\(653\) 2.90477e9 0.408240 0.204120 0.978946i \(-0.434567\pi\)
0.204120 + 0.978946i \(0.434567\pi\)
\(654\) 0 0
\(655\) 5.58494e9 0.776558
\(656\) 0 0
\(657\) −2.15388e9 −0.296307
\(658\) 0 0
\(659\) 2.88225e8 0.0392313 0.0196157 0.999808i \(-0.493756\pi\)
0.0196157 + 0.999808i \(0.493756\pi\)
\(660\) 0 0
\(661\) 4.04326e9 0.544536 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 0 0
\(663\) −5.28889e9 −0.704802
\(664\) 0 0
\(665\) −1.55336e9 −0.204831
\(666\) 0 0
\(667\) −2.39096e9 −0.311983
\(668\) 0 0
\(669\) −1.46642e9 −0.189350
\(670\) 0 0
\(671\) −1.63014e7 −0.00208303
\(672\) 0 0
\(673\) 6.38900e9 0.807942 0.403971 0.914772i \(-0.367630\pi\)
0.403971 + 0.914772i \(0.367630\pi\)
\(674\) 0 0
\(675\) −3.07547e8 −0.0384900
\(676\) 0 0
\(677\) −1.08256e10 −1.34089 −0.670445 0.741960i \(-0.733897\pi\)
−0.670445 + 0.741960i \(0.733897\pi\)
\(678\) 0 0
\(679\) 1.85167e9 0.226997
\(680\) 0 0
\(681\) 3.61605e9 0.438753
\(682\) 0 0
\(683\) −8.81962e8 −0.105920 −0.0529599 0.998597i \(-0.516866\pi\)
−0.0529599 + 0.998597i \(0.516866\pi\)
\(684\) 0 0
\(685\) −7.12411e9 −0.846864
\(686\) 0 0
\(687\) −5.66575e8 −0.0666667
\(688\) 0 0
\(689\) 1.32667e9 0.154524
\(690\) 0 0
\(691\) −5.36883e9 −0.619022 −0.309511 0.950896i \(-0.600165\pi\)
−0.309511 + 0.950896i \(0.600165\pi\)
\(692\) 0 0
\(693\) 1.01477e7 0.00115825
\(694\) 0 0
\(695\) −3.83528e9 −0.433361
\(696\) 0 0
\(697\) −7.11181e9 −0.795546
\(698\) 0 0
\(699\) −3.28549e8 −0.0363856
\(700\) 0 0
\(701\) 4.37341e9 0.479521 0.239760 0.970832i \(-0.422931\pi\)
0.239760 + 0.970832i \(0.422931\pi\)
\(702\) 0 0
\(703\) −2.51561e10 −2.73086
\(704\) 0 0
\(705\) 1.02789e9 0.110480
\(706\) 0 0
\(707\) 3.58737e9 0.381776
\(708\) 0 0
\(709\) 4.60383e9 0.485129 0.242565 0.970135i \(-0.422011\pi\)
0.242565 + 0.970135i \(0.422011\pi\)
\(710\) 0 0
\(711\) 5.36163e9 0.559439
\(712\) 0 0
\(713\) 3.24950e9 0.335740
\(714\) 0 0
\(715\) 1.05405e8 0.0107843
\(716\) 0 0
\(717\) −1.26693e9 −0.128362
\(718\) 0 0
\(719\) −5.78324e9 −0.580257 −0.290129 0.956988i \(-0.593698\pi\)
−0.290129 + 0.956988i \(0.593698\pi\)
\(720\) 0 0
\(721\) 4.84936e9 0.481849
\(722\) 0 0
\(723\) 6.19183e9 0.609305
\(724\) 0 0
\(725\) −1.38366e9 −0.134848
\(726\) 0 0
\(727\) −1.42871e10 −1.37903 −0.689514 0.724272i \(-0.742176\pi\)
−0.689514 + 0.724272i \(0.742176\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −2.02675e9 −0.191907
\(732\) 0 0
\(733\) −1.18896e10 −1.11507 −0.557535 0.830153i \(-0.688253\pi\)
−0.557535 + 0.830153i \(0.688253\pi\)
\(734\) 0 0
\(735\) 2.59780e9 0.241324
\(736\) 0 0
\(737\) −6.44801e7 −0.00593321
\(738\) 0 0
\(739\) −1.41993e10 −1.29423 −0.647113 0.762394i \(-0.724024\pi\)
−0.647113 + 0.762394i \(0.724024\pi\)
\(740\) 0 0
\(741\) 2.03253e10 1.83516
\(742\) 0 0
\(743\) 8.29539e9 0.741953 0.370976 0.928642i \(-0.379023\pi\)
0.370976 + 0.928642i \(0.379023\pi\)
\(744\) 0 0
\(745\) 3.54536e9 0.314132
\(746\) 0 0
\(747\) 2.80429e9 0.246150
\(748\) 0 0
\(749\) −4.77096e9 −0.414877
\(750\) 0 0
\(751\) 1.07334e10 0.924693 0.462347 0.886699i \(-0.347008\pi\)
0.462347 + 0.886699i \(0.347008\pi\)
\(752\) 0 0
\(753\) 1.21602e10 1.03791
\(754\) 0 0
\(755\) 4.32066e9 0.365372
\(756\) 0 0
\(757\) 1.28389e9 0.107570 0.0537850 0.998553i \(-0.482871\pi\)
0.0537850 + 0.998553i \(0.482871\pi\)
\(758\) 0 0
\(759\) −4.37400e7 −0.00363105
\(760\) 0 0
\(761\) 1.13991e10 0.937616 0.468808 0.883300i \(-0.344684\pi\)
0.468808 + 0.883300i \(0.344684\pi\)
\(762\) 0 0
\(763\) 3.24453e9 0.264433
\(764\) 0 0
\(765\) 1.27010e9 0.102571
\(766\) 0 0
\(767\) 2.65022e10 2.12079
\(768\) 0 0
\(769\) −1.26388e10 −1.00222 −0.501112 0.865383i \(-0.667075\pi\)
−0.501112 + 0.865383i \(0.667075\pi\)
\(770\) 0 0
\(771\) −1.79618e9 −0.141143
\(772\) 0 0
\(773\) 1.78935e10 1.39337 0.696687 0.717375i \(-0.254657\pi\)
0.696687 + 0.717375i \(0.254657\pi\)
\(774\) 0 0
\(775\) 1.88050e9 0.145117
\(776\) 0 0
\(777\) −2.94186e9 −0.224983
\(778\) 0 0
\(779\) 2.73308e10 2.07144
\(780\) 0 0
\(781\) 1.50329e8 0.0112918
\(782\) 0 0
\(783\) 1.74301e9 0.129758
\(784\) 0 0
\(785\) 6.25825e9 0.461752
\(786\) 0 0
\(787\) −1.65085e10 −1.20725 −0.603623 0.797270i \(-0.706277\pi\)
−0.603623 + 0.797270i \(0.706277\pi\)
\(788\) 0 0
\(789\) −2.98952e9 −0.216686
\(790\) 0 0
\(791\) 6.13496e9 0.440752
\(792\) 0 0
\(793\) −3.81833e9 −0.271905
\(794\) 0 0
\(795\) −3.18593e8 −0.0224880
\(796\) 0 0
\(797\) −1.82052e9 −0.127377 −0.0636886 0.997970i \(-0.520286\pi\)
−0.0636886 + 0.997970i \(0.520286\pi\)
\(798\) 0 0
\(799\) −4.24496e9 −0.294415
\(800\) 0 0
\(801\) 4.14448e9 0.284942
\(802\) 0 0
\(803\) −1.77274e8 −0.0120820
\(804\) 0 0
\(805\) 7.83000e8 0.0529025
\(806\) 0 0
\(807\) 3.53846e9 0.237004
\(808\) 0 0
\(809\) −2.17445e10 −1.44388 −0.721938 0.691958i \(-0.756748\pi\)
−0.721938 + 0.691958i \(0.756748\pi\)
\(810\) 0 0
\(811\) 1.93869e10 1.27625 0.638126 0.769932i \(-0.279710\pi\)
0.638126 + 0.769932i \(0.279710\pi\)
\(812\) 0 0
\(813\) −1.53060e10 −0.998954
\(814\) 0 0
\(815\) 2.04198e8 0.0132130
\(816\) 0 0
\(817\) 7.78885e9 0.499685
\(818\) 0 0
\(819\) 2.37692e9 0.151190
\(820\) 0 0
\(821\) −1.16565e10 −0.735134 −0.367567 0.929997i \(-0.619809\pi\)
−0.367567 + 0.929997i \(0.619809\pi\)
\(822\) 0 0
\(823\) 4.64054e9 0.290181 0.145091 0.989418i \(-0.453653\pi\)
0.145091 + 0.989418i \(0.453653\pi\)
\(824\) 0 0
\(825\) −2.53125e7 −0.00156945
\(826\) 0 0
\(827\) −1.00604e10 −0.618506 −0.309253 0.950980i \(-0.600079\pi\)
−0.309253 + 0.950980i \(0.600079\pi\)
\(828\) 0 0
\(829\) 1.56256e10 0.952566 0.476283 0.879292i \(-0.341984\pi\)
0.476283 + 0.879292i \(0.341984\pi\)
\(830\) 0 0
\(831\) −3.52551e9 −0.213117
\(832\) 0 0
\(833\) −1.07283e10 −0.643095
\(834\) 0 0
\(835\) 1.24352e10 0.739181
\(836\) 0 0
\(837\) −2.36889e9 −0.139639
\(838\) 0 0
\(839\) 2.83557e10 1.65757 0.828787 0.559564i \(-0.189032\pi\)
0.828787 + 0.559564i \(0.189032\pi\)
\(840\) 0 0
\(841\) −9.40807e9 −0.545399
\(842\) 0 0
\(843\) 7.29994e9 0.419684
\(844\) 0 0
\(845\) 1.68458e10 0.960491
\(846\) 0 0
\(847\) −4.52019e9 −0.255602
\(848\) 0 0
\(849\) −2.45990e9 −0.137956
\(850\) 0 0
\(851\) 1.26804e10 0.705311
\(852\) 0 0
\(853\) 1.52072e10 0.838933 0.419466 0.907771i \(-0.362217\pi\)
0.419466 + 0.907771i \(0.362217\pi\)
\(854\) 0 0
\(855\) −4.88102e9 −0.267072
\(856\) 0 0
\(857\) 2.69776e10 1.46410 0.732049 0.681251i \(-0.238564\pi\)
0.732049 + 0.681251i \(0.238564\pi\)
\(858\) 0 0
\(859\) 1.59964e10 0.861086 0.430543 0.902570i \(-0.358322\pi\)
0.430543 + 0.902570i \(0.358322\pi\)
\(860\) 0 0
\(861\) 3.19618e9 0.170656
\(862\) 0 0
\(863\) −2.22647e10 −1.17918 −0.589588 0.807704i \(-0.700710\pi\)
−0.589588 + 0.807704i \(0.700710\pi\)
\(864\) 0 0
\(865\) −1.25969e10 −0.661769
\(866\) 0 0
\(867\) 5.83391e9 0.304014
\(868\) 0 0
\(869\) 4.41286e8 0.0228114
\(870\) 0 0
\(871\) −1.51034e10 −0.774481
\(872\) 0 0
\(873\) 5.81840e9 0.295974
\(874\) 0 0
\(875\) 4.53125e8 0.0228660
\(876\) 0 0
\(877\) 2.08359e10 1.04307 0.521534 0.853230i \(-0.325360\pi\)
0.521534 + 0.853230i \(0.325360\pi\)
\(878\) 0 0
\(879\) 1.68121e10 0.834952
\(880\) 0 0
\(881\) 2.41363e10 1.18920 0.594601 0.804021i \(-0.297310\pi\)
0.594601 + 0.804021i \(0.297310\pi\)
\(882\) 0 0
\(883\) −8.17127e9 −0.399417 −0.199709 0.979855i \(-0.564000\pi\)
−0.199709 + 0.979855i \(0.564000\pi\)
\(884\) 0 0
\(885\) −6.36437e9 −0.308641
\(886\) 0 0
\(887\) −2.64726e10 −1.27369 −0.636846 0.770991i \(-0.719761\pi\)
−0.636846 + 0.770991i \(0.719761\pi\)
\(888\) 0 0
\(889\) 2.16688e9 0.103438
\(890\) 0 0
\(891\) 3.18865e7 0.00151020
\(892\) 0 0
\(893\) 1.63135e10 0.766595
\(894\) 0 0
\(895\) −1.07395e10 −0.500732
\(896\) 0 0
\(897\) −1.02454e10 −0.473973
\(898\) 0 0
\(899\) −1.06577e10 −0.489218
\(900\) 0 0
\(901\) 1.31572e9 0.0599275
\(902\) 0 0
\(903\) 9.10861e8 0.0411666
\(904\) 0 0
\(905\) −9.18688e8 −0.0412001
\(906\) 0 0
\(907\) −3.84880e10 −1.71277 −0.856387 0.516335i \(-0.827296\pi\)
−0.856387 + 0.516335i \(0.827296\pi\)
\(908\) 0 0
\(909\) 1.12724e10 0.497785
\(910\) 0 0
\(911\) 8.73430e9 0.382749 0.191374 0.981517i \(-0.438706\pi\)
0.191374 + 0.981517i \(0.438706\pi\)
\(912\) 0 0
\(913\) 2.30805e8 0.0100369
\(914\) 0 0
\(915\) 9.16954e8 0.0395707
\(916\) 0 0
\(917\) 1.03657e10 0.443919
\(918\) 0 0
\(919\) −1.91695e10 −0.814717 −0.407358 0.913268i \(-0.633550\pi\)
−0.407358 + 0.913268i \(0.633550\pi\)
\(920\) 0 0
\(921\) −3.05860e9 −0.129007
\(922\) 0 0
\(923\) 3.52120e10 1.47396
\(924\) 0 0
\(925\) 7.33822e9 0.304856
\(926\) 0 0
\(927\) 1.52379e10 0.628268
\(928\) 0 0
\(929\) 9.51352e9 0.389302 0.194651 0.980873i \(-0.437643\pi\)
0.194651 + 0.980873i \(0.437643\pi\)
\(930\) 0 0
\(931\) 4.12292e10 1.67449
\(932\) 0 0
\(933\) 1.02153e10 0.411779
\(934\) 0 0
\(935\) 1.04535e8 0.00418236
\(936\) 0 0
\(937\) −2.09871e10 −0.833422 −0.416711 0.909039i \(-0.636817\pi\)
−0.416711 + 0.909039i \(0.636817\pi\)
\(938\) 0 0
\(939\) 3.00781e9 0.118555
\(940\) 0 0
\(941\) 1.92302e9 0.0752349 0.0376175 0.999292i \(-0.488023\pi\)
0.0376175 + 0.999292i \(0.488023\pi\)
\(942\) 0 0
\(943\) −1.37766e10 −0.534998
\(944\) 0 0
\(945\) −5.70807e8 −0.0220028
\(946\) 0 0
\(947\) −1.52483e10 −0.583440 −0.291720 0.956504i \(-0.594228\pi\)
−0.291720 + 0.956504i \(0.594228\pi\)
\(948\) 0 0
\(949\) −4.15235e10 −1.57711
\(950\) 0 0
\(951\) 1.80927e10 0.682135
\(952\) 0 0
\(953\) −1.60051e10 −0.599011 −0.299505 0.954095i \(-0.596822\pi\)
−0.299505 + 0.954095i \(0.596822\pi\)
\(954\) 0 0
\(955\) −3.19411e9 −0.118669
\(956\) 0 0
\(957\) 1.43457e8 0.00529092
\(958\) 0 0
\(959\) −1.32224e10 −0.484110
\(960\) 0 0
\(961\) −1.30280e10 −0.473529
\(962\) 0 0
\(963\) −1.49915e10 −0.540945
\(964\) 0 0
\(965\) 1.71018e10 0.612629
\(966\) 0 0
\(967\) 3.05254e10 1.08560 0.542798 0.839863i \(-0.317365\pi\)
0.542798 + 0.839863i \(0.317365\pi\)
\(968\) 0 0
\(969\) 2.01575e10 0.711712
\(970\) 0 0
\(971\) −3.85732e10 −1.35213 −0.676066 0.736841i \(-0.736316\pi\)
−0.676066 + 0.736841i \(0.736316\pi\)
\(972\) 0 0
\(973\) −7.11828e9 −0.247731
\(974\) 0 0
\(975\) −5.92903e9 −0.204865
\(976\) 0 0
\(977\) −1.90805e10 −0.654575 −0.327287 0.944925i \(-0.606134\pi\)
−0.327287 + 0.944925i \(0.606134\pi\)
\(978\) 0 0
\(979\) 3.41110e8 0.0116186
\(980\) 0 0
\(981\) 1.01951e10 0.344786
\(982\) 0 0
\(983\) 4.88330e10 1.63974 0.819872 0.572546i \(-0.194044\pi\)
0.819872 + 0.572546i \(0.194044\pi\)
\(984\) 0 0
\(985\) −1.72566e10 −0.575345
\(986\) 0 0
\(987\) 1.90776e9 0.0631560
\(988\) 0 0
\(989\) −3.92612e9 −0.129056
\(990\) 0 0
\(991\) −3.83732e10 −1.25248 −0.626239 0.779631i \(-0.715407\pi\)
−0.626239 + 0.779631i \(0.715407\pi\)
\(992\) 0 0
\(993\) −1.46906e10 −0.476120
\(994\) 0 0
\(995\) −7.75519e8 −0.0249581
\(996\) 0 0
\(997\) −2.22521e10 −0.711111 −0.355555 0.934655i \(-0.615708\pi\)
−0.355555 + 0.934655i \(0.615708\pi\)
\(998\) 0 0
\(999\) −9.24404e9 −0.293348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.a.e.1.1 1
4.3 odd 2 30.8.a.c.1.1 1
12.11 even 2 90.8.a.g.1.1 1
20.3 even 4 150.8.c.b.49.2 2
20.7 even 4 150.8.c.b.49.1 2
20.19 odd 2 150.8.a.k.1.1 1
60.23 odd 4 450.8.c.j.199.1 2
60.47 odd 4 450.8.c.j.199.2 2
60.59 even 2 450.8.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.a.c.1.1 1 4.3 odd 2
90.8.a.g.1.1 1 12.11 even 2
150.8.a.k.1.1 1 20.19 odd 2
150.8.c.b.49.1 2 20.7 even 4
150.8.c.b.49.2 2 20.3 even 4
240.8.a.e.1.1 1 1.1 even 1 trivial
450.8.a.g.1.1 1 60.59 even 2
450.8.c.j.199.1 2 60.23 odd 4
450.8.c.j.199.2 2 60.47 odd 4