Properties

Label 240.8.a.o.1.2
Level $240$
Weight $8$
Character 240.1
Self dual yes
Analytic conductor $74.972$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10761}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2690 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-51.3676\) of defining polynomial
Character \(\chi\) \(=\) 240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} -125.000 q^{5} +1692.82 q^{7} +729.000 q^{9} +7555.29 q^{11} +12911.8 q^{13} +3375.00 q^{15} +17583.1 q^{17} -31062.5 q^{19} -45706.2 q^{21} -82318.0 q^{23} +15625.0 q^{25} -19683.0 q^{27} +157988. q^{29} +128193. q^{31} -203993. q^{33} -211603. q^{35} -137200. q^{37} -348618. q^{39} -177128. q^{41} -7915.59 q^{43} -91125.0 q^{45} -291482. q^{47} +2.04211e6 q^{49} -474742. q^{51} -776917. q^{53} -944411. q^{55} +838687. q^{57} +919013. q^{59} +2.08842e6 q^{61} +1.23407e6 q^{63} -1.61397e6 q^{65} +1.52915e6 q^{67} +2.22259e6 q^{69} -2.74055e6 q^{71} +3.98355e6 q^{73} -421875. q^{75} +1.27898e7 q^{77} -3.98416e6 q^{79} +531441. q^{81} -5.01862e6 q^{83} -2.19788e6 q^{85} -4.26567e6 q^{87} -1.12205e7 q^{89} +2.18573e7 q^{91} -3.46121e6 q^{93} +3.88281e6 q^{95} -2.13699e6 q^{97} +5.50781e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} - 250 q^{5} + 896 q^{7} + 1458 q^{9} + 5152 q^{11} + 8396 q^{13} + 6750 q^{15} + 7780 q^{17} - 54656 q^{19} - 24192 q^{21} - 122312 q^{23} + 31250 q^{25} - 39366 q^{27} + 116804 q^{29} - 109592 q^{31}+ \cdots + 3755808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) 1692.82 1.86538 0.932692 0.360673i \(-0.117453\pi\)
0.932692 + 0.360673i \(0.117453\pi\)
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 7555.29 1.71150 0.855750 0.517390i \(-0.173096\pi\)
0.855750 + 0.517390i \(0.173096\pi\)
\(12\) 0 0
\(13\) 12911.8 1.62999 0.814993 0.579471i \(-0.196741\pi\)
0.814993 + 0.579471i \(0.196741\pi\)
\(14\) 0 0
\(15\) 3375.00 0.258199
\(16\) 0 0
\(17\) 17583.1 0.868007 0.434003 0.900911i \(-0.357101\pi\)
0.434003 + 0.900911i \(0.357101\pi\)
\(18\) 0 0
\(19\) −31062.5 −1.03896 −0.519479 0.854483i \(-0.673874\pi\)
−0.519479 + 0.854483i \(0.673874\pi\)
\(20\) 0 0
\(21\) −45706.2 −1.07698
\(22\) 0 0
\(23\) −82318.0 −1.41074 −0.705371 0.708839i \(-0.749219\pi\)
−0.705371 + 0.708839i \(0.749219\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 157988. 1.20290 0.601452 0.798909i \(-0.294589\pi\)
0.601452 + 0.798909i \(0.294589\pi\)
\(30\) 0 0
\(31\) 128193. 0.772855 0.386428 0.922320i \(-0.373709\pi\)
0.386428 + 0.922320i \(0.373709\pi\)
\(32\) 0 0
\(33\) −203993. −0.988135
\(34\) 0 0
\(35\) −211603. −0.834225
\(36\) 0 0
\(37\) −137200. −0.445296 −0.222648 0.974899i \(-0.571470\pi\)
−0.222648 + 0.974899i \(0.571470\pi\)
\(38\) 0 0
\(39\) −348618. −0.941073
\(40\) 0 0
\(41\) −177128. −0.401369 −0.200685 0.979656i \(-0.564317\pi\)
−0.200685 + 0.979656i \(0.564317\pi\)
\(42\) 0 0
\(43\) −7915.59 −0.0151825 −0.00759125 0.999971i \(-0.502416\pi\)
−0.00759125 + 0.999971i \(0.502416\pi\)
\(44\) 0 0
\(45\) −91125.0 −0.149071
\(46\) 0 0
\(47\) −291482. −0.409514 −0.204757 0.978813i \(-0.565640\pi\)
−0.204757 + 0.978813i \(0.565640\pi\)
\(48\) 0 0
\(49\) 2.04211e6 2.47966
\(50\) 0 0
\(51\) −474742. −0.501144
\(52\) 0 0
\(53\) −776917. −0.716818 −0.358409 0.933565i \(-0.616681\pi\)
−0.358409 + 0.933565i \(0.616681\pi\)
\(54\) 0 0
\(55\) −944411. −0.765406
\(56\) 0 0
\(57\) 838687. 0.599843
\(58\) 0 0
\(59\) 919013. 0.582559 0.291279 0.956638i \(-0.405919\pi\)
0.291279 + 0.956638i \(0.405919\pi\)
\(60\) 0 0
\(61\) 2.08842e6 1.17805 0.589024 0.808116i \(-0.299512\pi\)
0.589024 + 0.808116i \(0.299512\pi\)
\(62\) 0 0
\(63\) 1.23407e6 0.621795
\(64\) 0 0
\(65\) −1.61397e6 −0.728952
\(66\) 0 0
\(67\) 1.52915e6 0.621140 0.310570 0.950551i \(-0.399480\pi\)
0.310570 + 0.950551i \(0.399480\pi\)
\(68\) 0 0
\(69\) 2.22259e6 0.814492
\(70\) 0 0
\(71\) −2.74055e6 −0.908726 −0.454363 0.890817i \(-0.650133\pi\)
−0.454363 + 0.890817i \(0.650133\pi\)
\(72\) 0 0
\(73\) 3.98355e6 1.19851 0.599253 0.800560i \(-0.295464\pi\)
0.599253 + 0.800560i \(0.295464\pi\)
\(74\) 0 0
\(75\) −421875. −0.115470
\(76\) 0 0
\(77\) 1.27898e7 3.19261
\(78\) 0 0
\(79\) −3.98416e6 −0.909163 −0.454581 0.890705i \(-0.650211\pi\)
−0.454581 + 0.890705i \(0.650211\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −5.01862e6 −0.963409 −0.481705 0.876334i \(-0.659982\pi\)
−0.481705 + 0.876334i \(0.659982\pi\)
\(84\) 0 0
\(85\) −2.19788e6 −0.388184
\(86\) 0 0
\(87\) −4.26567e6 −0.694496
\(88\) 0 0
\(89\) −1.12205e7 −1.68713 −0.843565 0.537026i \(-0.819548\pi\)
−0.843565 + 0.537026i \(0.819548\pi\)
\(90\) 0 0
\(91\) 2.18573e7 3.04055
\(92\) 0 0
\(93\) −3.46121e6 −0.446208
\(94\) 0 0
\(95\) 3.88281e6 0.464637
\(96\) 0 0
\(97\) −2.13699e6 −0.237740 −0.118870 0.992910i \(-0.537927\pi\)
−0.118870 + 0.992910i \(0.537927\pi\)
\(98\) 0 0
\(99\) 5.50781e6 0.570500
\(100\) 0 0
\(101\) 3.50951e6 0.338939 0.169470 0.985535i \(-0.445795\pi\)
0.169470 + 0.985535i \(0.445795\pi\)
\(102\) 0 0
\(103\) −2.02866e7 −1.82927 −0.914636 0.404278i \(-0.867523\pi\)
−0.914636 + 0.404278i \(0.867523\pi\)
\(104\) 0 0
\(105\) 5.71328e6 0.481640
\(106\) 0 0
\(107\) 2.10480e7 1.66099 0.830495 0.557026i \(-0.188057\pi\)
0.830495 + 0.557026i \(0.188057\pi\)
\(108\) 0 0
\(109\) 9.59898e6 0.709958 0.354979 0.934874i \(-0.384488\pi\)
0.354979 + 0.934874i \(0.384488\pi\)
\(110\) 0 0
\(111\) 3.70440e6 0.257092
\(112\) 0 0
\(113\) 873393. 0.0569423 0.0284712 0.999595i \(-0.490936\pi\)
0.0284712 + 0.999595i \(0.490936\pi\)
\(114\) 0 0
\(115\) 1.02897e7 0.630903
\(116\) 0 0
\(117\) 9.41267e6 0.543328
\(118\) 0 0
\(119\) 2.97650e7 1.61917
\(120\) 0 0
\(121\) 3.75953e7 1.92923
\(122\) 0 0
\(123\) 4.78246e6 0.231731
\(124\) 0 0
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) 2.23717e7 0.969138 0.484569 0.874753i \(-0.338977\pi\)
0.484569 + 0.874753i \(0.338977\pi\)
\(128\) 0 0
\(129\) 213721. 0.00876562
\(130\) 0 0
\(131\) 3.10149e7 1.20537 0.602686 0.797979i \(-0.294097\pi\)
0.602686 + 0.797979i \(0.294097\pi\)
\(132\) 0 0
\(133\) −5.25833e7 −1.93806
\(134\) 0 0
\(135\) 2.46038e6 0.0860663
\(136\) 0 0
\(137\) 4.86660e6 0.161698 0.0808488 0.996726i \(-0.474237\pi\)
0.0808488 + 0.996726i \(0.474237\pi\)
\(138\) 0 0
\(139\) −4.84162e7 −1.52911 −0.764555 0.644558i \(-0.777041\pi\)
−0.764555 + 0.644558i \(0.777041\pi\)
\(140\) 0 0
\(141\) 7.87000e6 0.236433
\(142\) 0 0
\(143\) 9.75521e7 2.78972
\(144\) 0 0
\(145\) −1.97485e7 −0.537955
\(146\) 0 0
\(147\) −5.51369e7 −1.43163
\(148\) 0 0
\(149\) −1.58127e6 −0.0391610 −0.0195805 0.999808i \(-0.506233\pi\)
−0.0195805 + 0.999808i \(0.506233\pi\)
\(150\) 0 0
\(151\) −1.68785e7 −0.398946 −0.199473 0.979903i \(-0.563923\pi\)
−0.199473 + 0.979903i \(0.563923\pi\)
\(152\) 0 0
\(153\) 1.28180e7 0.289336
\(154\) 0 0
\(155\) −1.60241e7 −0.345631
\(156\) 0 0
\(157\) 1.64799e7 0.339864 0.169932 0.985456i \(-0.445645\pi\)
0.169932 + 0.985456i \(0.445645\pi\)
\(158\) 0 0
\(159\) 2.09768e7 0.413855
\(160\) 0 0
\(161\) −1.39350e8 −2.63157
\(162\) 0 0
\(163\) 5.60123e7 1.01304 0.506520 0.862228i \(-0.330931\pi\)
0.506520 + 0.862228i \(0.330931\pi\)
\(164\) 0 0
\(165\) 2.54991e7 0.441907
\(166\) 0 0
\(167\) −1.14884e7 −0.190877 −0.0954385 0.995435i \(-0.530425\pi\)
−0.0954385 + 0.995435i \(0.530425\pi\)
\(168\) 0 0
\(169\) 1.03965e8 1.65685
\(170\) 0 0
\(171\) −2.26445e7 −0.346320
\(172\) 0 0
\(173\) −1.15198e7 −0.169155 −0.0845776 0.996417i \(-0.526954\pi\)
−0.0845776 + 0.996417i \(0.526954\pi\)
\(174\) 0 0
\(175\) 2.64504e7 0.373077
\(176\) 0 0
\(177\) −2.48134e7 −0.336340
\(178\) 0 0
\(179\) −8.58637e7 −1.11898 −0.559492 0.828835i \(-0.689004\pi\)
−0.559492 + 0.828835i \(0.689004\pi\)
\(180\) 0 0
\(181\) 8.81910e7 1.10548 0.552738 0.833355i \(-0.313583\pi\)
0.552738 + 0.833355i \(0.313583\pi\)
\(182\) 0 0
\(183\) −5.63872e7 −0.680146
\(184\) 0 0
\(185\) 1.71500e7 0.199142
\(186\) 0 0
\(187\) 1.32845e8 1.48559
\(188\) 0 0
\(189\) −3.33198e7 −0.358993
\(190\) 0 0
\(191\) −1.48367e8 −1.54071 −0.770355 0.637615i \(-0.779921\pi\)
−0.770355 + 0.637615i \(0.779921\pi\)
\(192\) 0 0
\(193\) 1.15408e8 1.15554 0.577769 0.816200i \(-0.303923\pi\)
0.577769 + 0.816200i \(0.303923\pi\)
\(194\) 0 0
\(195\) 4.35772e7 0.420860
\(196\) 0 0
\(197\) 5.25418e7 0.489636 0.244818 0.969569i \(-0.421272\pi\)
0.244818 + 0.969569i \(0.421272\pi\)
\(198\) 0 0
\(199\) 1.89448e8 1.70414 0.852068 0.523431i \(-0.175348\pi\)
0.852068 + 0.523431i \(0.175348\pi\)
\(200\) 0 0
\(201\) −4.12872e7 −0.358615
\(202\) 0 0
\(203\) 2.67445e8 2.24388
\(204\) 0 0
\(205\) 2.21410e7 0.179498
\(206\) 0 0
\(207\) −6.00098e7 −0.470247
\(208\) 0 0
\(209\) −2.34686e8 −1.77818
\(210\) 0 0
\(211\) −2.55914e8 −1.87545 −0.937725 0.347379i \(-0.887072\pi\)
−0.937725 + 0.347379i \(0.887072\pi\)
\(212\) 0 0
\(213\) 7.39947e7 0.524653
\(214\) 0 0
\(215\) 989448. 0.00678982
\(216\) 0 0
\(217\) 2.17008e8 1.44167
\(218\) 0 0
\(219\) −1.07556e8 −0.691958
\(220\) 0 0
\(221\) 2.27028e8 1.41484
\(222\) 0 0
\(223\) −2.85375e8 −1.72325 −0.861625 0.507546i \(-0.830553\pi\)
−0.861625 + 0.507546i \(0.830553\pi\)
\(224\) 0 0
\(225\) 1.13906e7 0.0666667
\(226\) 0 0
\(227\) 1.64896e8 0.935663 0.467831 0.883818i \(-0.345035\pi\)
0.467831 + 0.883818i \(0.345035\pi\)
\(228\) 0 0
\(229\) 2.46143e7 0.135445 0.0677226 0.997704i \(-0.478427\pi\)
0.0677226 + 0.997704i \(0.478427\pi\)
\(230\) 0 0
\(231\) −3.45324e8 −1.84325
\(232\) 0 0
\(233\) −4.02168e7 −0.208287 −0.104143 0.994562i \(-0.533210\pi\)
−0.104143 + 0.994562i \(0.533210\pi\)
\(234\) 0 0
\(235\) 3.64352e7 0.183140
\(236\) 0 0
\(237\) 1.07572e8 0.524905
\(238\) 0 0
\(239\) −1.65900e8 −0.786058 −0.393029 0.919526i \(-0.628573\pi\)
−0.393029 + 0.919526i \(0.628573\pi\)
\(240\) 0 0
\(241\) 4.44599e7 0.204602 0.102301 0.994754i \(-0.467380\pi\)
0.102301 + 0.994754i \(0.467380\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) −2.55263e8 −1.10894
\(246\) 0 0
\(247\) −4.01071e8 −1.69349
\(248\) 0 0
\(249\) 1.35503e8 0.556225
\(250\) 0 0
\(251\) −2.17092e8 −0.866534 −0.433267 0.901266i \(-0.642639\pi\)
−0.433267 + 0.901266i \(0.642639\pi\)
\(252\) 0 0
\(253\) −6.21936e8 −2.41448
\(254\) 0 0
\(255\) 5.93428e7 0.224118
\(256\) 0 0
\(257\) −2.62078e8 −0.963084 −0.481542 0.876423i \(-0.659923\pi\)
−0.481542 + 0.876423i \(0.659923\pi\)
\(258\) 0 0
\(259\) −2.32256e8 −0.830648
\(260\) 0 0
\(261\) 1.15173e8 0.400968
\(262\) 0 0
\(263\) 1.61193e8 0.546388 0.273194 0.961959i \(-0.411920\pi\)
0.273194 + 0.961959i \(0.411920\pi\)
\(264\) 0 0
\(265\) 9.71146e7 0.320571
\(266\) 0 0
\(267\) 3.02955e8 0.974065
\(268\) 0 0
\(269\) −4.83488e8 −1.51444 −0.757221 0.653159i \(-0.773444\pi\)
−0.757221 + 0.653159i \(0.773444\pi\)
\(270\) 0 0
\(271\) 1.72618e8 0.526858 0.263429 0.964679i \(-0.415147\pi\)
0.263429 + 0.964679i \(0.415147\pi\)
\(272\) 0 0
\(273\) −5.90148e8 −1.75546
\(274\) 0 0
\(275\) 1.18051e8 0.342300
\(276\) 0 0
\(277\) 3.74034e8 1.05738 0.528690 0.848815i \(-0.322683\pi\)
0.528690 + 0.848815i \(0.322683\pi\)
\(278\) 0 0
\(279\) 9.34527e7 0.257618
\(280\) 0 0
\(281\) 2.01716e8 0.542335 0.271168 0.962532i \(-0.412590\pi\)
0.271168 + 0.962532i \(0.412590\pi\)
\(282\) 0 0
\(283\) 5.12679e8 1.34460 0.672300 0.740279i \(-0.265307\pi\)
0.672300 + 0.740279i \(0.265307\pi\)
\(284\) 0 0
\(285\) −1.04836e8 −0.268258
\(286\) 0 0
\(287\) −2.99847e8 −0.748708
\(288\) 0 0
\(289\) −1.01175e8 −0.246565
\(290\) 0 0
\(291\) 5.76987e7 0.137259
\(292\) 0 0
\(293\) −2.32116e8 −0.539098 −0.269549 0.962987i \(-0.586875\pi\)
−0.269549 + 0.962987i \(0.586875\pi\)
\(294\) 0 0
\(295\) −1.14877e8 −0.260528
\(296\) 0 0
\(297\) −1.48711e8 −0.329378
\(298\) 0 0
\(299\) −1.06287e9 −2.29949
\(300\) 0 0
\(301\) −1.33997e7 −0.0283212
\(302\) 0 0
\(303\) −9.47568e7 −0.195687
\(304\) 0 0
\(305\) −2.61052e8 −0.526839
\(306\) 0 0
\(307\) 2.50803e8 0.494708 0.247354 0.968925i \(-0.420439\pi\)
0.247354 + 0.968925i \(0.420439\pi\)
\(308\) 0 0
\(309\) 5.47737e8 1.05613
\(310\) 0 0
\(311\) 4.63371e8 0.873508 0.436754 0.899581i \(-0.356128\pi\)
0.436754 + 0.899581i \(0.356128\pi\)
\(312\) 0 0
\(313\) −9.96023e8 −1.83596 −0.917982 0.396622i \(-0.870182\pi\)
−0.917982 + 0.396622i \(0.870182\pi\)
\(314\) 0 0
\(315\) −1.54258e8 −0.278075
\(316\) 0 0
\(317\) −1.28892e8 −0.227258 −0.113629 0.993523i \(-0.536247\pi\)
−0.113629 + 0.993523i \(0.536247\pi\)
\(318\) 0 0
\(319\) 1.19364e9 2.05877
\(320\) 0 0
\(321\) −5.68295e8 −0.958973
\(322\) 0 0
\(323\) −5.46173e8 −0.901823
\(324\) 0 0
\(325\) 2.01746e8 0.325997
\(326\) 0 0
\(327\) −2.59172e8 −0.409894
\(328\) 0 0
\(329\) −4.93427e8 −0.763901
\(330\) 0 0
\(331\) −4.34739e8 −0.658917 −0.329458 0.944170i \(-0.606866\pi\)
−0.329458 + 0.944170i \(0.606866\pi\)
\(332\) 0 0
\(333\) −1.00019e8 −0.148432
\(334\) 0 0
\(335\) −1.91144e8 −0.277782
\(336\) 0 0
\(337\) 3.00957e8 0.428350 0.214175 0.976795i \(-0.431294\pi\)
0.214175 + 0.976795i \(0.431294\pi\)
\(338\) 0 0
\(339\) −2.35816e7 −0.0328757
\(340\) 0 0
\(341\) 9.68535e8 1.32274
\(342\) 0 0
\(343\) 2.06281e9 2.76013
\(344\) 0 0
\(345\) −2.77823e8 −0.364252
\(346\) 0 0
\(347\) 2.45979e7 0.0316043 0.0158021 0.999875i \(-0.494970\pi\)
0.0158021 + 0.999875i \(0.494970\pi\)
\(348\) 0 0
\(349\) 1.48910e9 1.87515 0.937575 0.347784i \(-0.113066\pi\)
0.937575 + 0.347784i \(0.113066\pi\)
\(350\) 0 0
\(351\) −2.54142e8 −0.313691
\(352\) 0 0
\(353\) −9.72005e8 −1.17613 −0.588067 0.808812i \(-0.700111\pi\)
−0.588067 + 0.808812i \(0.700111\pi\)
\(354\) 0 0
\(355\) 3.42568e8 0.406394
\(356\) 0 0
\(357\) −8.03655e8 −0.934826
\(358\) 0 0
\(359\) 6.72359e8 0.766956 0.383478 0.923550i \(-0.374726\pi\)
0.383478 + 0.923550i \(0.374726\pi\)
\(360\) 0 0
\(361\) 7.10052e7 0.0794356
\(362\) 0 0
\(363\) −1.01507e9 −1.11384
\(364\) 0 0
\(365\) −4.97944e8 −0.535988
\(366\) 0 0
\(367\) −1.87253e8 −0.197741 −0.0988706 0.995100i \(-0.531523\pi\)
−0.0988706 + 0.995100i \(0.531523\pi\)
\(368\) 0 0
\(369\) −1.29126e8 −0.133790
\(370\) 0 0
\(371\) −1.31518e9 −1.33714
\(372\) 0 0
\(373\) 1.43161e9 1.42838 0.714192 0.699950i \(-0.246794\pi\)
0.714192 + 0.699950i \(0.246794\pi\)
\(374\) 0 0
\(375\) 5.27344e7 0.0516398
\(376\) 0 0
\(377\) 2.03990e9 1.96071
\(378\) 0 0
\(379\) 3.52865e8 0.332944 0.166472 0.986046i \(-0.446762\pi\)
0.166472 + 0.986046i \(0.446762\pi\)
\(380\) 0 0
\(381\) −6.04035e8 −0.559532
\(382\) 0 0
\(383\) 9.41925e8 0.856684 0.428342 0.903617i \(-0.359098\pi\)
0.428342 + 0.903617i \(0.359098\pi\)
\(384\) 0 0
\(385\) −1.59872e9 −1.42778
\(386\) 0 0
\(387\) −5.77046e6 −0.00506084
\(388\) 0 0
\(389\) 1.70748e9 1.47073 0.735363 0.677674i \(-0.237012\pi\)
0.735363 + 0.677674i \(0.237012\pi\)
\(390\) 0 0
\(391\) −1.44740e9 −1.22453
\(392\) 0 0
\(393\) −8.37402e8 −0.695922
\(394\) 0 0
\(395\) 4.98020e8 0.406590
\(396\) 0 0
\(397\) 2.43384e9 1.95220 0.976101 0.217317i \(-0.0697305\pi\)
0.976101 + 0.217317i \(0.0697305\pi\)
\(398\) 0 0
\(399\) 1.41975e9 1.11894
\(400\) 0 0
\(401\) −3.90896e8 −0.302731 −0.151365 0.988478i \(-0.548367\pi\)
−0.151365 + 0.988478i \(0.548367\pi\)
\(402\) 0 0
\(403\) 1.65520e9 1.25974
\(404\) 0 0
\(405\) −6.64301e7 −0.0496904
\(406\) 0 0
\(407\) −1.03659e9 −0.762124
\(408\) 0 0
\(409\) 5.70045e8 0.411981 0.205991 0.978554i \(-0.433958\pi\)
0.205991 + 0.978554i \(0.433958\pi\)
\(410\) 0 0
\(411\) −1.31398e8 −0.0933562
\(412\) 0 0
\(413\) 1.55573e9 1.08670
\(414\) 0 0
\(415\) 6.27327e8 0.430850
\(416\) 0 0
\(417\) 1.30724e9 0.882833
\(418\) 0 0
\(419\) −1.13885e8 −0.0756338 −0.0378169 0.999285i \(-0.512040\pi\)
−0.0378169 + 0.999285i \(0.512040\pi\)
\(420\) 0 0
\(421\) −7.26241e8 −0.474344 −0.237172 0.971468i \(-0.576221\pi\)
−0.237172 + 0.971468i \(0.576221\pi\)
\(422\) 0 0
\(423\) −2.12490e8 −0.136505
\(424\) 0 0
\(425\) 2.74735e8 0.173601
\(426\) 0 0
\(427\) 3.53532e9 2.19751
\(428\) 0 0
\(429\) −2.63391e9 −1.61065
\(430\) 0 0
\(431\) −1.98831e9 −1.19623 −0.598113 0.801412i \(-0.704082\pi\)
−0.598113 + 0.801412i \(0.704082\pi\)
\(432\) 0 0
\(433\) 1.76834e9 1.04679 0.523395 0.852090i \(-0.324665\pi\)
0.523395 + 0.852090i \(0.324665\pi\)
\(434\) 0 0
\(435\) 5.33209e8 0.310588
\(436\) 0 0
\(437\) 2.55700e9 1.46570
\(438\) 0 0
\(439\) −5.84269e8 −0.329600 −0.164800 0.986327i \(-0.552698\pi\)
−0.164800 + 0.986327i \(0.552698\pi\)
\(440\) 0 0
\(441\) 1.48870e9 0.826553
\(442\) 0 0
\(443\) −1.41943e9 −0.775714 −0.387857 0.921720i \(-0.626785\pi\)
−0.387857 + 0.921720i \(0.626785\pi\)
\(444\) 0 0
\(445\) 1.40257e9 0.754508
\(446\) 0 0
\(447\) 4.26943e7 0.0226096
\(448\) 0 0
\(449\) 7.27226e8 0.379147 0.189573 0.981867i \(-0.439290\pi\)
0.189573 + 0.981867i \(0.439290\pi\)
\(450\) 0 0
\(451\) −1.33825e9 −0.686943
\(452\) 0 0
\(453\) 4.55720e8 0.230332
\(454\) 0 0
\(455\) −2.73217e9 −1.35978
\(456\) 0 0
\(457\) −3.13175e9 −1.53490 −0.767451 0.641107i \(-0.778475\pi\)
−0.767451 + 0.641107i \(0.778475\pi\)
\(458\) 0 0
\(459\) −3.46087e8 −0.167048
\(460\) 0 0
\(461\) −9.30032e8 −0.442125 −0.221062 0.975260i \(-0.570952\pi\)
−0.221062 + 0.975260i \(0.570952\pi\)
\(462\) 0 0
\(463\) 1.22920e9 0.575557 0.287778 0.957697i \(-0.407083\pi\)
0.287778 + 0.957697i \(0.407083\pi\)
\(464\) 0 0
\(465\) 4.32651e8 0.199550
\(466\) 0 0
\(467\) −4.96824e8 −0.225732 −0.112866 0.993610i \(-0.536003\pi\)
−0.112866 + 0.993610i \(0.536003\pi\)
\(468\) 0 0
\(469\) 2.58859e9 1.15867
\(470\) 0 0
\(471\) −4.44957e8 −0.196221
\(472\) 0 0
\(473\) −5.98046e7 −0.0259849
\(474\) 0 0
\(475\) −4.85351e8 −0.207792
\(476\) 0 0
\(477\) −5.66373e8 −0.238939
\(478\) 0 0
\(479\) −1.70976e9 −0.710820 −0.355410 0.934711i \(-0.615659\pi\)
−0.355410 + 0.934711i \(0.615659\pi\)
\(480\) 0 0
\(481\) −1.77150e9 −0.725826
\(482\) 0 0
\(483\) 3.76244e9 1.51934
\(484\) 0 0
\(485\) 2.67124e8 0.106320
\(486\) 0 0
\(487\) −3.41415e8 −0.133946 −0.0669732 0.997755i \(-0.521334\pi\)
−0.0669732 + 0.997755i \(0.521334\pi\)
\(488\) 0 0
\(489\) −1.51233e9 −0.584879
\(490\) 0 0
\(491\) −2.65319e9 −1.01154 −0.505770 0.862669i \(-0.668791\pi\)
−0.505770 + 0.862669i \(0.668791\pi\)
\(492\) 0 0
\(493\) 2.77791e9 1.04413
\(494\) 0 0
\(495\) −6.88476e8 −0.255135
\(496\) 0 0
\(497\) −4.63926e9 −1.69512
\(498\) 0 0
\(499\) −1.83957e9 −0.662772 −0.331386 0.943495i \(-0.607516\pi\)
−0.331386 + 0.943495i \(0.607516\pi\)
\(500\) 0 0
\(501\) 3.10188e8 0.110203
\(502\) 0 0
\(503\) 4.81741e9 1.68782 0.843909 0.536487i \(-0.180249\pi\)
0.843909 + 0.536487i \(0.180249\pi\)
\(504\) 0 0
\(505\) −4.38689e8 −0.151578
\(506\) 0 0
\(507\) −2.80706e9 −0.956584
\(508\) 0 0
\(509\) 3.51073e9 1.18001 0.590004 0.807400i \(-0.299126\pi\)
0.590004 + 0.807400i \(0.299126\pi\)
\(510\) 0 0
\(511\) 6.74344e9 2.23567
\(512\) 0 0
\(513\) 6.11403e8 0.199948
\(514\) 0 0
\(515\) 2.53582e9 0.818075
\(516\) 0 0
\(517\) −2.20223e9 −0.700883
\(518\) 0 0
\(519\) 3.11036e8 0.0976617
\(520\) 0 0
\(521\) −3.61701e9 −1.12051 −0.560257 0.828319i \(-0.689298\pi\)
−0.560257 + 0.828319i \(0.689298\pi\)
\(522\) 0 0
\(523\) 1.38692e9 0.423930 0.211965 0.977277i \(-0.432014\pi\)
0.211965 + 0.977277i \(0.432014\pi\)
\(524\) 0 0
\(525\) −7.14160e8 −0.215396
\(526\) 0 0
\(527\) 2.25402e9 0.670844
\(528\) 0 0
\(529\) 3.37143e9 0.990191
\(530\) 0 0
\(531\) 6.69961e8 0.194186
\(532\) 0 0
\(533\) −2.28704e9 −0.654226
\(534\) 0 0
\(535\) −2.63100e9 −0.742818
\(536\) 0 0
\(537\) 2.31832e9 0.646046
\(538\) 0 0
\(539\) 1.54287e10 4.24394
\(540\) 0 0
\(541\) 3.53611e9 0.960143 0.480071 0.877229i \(-0.340611\pi\)
0.480071 + 0.877229i \(0.340611\pi\)
\(542\) 0 0
\(543\) −2.38116e9 −0.638247
\(544\) 0 0
\(545\) −1.19987e9 −0.317503
\(546\) 0 0
\(547\) 3.34133e9 0.872897 0.436449 0.899729i \(-0.356236\pi\)
0.436449 + 0.899729i \(0.356236\pi\)
\(548\) 0 0
\(549\) 1.52246e9 0.392682
\(550\) 0 0
\(551\) −4.90749e9 −1.24977
\(552\) 0 0
\(553\) −6.74447e9 −1.69594
\(554\) 0 0
\(555\) −4.63051e8 −0.114975
\(556\) 0 0
\(557\) 5.70595e9 1.39906 0.699528 0.714606i \(-0.253394\pi\)
0.699528 + 0.714606i \(0.253394\pi\)
\(558\) 0 0
\(559\) −1.02204e8 −0.0247473
\(560\) 0 0
\(561\) −3.58682e9 −0.857708
\(562\) 0 0
\(563\) −7.54884e9 −1.78279 −0.891397 0.453224i \(-0.850274\pi\)
−0.891397 + 0.453224i \(0.850274\pi\)
\(564\) 0 0
\(565\) −1.09174e8 −0.0254654
\(566\) 0 0
\(567\) 8.99635e8 0.207265
\(568\) 0 0
\(569\) −3.70964e9 −0.844186 −0.422093 0.906552i \(-0.638704\pi\)
−0.422093 + 0.906552i \(0.638704\pi\)
\(570\) 0 0
\(571\) −9.03703e8 −0.203142 −0.101571 0.994828i \(-0.532387\pi\)
−0.101571 + 0.994828i \(0.532387\pi\)
\(572\) 0 0
\(573\) 4.00591e9 0.889530
\(574\) 0 0
\(575\) −1.28622e9 −0.282148
\(576\) 0 0
\(577\) −8.61561e8 −0.186711 −0.0933557 0.995633i \(-0.529759\pi\)
−0.0933557 + 0.995633i \(0.529759\pi\)
\(578\) 0 0
\(579\) −3.11601e9 −0.667150
\(580\) 0 0
\(581\) −8.49563e9 −1.79713
\(582\) 0 0
\(583\) −5.86984e9 −1.22683
\(584\) 0 0
\(585\) −1.17658e9 −0.242984
\(586\) 0 0
\(587\) 3.89214e9 0.794246 0.397123 0.917765i \(-0.370009\pi\)
0.397123 + 0.917765i \(0.370009\pi\)
\(588\) 0 0
\(589\) −3.98199e9 −0.802965
\(590\) 0 0
\(591\) −1.41863e9 −0.282691
\(592\) 0 0
\(593\) 2.08455e9 0.410507 0.205254 0.978709i \(-0.434198\pi\)
0.205254 + 0.978709i \(0.434198\pi\)
\(594\) 0 0
\(595\) −3.72062e9 −0.724113
\(596\) 0 0
\(597\) −5.11510e9 −0.983884
\(598\) 0 0
\(599\) 2.98088e9 0.566696 0.283348 0.959017i \(-0.408555\pi\)
0.283348 + 0.959017i \(0.408555\pi\)
\(600\) 0 0
\(601\) −5.37665e9 −1.01030 −0.505151 0.863031i \(-0.668563\pi\)
−0.505151 + 0.863031i \(0.668563\pi\)
\(602\) 0 0
\(603\) 1.11475e9 0.207047
\(604\) 0 0
\(605\) −4.69941e9 −0.862778
\(606\) 0 0
\(607\) 1.08127e10 1.96233 0.981165 0.193173i \(-0.0618780\pi\)
0.981165 + 0.193173i \(0.0618780\pi\)
\(608\) 0 0
\(609\) −7.22103e9 −1.29550
\(610\) 0 0
\(611\) −3.76354e9 −0.667501
\(612\) 0 0
\(613\) −6.17191e9 −1.08220 −0.541100 0.840958i \(-0.681992\pi\)
−0.541100 + 0.840958i \(0.681992\pi\)
\(614\) 0 0
\(615\) −5.97807e8 −0.103633
\(616\) 0 0
\(617\) −2.82724e9 −0.484579 −0.242289 0.970204i \(-0.577898\pi\)
−0.242289 + 0.970204i \(0.577898\pi\)
\(618\) 0 0
\(619\) −4.42911e9 −0.750584 −0.375292 0.926907i \(-0.622458\pi\)
−0.375292 + 0.926907i \(0.622458\pi\)
\(620\) 0 0
\(621\) 1.62026e9 0.271497
\(622\) 0 0
\(623\) −1.89944e10 −3.14715
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) 6.33652e9 1.02663
\(628\) 0 0
\(629\) −2.41240e9 −0.386520
\(630\) 0 0
\(631\) −2.16710e9 −0.343381 −0.171690 0.985151i \(-0.554923\pi\)
−0.171690 + 0.985151i \(0.554923\pi\)
\(632\) 0 0
\(633\) 6.90968e9 1.08279
\(634\) 0 0
\(635\) −2.79646e9 −0.433411
\(636\) 0 0
\(637\) 2.63672e10 4.04181
\(638\) 0 0
\(639\) −1.99786e9 −0.302909
\(640\) 0 0
\(641\) −5.53630e9 −0.830264 −0.415132 0.909761i \(-0.636265\pi\)
−0.415132 + 0.909761i \(0.636265\pi\)
\(642\) 0 0
\(643\) −4.42601e9 −0.656559 −0.328280 0.944581i \(-0.606469\pi\)
−0.328280 + 0.944581i \(0.606469\pi\)
\(644\) 0 0
\(645\) −2.67151e7 −0.00392011
\(646\) 0 0
\(647\) 1.09455e10 1.58881 0.794404 0.607389i \(-0.207783\pi\)
0.794404 + 0.607389i \(0.207783\pi\)
\(648\) 0 0
\(649\) 6.94341e9 0.997049
\(650\) 0 0
\(651\) −5.85922e9 −0.832350
\(652\) 0 0
\(653\) 7.33718e9 1.03118 0.515588 0.856836i \(-0.327573\pi\)
0.515588 + 0.856836i \(0.327573\pi\)
\(654\) 0 0
\(655\) −3.87686e9 −0.539059
\(656\) 0 0
\(657\) 2.90401e9 0.399502
\(658\) 0 0
\(659\) 3.76188e9 0.512042 0.256021 0.966671i \(-0.417588\pi\)
0.256021 + 0.966671i \(0.417588\pi\)
\(660\) 0 0
\(661\) −5.43289e9 −0.731688 −0.365844 0.930676i \(-0.619220\pi\)
−0.365844 + 0.930676i \(0.619220\pi\)
\(662\) 0 0
\(663\) −6.12976e9 −0.816857
\(664\) 0 0
\(665\) 6.57291e9 0.866726
\(666\) 0 0
\(667\) −1.30052e10 −1.69698
\(668\) 0 0
\(669\) 7.70511e9 0.994919
\(670\) 0 0
\(671\) 1.57786e10 2.01623
\(672\) 0 0
\(673\) 4.38179e9 0.554113 0.277057 0.960854i \(-0.410641\pi\)
0.277057 + 0.960854i \(0.410641\pi\)
\(674\) 0 0
\(675\) −3.07547e8 −0.0384900
\(676\) 0 0
\(677\) −3.78434e9 −0.468737 −0.234369 0.972148i \(-0.575302\pi\)
−0.234369 + 0.972148i \(0.575302\pi\)
\(678\) 0 0
\(679\) −3.61755e9 −0.443476
\(680\) 0 0
\(681\) −4.45219e9 −0.540205
\(682\) 0 0
\(683\) 6.76592e8 0.0812558 0.0406279 0.999174i \(-0.487064\pi\)
0.0406279 + 0.999174i \(0.487064\pi\)
\(684\) 0 0
\(685\) −6.08325e8 −0.0723134
\(686\) 0 0
\(687\) −6.64587e8 −0.0781994
\(688\) 0 0
\(689\) −1.00314e10 −1.16840
\(690\) 0 0
\(691\) −3.51846e9 −0.405676 −0.202838 0.979212i \(-0.565017\pi\)
−0.202838 + 0.979212i \(0.565017\pi\)
\(692\) 0 0
\(693\) 9.32374e9 1.06420
\(694\) 0 0
\(695\) 6.05203e9 0.683839
\(696\) 0 0
\(697\) −3.11445e9 −0.348391
\(698\) 0 0
\(699\) 1.08585e9 0.120255
\(700\) 0 0
\(701\) −1.05800e10 −1.16004 −0.580019 0.814603i \(-0.696955\pi\)
−0.580019 + 0.814603i \(0.696955\pi\)
\(702\) 0 0
\(703\) 4.26178e9 0.462644
\(704\) 0 0
\(705\) −9.83750e8 −0.105736
\(706\) 0 0
\(707\) 5.94098e9 0.632252
\(708\) 0 0
\(709\) −5.70513e9 −0.601179 −0.300590 0.953754i \(-0.597183\pi\)
−0.300590 + 0.953754i \(0.597183\pi\)
\(710\) 0 0
\(711\) −2.90445e9 −0.303054
\(712\) 0 0
\(713\) −1.05526e10 −1.09030
\(714\) 0 0
\(715\) −1.21940e10 −1.24760
\(716\) 0 0
\(717\) 4.47931e9 0.453831
\(718\) 0 0
\(719\) −1.62812e10 −1.63356 −0.816780 0.576950i \(-0.804243\pi\)
−0.816780 + 0.576950i \(0.804243\pi\)
\(720\) 0 0
\(721\) −3.43416e10 −3.41230
\(722\) 0 0
\(723\) −1.20042e9 −0.118127
\(724\) 0 0
\(725\) 2.46856e9 0.240581
\(726\) 0 0
\(727\) −1.13792e10 −1.09836 −0.549178 0.835706i \(-0.685059\pi\)
−0.549178 + 0.835706i \(0.685059\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −1.39180e8 −0.0131785
\(732\) 0 0
\(733\) −7.15194e9 −0.670749 −0.335374 0.942085i \(-0.608863\pi\)
−0.335374 + 0.942085i \(0.608863\pi\)
\(734\) 0 0
\(735\) 6.89211e9 0.640245
\(736\) 0 0
\(737\) 1.15532e10 1.06308
\(738\) 0 0
\(739\) −1.49488e10 −1.36255 −0.681273 0.732029i \(-0.738573\pi\)
−0.681273 + 0.732029i \(0.738573\pi\)
\(740\) 0 0
\(741\) 1.08289e10 0.977736
\(742\) 0 0
\(743\) −3.53086e9 −0.315805 −0.157903 0.987455i \(-0.550473\pi\)
−0.157903 + 0.987455i \(0.550473\pi\)
\(744\) 0 0
\(745\) 1.97659e8 0.0175133
\(746\) 0 0
\(747\) −3.65857e9 −0.321136
\(748\) 0 0
\(749\) 3.56305e10 3.09839
\(750\) 0 0
\(751\) −1.74317e10 −1.50176 −0.750880 0.660439i \(-0.770370\pi\)
−0.750880 + 0.660439i \(0.770370\pi\)
\(752\) 0 0
\(753\) 5.86148e9 0.500293
\(754\) 0 0
\(755\) 2.10981e9 0.178414
\(756\) 0 0
\(757\) −1.57913e10 −1.32307 −0.661535 0.749915i \(-0.730095\pi\)
−0.661535 + 0.749915i \(0.730095\pi\)
\(758\) 0 0
\(759\) 1.67923e10 1.39400
\(760\) 0 0
\(761\) 1.59902e10 1.31524 0.657622 0.753348i \(-0.271562\pi\)
0.657622 + 0.753348i \(0.271562\pi\)
\(762\) 0 0
\(763\) 1.62494e10 1.32434
\(764\) 0 0
\(765\) −1.60226e9 −0.129395
\(766\) 0 0
\(767\) 1.18661e10 0.949562
\(768\) 0 0
\(769\) 1.67093e10 1.32500 0.662499 0.749063i \(-0.269496\pi\)
0.662499 + 0.749063i \(0.269496\pi\)
\(770\) 0 0
\(771\) 7.07610e9 0.556037
\(772\) 0 0
\(773\) 7.70940e9 0.600334 0.300167 0.953887i \(-0.402958\pi\)
0.300167 + 0.953887i \(0.402958\pi\)
\(774\) 0 0
\(775\) 2.00302e9 0.154571
\(776\) 0 0
\(777\) 6.27090e9 0.479575
\(778\) 0 0
\(779\) 5.50204e9 0.417006
\(780\) 0 0
\(781\) −2.07056e10 −1.55528
\(782\) 0 0
\(783\) −3.10967e9 −0.231499
\(784\) 0 0
\(785\) −2.05999e9 −0.151992
\(786\) 0 0
\(787\) 6.10258e9 0.446275 0.223137 0.974787i \(-0.428370\pi\)
0.223137 + 0.974787i \(0.428370\pi\)
\(788\) 0 0
\(789\) −4.35221e9 −0.315457
\(790\) 0 0
\(791\) 1.47850e9 0.106219
\(792\) 0 0
\(793\) 2.69651e10 1.92020
\(794\) 0 0
\(795\) −2.62210e9 −0.185082
\(796\) 0 0
\(797\) −1.42109e9 −0.0994300 −0.0497150 0.998763i \(-0.515831\pi\)
−0.0497150 + 0.998763i \(0.515831\pi\)
\(798\) 0 0
\(799\) −5.12513e9 −0.355461
\(800\) 0 0
\(801\) −8.17977e9 −0.562377
\(802\) 0 0
\(803\) 3.00969e10 2.05124
\(804\) 0 0
\(805\) 1.74187e10 1.17688
\(806\) 0 0
\(807\) 1.30542e10 0.874364
\(808\) 0 0
\(809\) −2.57373e10 −1.70900 −0.854502 0.519448i \(-0.826138\pi\)
−0.854502 + 0.519448i \(0.826138\pi\)
\(810\) 0 0
\(811\) 9.67313e9 0.636787 0.318393 0.947959i \(-0.396857\pi\)
0.318393 + 0.947959i \(0.396857\pi\)
\(812\) 0 0
\(813\) −4.66069e9 −0.304182
\(814\) 0 0
\(815\) −7.00154e9 −0.453046
\(816\) 0 0
\(817\) 2.45878e8 0.0157740
\(818\) 0 0
\(819\) 1.59340e10 1.01352
\(820\) 0 0
\(821\) 3.58162e9 0.225880 0.112940 0.993602i \(-0.463973\pi\)
0.112940 + 0.993602i \(0.463973\pi\)
\(822\) 0 0
\(823\) −1.33606e10 −0.835461 −0.417730 0.908571i \(-0.637174\pi\)
−0.417730 + 0.908571i \(0.637174\pi\)
\(824\) 0 0
\(825\) −3.18739e9 −0.197627
\(826\) 0 0
\(827\) −1.84221e10 −1.13258 −0.566290 0.824206i \(-0.691622\pi\)
−0.566290 + 0.824206i \(0.691622\pi\)
\(828\) 0 0
\(829\) −1.59999e10 −0.975387 −0.487693 0.873015i \(-0.662162\pi\)
−0.487693 + 0.873015i \(0.662162\pi\)
\(830\) 0 0
\(831\) −1.00989e10 −0.610479
\(832\) 0 0
\(833\) 3.59065e10 2.15236
\(834\) 0 0
\(835\) 1.43606e9 0.0853628
\(836\) 0 0
\(837\) −2.52322e9 −0.148736
\(838\) 0 0
\(839\) 2.54806e10 1.48951 0.744754 0.667339i \(-0.232567\pi\)
0.744754 + 0.667339i \(0.232567\pi\)
\(840\) 0 0
\(841\) 7.71028e9 0.446976
\(842\) 0 0
\(843\) −5.44633e9 −0.313118
\(844\) 0 0
\(845\) −1.29956e10 −0.740967
\(846\) 0 0
\(847\) 6.36421e10 3.59876
\(848\) 0 0
\(849\) −1.38423e10 −0.776305
\(850\) 0 0
\(851\) 1.12940e10 0.628197
\(852\) 0 0
\(853\) −1.17789e9 −0.0649803 −0.0324902 0.999472i \(-0.510344\pi\)
−0.0324902 + 0.999472i \(0.510344\pi\)
\(854\) 0 0
\(855\) 2.83057e9 0.154879
\(856\) 0 0
\(857\) 3.84024e8 0.0208413 0.0104207 0.999946i \(-0.496683\pi\)
0.0104207 + 0.999946i \(0.496683\pi\)
\(858\) 0 0
\(859\) 5.43846e9 0.292752 0.146376 0.989229i \(-0.453239\pi\)
0.146376 + 0.989229i \(0.453239\pi\)
\(860\) 0 0
\(861\) 8.09586e9 0.432267
\(862\) 0 0
\(863\) −1.79788e10 −0.952187 −0.476093 0.879395i \(-0.657948\pi\)
−0.476093 + 0.879395i \(0.657948\pi\)
\(864\) 0 0
\(865\) 1.43998e9 0.0756485
\(866\) 0 0
\(867\) 2.73172e9 0.142354
\(868\) 0 0
\(869\) −3.01015e10 −1.55603
\(870\) 0 0
\(871\) 1.97441e10 1.01245
\(872\) 0 0
\(873\) −1.55787e9 −0.0792465
\(874\) 0 0
\(875\) −3.30629e9 −0.166845
\(876\) 0 0
\(877\) −1.88242e10 −0.942362 −0.471181 0.882037i \(-0.656172\pi\)
−0.471181 + 0.882037i \(0.656172\pi\)
\(878\) 0 0
\(879\) 6.26712e9 0.311248
\(880\) 0 0
\(881\) 1.52225e10 0.750018 0.375009 0.927021i \(-0.377640\pi\)
0.375009 + 0.927021i \(0.377640\pi\)
\(882\) 0 0
\(883\) 3.92105e10 1.91664 0.958318 0.285703i \(-0.0922270\pi\)
0.958318 + 0.285703i \(0.0922270\pi\)
\(884\) 0 0
\(885\) 3.10167e9 0.150416
\(886\) 0 0
\(887\) 1.69878e9 0.0817345 0.0408672 0.999165i \(-0.486988\pi\)
0.0408672 + 0.999165i \(0.486988\pi\)
\(888\) 0 0
\(889\) 3.78713e10 1.80781
\(890\) 0 0
\(891\) 4.01519e9 0.190167
\(892\) 0 0
\(893\) 9.05414e9 0.425468
\(894\) 0 0
\(895\) 1.07330e10 0.500425
\(896\) 0 0
\(897\) 2.86975e10 1.32761
\(898\) 0 0
\(899\) 2.02529e10 0.929670
\(900\) 0 0
\(901\) −1.36606e10 −0.622203
\(902\) 0 0
\(903\) 3.61792e8 0.0163513
\(904\) 0 0
\(905\) −1.10239e10 −0.494384
\(906\) 0 0
\(907\) −2.91325e10 −1.29644 −0.648220 0.761453i \(-0.724486\pi\)
−0.648220 + 0.761453i \(0.724486\pi\)
\(908\) 0 0
\(909\) 2.55843e9 0.112980
\(910\) 0 0
\(911\) −2.33098e10 −1.02147 −0.510733 0.859739i \(-0.670626\pi\)
−0.510733 + 0.859739i \(0.670626\pi\)
\(912\) 0 0
\(913\) −3.79171e10 −1.64887
\(914\) 0 0
\(915\) 7.04841e9 0.304170
\(916\) 0 0
\(917\) 5.25027e10 2.24848
\(918\) 0 0
\(919\) −2.11867e10 −0.900449 −0.450225 0.892915i \(-0.648656\pi\)
−0.450225 + 0.892915i \(0.648656\pi\)
\(920\) 0 0
\(921\) −6.77169e9 −0.285620
\(922\) 0 0
\(923\) −3.53853e10 −1.48121
\(924\) 0 0
\(925\) −2.14375e9 −0.0890592
\(926\) 0 0
\(927\) −1.47889e10 −0.609757
\(928\) 0 0
\(929\) −9.04776e9 −0.370242 −0.185121 0.982716i \(-0.559268\pi\)
−0.185121 + 0.982716i \(0.559268\pi\)
\(930\) 0 0
\(931\) −6.34329e10 −2.57626
\(932\) 0 0
\(933\) −1.25110e10 −0.504320
\(934\) 0 0
\(935\) −1.66056e10 −0.664377
\(936\) 0 0
\(937\) −7.58666e9 −0.301274 −0.150637 0.988589i \(-0.548133\pi\)
−0.150637 + 0.988589i \(0.548133\pi\)
\(938\) 0 0
\(939\) 2.68926e10 1.05999
\(940\) 0 0
\(941\) −2.50996e10 −0.981981 −0.490991 0.871165i \(-0.663365\pi\)
−0.490991 + 0.871165i \(0.663365\pi\)
\(942\) 0 0
\(943\) 1.45808e10 0.566228
\(944\) 0 0
\(945\) 4.16498e9 0.160547
\(946\) 0 0
\(947\) 1.59653e10 0.610875 0.305438 0.952212i \(-0.401197\pi\)
0.305438 + 0.952212i \(0.401197\pi\)
\(948\) 0 0
\(949\) 5.14346e10 1.95355
\(950\) 0 0
\(951\) 3.48008e9 0.131207
\(952\) 0 0
\(953\) −3.79999e10 −1.42219 −0.711094 0.703097i \(-0.751800\pi\)
−0.711094 + 0.703097i \(0.751800\pi\)
\(954\) 0 0
\(955\) 1.85459e10 0.689027
\(956\) 0 0
\(957\) −3.22284e10 −1.18863
\(958\) 0 0
\(959\) 8.23829e9 0.301628
\(960\) 0 0
\(961\) −1.10792e10 −0.402694
\(962\) 0 0
\(963\) 1.53440e10 0.553664
\(964\) 0 0
\(965\) −1.44260e10 −0.516772
\(966\) 0 0
\(967\) 4.67649e9 0.166313 0.0831567 0.996536i \(-0.473500\pi\)
0.0831567 + 0.996536i \(0.473500\pi\)
\(968\) 0 0
\(969\) 1.47467e10 0.520668
\(970\) 0 0
\(971\) −4.09960e10 −1.43706 −0.718529 0.695497i \(-0.755184\pi\)
−0.718529 + 0.695497i \(0.755184\pi\)
\(972\) 0 0
\(973\) −8.19601e10 −2.85238
\(974\) 0 0
\(975\) −5.44715e9 −0.188215
\(976\) 0 0
\(977\) 3.28959e10 1.12852 0.564262 0.825596i \(-0.309161\pi\)
0.564262 + 0.825596i \(0.309161\pi\)
\(978\) 0 0
\(979\) −8.47745e10 −2.88752
\(980\) 0 0
\(981\) 6.99766e9 0.236653
\(982\) 0 0
\(983\) 1.32118e10 0.443635 0.221817 0.975088i \(-0.428801\pi\)
0.221817 + 0.975088i \(0.428801\pi\)
\(984\) 0 0
\(985\) −6.56772e9 −0.218972
\(986\) 0 0
\(987\) 1.33225e10 0.441038
\(988\) 0 0
\(989\) 6.51595e8 0.0214186
\(990\) 0 0
\(991\) 1.78336e10 0.582077 0.291038 0.956711i \(-0.405999\pi\)
0.291038 + 0.956711i \(0.405999\pi\)
\(992\) 0 0
\(993\) 1.17379e10 0.380426
\(994\) 0 0
\(995\) −2.36810e10 −0.762113
\(996\) 0 0
\(997\) −2.87838e10 −0.919845 −0.459923 0.887959i \(-0.652123\pi\)
−0.459923 + 0.887959i \(0.652123\pi\)
\(998\) 0 0
\(999\) 2.70051e9 0.0856972
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.a.o.1.2 2
4.3 odd 2 120.8.a.g.1.1 2
12.11 even 2 360.8.a.h.1.1 2
20.3 even 4 600.8.f.f.49.4 4
20.7 even 4 600.8.f.f.49.1 4
20.19 odd 2 600.8.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.8.a.g.1.1 2 4.3 odd 2
240.8.a.o.1.2 2 1.1 even 1 trivial
360.8.a.h.1.1 2 12.11 even 2
600.8.a.g.1.2 2 20.19 odd 2
600.8.f.f.49.1 4 20.7 even 4
600.8.f.f.49.4 4 20.3 even 4