Properties

Label 2400.2.w.h.2143.1
Level $2400$
Weight $2$
Character 2400.2143
Analytic conductor $19.164$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,2,Mod(607,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.607");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2143.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2400.2143
Dual form 2400.2.w.h.607.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-3.43916 - 3.43916i) q^{7} -1.00000i q^{9} -3.03528i q^{11} +(-2.63896 - 2.63896i) q^{13} +(0.682163 - 0.682163i) q^{17} -2.69677 q^{19} +4.86370 q^{21} +(-5.18154 + 5.18154i) q^{23} +(0.707107 + 0.707107i) q^{27} +0.399602i q^{29} +4.96008i q^{31} +(2.14626 + 2.14626i) q^{33} +(-4.29253 + 4.29253i) q^{37} +3.73205 q^{39} +10.9847 q^{41} +(5.83876 - 5.83876i) q^{43} +(-4.04989 - 4.04989i) q^{47} +16.6556i q^{49} +0.964724i q^{51} +(10.0599 + 10.0599i) q^{53} +(1.90691 - 1.90691i) q^{57} +3.46410 q^{59} -2.87780 q^{61} +(-3.43916 + 3.43916i) q^{63} +(-7.35275 - 7.35275i) q^{67} -7.32780i q^{69} +14.0857i q^{71} +(9.46410 + 9.46410i) q^{73} +(-10.4388 + 10.4388i) q^{77} +2.60645 q^{79} -1.00000 q^{81} +(-1.97934 + 1.97934i) q^{83} +(-0.282561 - 0.282561i) q^{87} -0.799203i q^{89} +18.1516i q^{91} +(-3.50731 - 3.50731i) q^{93} +(-8.94558 + 8.94558i) q^{97} -3.03528 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} + 8 q^{17} - 16 q^{19} + 8 q^{21} - 8 q^{23} - 8 q^{33} + 16 q^{37} + 16 q^{39} - 16 q^{41} + 24 q^{43} - 16 q^{47} + 8 q^{53} + 8 q^{57} - 24 q^{61} - 8 q^{63} + 8 q^{67} + 48 q^{73} - 8 q^{77}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.43916 3.43916i −1.29988 1.29988i −0.928469 0.371411i \(-0.878874\pi\)
−0.371411 0.928469i \(-0.621126\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 3.03528i 0.915170i −0.889166 0.457585i \(-0.848715\pi\)
0.889166 0.457585i \(-0.151285\pi\)
\(12\) 0 0
\(13\) −2.63896 2.63896i −0.731915 0.731915i 0.239084 0.970999i \(-0.423153\pi\)
−0.970999 + 0.239084i \(0.923153\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.682163 0.682163i 0.165449 0.165449i −0.619527 0.784976i \(-0.712675\pi\)
0.784976 + 0.619527i \(0.212675\pi\)
\(18\) 0 0
\(19\) −2.69677 −0.618683 −0.309341 0.950951i \(-0.600109\pi\)
−0.309341 + 0.950951i \(0.600109\pi\)
\(20\) 0 0
\(21\) 4.86370 1.06135
\(22\) 0 0
\(23\) −5.18154 + 5.18154i −1.08043 + 1.08043i −0.0839565 + 0.996469i \(0.526756\pi\)
−0.996469 + 0.0839565i \(0.973244\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 0.399602i 0.0742042i 0.999311 + 0.0371021i \(0.0118127\pi\)
−0.999311 + 0.0371021i \(0.988187\pi\)
\(30\) 0 0
\(31\) 4.96008i 0.890857i 0.895318 + 0.445428i \(0.146949\pi\)
−0.895318 + 0.445428i \(0.853051\pi\)
\(32\) 0 0
\(33\) 2.14626 + 2.14626i 0.373617 + 0.373617i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.29253 + 4.29253i −0.705687 + 0.705687i −0.965625 0.259938i \(-0.916298\pi\)
0.259938 + 0.965625i \(0.416298\pi\)
\(38\) 0 0
\(39\) 3.73205 0.597606
\(40\) 0 0
\(41\) 10.9847 1.71552 0.857758 0.514054i \(-0.171857\pi\)
0.857758 + 0.514054i \(0.171857\pi\)
\(42\) 0 0
\(43\) 5.83876 5.83876i 0.890402 0.890402i −0.104158 0.994561i \(-0.533215\pi\)
0.994561 + 0.104158i \(0.0332149\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.04989 4.04989i −0.590737 0.590737i 0.347094 0.937830i \(-0.387169\pi\)
−0.937830 + 0.347094i \(0.887169\pi\)
\(48\) 0 0
\(49\) 16.6556i 2.37937i
\(50\) 0 0
\(51\) 0.964724i 0.135088i
\(52\) 0 0
\(53\) 10.0599 + 10.0599i 1.38183 + 1.38183i 0.841374 + 0.540454i \(0.181747\pi\)
0.540454 + 0.841374i \(0.318253\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.90691 1.90691i 0.252576 0.252576i
\(58\) 0 0
\(59\) 3.46410 0.450988 0.225494 0.974245i \(-0.427600\pi\)
0.225494 + 0.974245i \(0.427600\pi\)
\(60\) 0 0
\(61\) −2.87780 −0.368464 −0.184232 0.982883i \(-0.558980\pi\)
−0.184232 + 0.982883i \(0.558980\pi\)
\(62\) 0 0
\(63\) −3.43916 + 3.43916i −0.433293 + 0.433293i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.35275 7.35275i −0.898281 0.898281i 0.0970029 0.995284i \(-0.469074\pi\)
−0.995284 + 0.0970029i \(0.969074\pi\)
\(68\) 0 0
\(69\) 7.32780i 0.882164i
\(70\) 0 0
\(71\) 14.0857i 1.67166i 0.548986 + 0.835831i \(0.315014\pi\)
−0.548986 + 0.835831i \(0.684986\pi\)
\(72\) 0 0
\(73\) 9.46410 + 9.46410i 1.10769 + 1.10769i 0.993454 + 0.114236i \(0.0364419\pi\)
0.114236 + 0.993454i \(0.463558\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.4388 + 10.4388i −1.18961 + 1.18961i
\(78\) 0 0
\(79\) 2.60645 0.293249 0.146624 0.989192i \(-0.453159\pi\)
0.146624 + 0.989192i \(0.453159\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −1.97934 + 1.97934i −0.217260 + 0.217260i −0.807343 0.590083i \(-0.799095\pi\)
0.590083 + 0.807343i \(0.299095\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.282561 0.282561i −0.0302937 0.0302937i
\(88\) 0 0
\(89\) 0.799203i 0.0847154i −0.999103 0.0423577i \(-0.986513\pi\)
0.999103 0.0423577i \(-0.0134869\pi\)
\(90\) 0 0
\(91\) 18.1516i 1.90280i
\(92\) 0 0
\(93\) −3.50731 3.50731i −0.363691 0.363691i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.94558 + 8.94558i −0.908286 + 0.908286i −0.996134 0.0878475i \(-0.972001\pi\)
0.0878475 + 0.996134i \(0.472001\pi\)
\(98\) 0 0
\(99\) −3.03528 −0.305057
\(100\) 0 0
\(101\) −4.52860 −0.450613 −0.225306 0.974288i \(-0.572338\pi\)
−0.225306 + 0.974288i \(0.572338\pi\)
\(102\) 0 0
\(103\) 5.36433 5.36433i 0.528563 0.528563i −0.391581 0.920144i \(-0.628072\pi\)
0.920144 + 0.391581i \(0.128072\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.62498 8.62498i −0.833808 0.833808i 0.154227 0.988035i \(-0.450711\pi\)
−0.988035 + 0.154227i \(0.950711\pi\)
\(108\) 0 0
\(109\) 1.66490i 0.159468i −0.996816 0.0797342i \(-0.974593\pi\)
0.996816 0.0797342i \(-0.0254071\pi\)
\(110\) 0 0
\(111\) 6.07055i 0.576191i
\(112\) 0 0
\(113\) −8.00000 8.00000i −0.752577 0.752577i 0.222383 0.974959i \(-0.428617\pi\)
−0.974959 + 0.222383i \(0.928617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.63896 + 2.63896i −0.243972 + 0.243972i
\(118\) 0 0
\(119\) −4.69213 −0.430127
\(120\) 0 0
\(121\) 1.78710 0.162464
\(122\) 0 0
\(123\) −7.76733 + 7.76733i −0.700356 + 0.700356i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.43488 + 7.43488i 0.659739 + 0.659739i 0.955318 0.295579i \(-0.0955127\pi\)
−0.295579 + 0.955318i \(0.595513\pi\)
\(128\) 0 0
\(129\) 8.25725i 0.727011i
\(130\) 0 0
\(131\) 2.88488i 0.252053i 0.992027 + 0.126027i \(0.0402225\pi\)
−0.992027 + 0.126027i \(0.959777\pi\)
\(132\) 0 0
\(133\) 9.27463 + 9.27463i 0.804213 + 0.804213i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.47067 9.47067i 0.809134 0.809134i −0.175369 0.984503i \(-0.556112\pi\)
0.984503 + 0.175369i \(0.0561118\pi\)
\(138\) 0 0
\(139\) −0.535898 −0.0454543 −0.0227272 0.999742i \(-0.507235\pi\)
−0.0227272 + 0.999742i \(0.507235\pi\)
\(140\) 0 0
\(141\) 5.72741 0.482335
\(142\) 0 0
\(143\) −8.00997 + 8.00997i −0.669827 + 0.669827i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.7773 11.7773i −0.971375 0.971375i
\(148\) 0 0
\(149\) 13.0693i 1.07068i −0.844637 0.535340i \(-0.820184\pi\)
0.844637 0.535340i \(-0.179816\pi\)
\(150\) 0 0
\(151\) 5.95884i 0.484923i 0.970161 + 0.242462i \(0.0779548\pi\)
−0.970161 + 0.242462i \(0.922045\pi\)
\(152\) 0 0
\(153\) −0.682163 0.682163i −0.0551496 0.0551496i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.8609 + 12.8609i −1.02641 + 1.02641i −0.0267728 + 0.999642i \(0.508523\pi\)
−0.999642 + 0.0267728i \(0.991477\pi\)
\(158\) 0 0
\(159\) −14.2268 −1.12826
\(160\) 0 0
\(161\) 35.6403 2.80885
\(162\) 0 0
\(163\) −12.4445 + 12.4445i −0.974727 + 0.974727i −0.999688 0.0249614i \(-0.992054\pi\)
0.0249614 + 0.999688i \(0.492054\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.49473 3.49473i −0.270431 0.270431i 0.558843 0.829274i \(-0.311245\pi\)
−0.829274 + 0.558843i \(0.811245\pi\)
\(168\) 0 0
\(169\) 0.928203i 0.0714002i
\(170\) 0 0
\(171\) 2.69677i 0.206228i
\(172\) 0 0
\(173\) −17.3085 17.3085i −1.31594 1.31594i −0.916956 0.398989i \(-0.869361\pi\)
−0.398989 0.916956i \(-0.630639\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.44949 + 2.44949i −0.184115 + 0.184115i
\(178\) 0 0
\(179\) −25.8471 −1.93190 −0.965952 0.258721i \(-0.916699\pi\)
−0.965952 + 0.258721i \(0.916699\pi\)
\(180\) 0 0
\(181\) −0.605206 −0.0449846 −0.0224923 0.999747i \(-0.507160\pi\)
−0.0224923 + 0.999747i \(0.507160\pi\)
\(182\) 0 0
\(183\) 2.03491 2.03491i 0.150425 0.150425i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.07055 2.07055i −0.151414 0.151414i
\(188\) 0 0
\(189\) 4.86370i 0.353782i
\(190\) 0 0
\(191\) 16.6191i 1.20252i −0.799055 0.601258i \(-0.794667\pi\)
0.799055 0.601258i \(-0.205333\pi\)
\(192\) 0 0
\(193\) 16.3457 + 16.3457i 1.17659 + 1.17659i 0.980608 + 0.195982i \(0.0627893\pi\)
0.195982 + 0.980608i \(0.437211\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.2273 + 15.2273i −1.08490 + 1.08490i −0.0888557 + 0.996045i \(0.528321\pi\)
−0.996045 + 0.0888557i \(0.971679\pi\)
\(198\) 0 0
\(199\) 14.8165 1.05031 0.525156 0.851006i \(-0.324007\pi\)
0.525156 + 0.851006i \(0.324007\pi\)
\(200\) 0 0
\(201\) 10.3984 0.733444
\(202\) 0 0
\(203\) 1.37429 1.37429i 0.0964565 0.0964565i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.18154 + 5.18154i 0.360142 + 0.360142i
\(208\) 0 0
\(209\) 8.18546i 0.566200i
\(210\) 0 0
\(211\) 13.8298i 0.952085i 0.879422 + 0.476043i \(0.157929\pi\)
−0.879422 + 0.476043i \(0.842071\pi\)
\(212\) 0 0
\(213\) −9.96008 9.96008i −0.682453 0.682453i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 17.0585 17.0585i 1.15801 1.15801i
\(218\) 0 0
\(219\) −13.3843 −0.904425
\(220\) 0 0
\(221\) −3.60040 −0.242189
\(222\) 0 0
\(223\) −3.92444 + 3.92444i −0.262800 + 0.262800i −0.826191 0.563391i \(-0.809497\pi\)
0.563391 + 0.826191i \(0.309497\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.6862 + 20.6862i 1.37299 + 1.37299i 0.855972 + 0.517022i \(0.172959\pi\)
0.517022 + 0.855972i \(0.327041\pi\)
\(228\) 0 0
\(229\) 21.9068i 1.44764i −0.689987 0.723821i \(-0.742384\pi\)
0.689987 0.723821i \(-0.257616\pi\)
\(230\) 0 0
\(231\) 14.7627i 0.971313i
\(232\) 0 0
\(233\) 2.52520 + 2.52520i 0.165431 + 0.165431i 0.784968 0.619536i \(-0.212679\pi\)
−0.619536 + 0.784968i \(0.712679\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.84304 + 1.84304i −0.119718 + 0.119718i
\(238\) 0 0
\(239\) −6.91308 −0.447170 −0.223585 0.974684i \(-0.571776\pi\)
−0.223585 + 0.974684i \(0.571776\pi\)
\(240\) 0 0
\(241\) −13.6677 −0.880415 −0.440207 0.897896i \(-0.645095\pi\)
−0.440207 + 0.897896i \(0.645095\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.11668 + 7.11668i 0.452823 + 0.452823i
\(248\) 0 0
\(249\) 2.79920i 0.177392i
\(250\) 0 0
\(251\) 9.59841i 0.605846i −0.953015 0.302923i \(-0.902037\pi\)
0.953015 0.302923i \(-0.0979625\pi\)
\(252\) 0 0
\(253\) 15.7274 + 15.7274i 0.988774 + 0.988774i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.24213 + 7.24213i −0.451751 + 0.451751i −0.895936 0.444184i \(-0.853494\pi\)
0.444184 + 0.895936i \(0.353494\pi\)
\(258\) 0 0
\(259\) 29.5254 1.83462
\(260\) 0 0
\(261\) 0.399602 0.0247347
\(262\) 0 0
\(263\) 2.18206 2.18206i 0.134551 0.134551i −0.636623 0.771175i \(-0.719669\pi\)
0.771175 + 0.636623i \(0.219669\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.565122 + 0.565122i 0.0345849 + 0.0345849i
\(268\) 0 0
\(269\) 6.25601i 0.381436i −0.981645 0.190718i \(-0.938918\pi\)
0.981645 0.190718i \(-0.0610815\pi\)
\(270\) 0 0
\(271\) 16.1318i 0.979938i 0.871740 + 0.489969i \(0.162992\pi\)
−0.871740 + 0.489969i \(0.837008\pi\)
\(272\) 0 0
\(273\) −12.8351 12.8351i −0.776816 0.776816i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.05922 + 7.05922i −0.424148 + 0.424148i −0.886629 0.462481i \(-0.846959\pi\)
0.462481 + 0.886629i \(0.346959\pi\)
\(278\) 0 0
\(279\) 4.96008 0.296952
\(280\) 0 0
\(281\) −20.8436 −1.24342 −0.621711 0.783247i \(-0.713562\pi\)
−0.621711 + 0.783247i \(0.713562\pi\)
\(282\) 0 0
\(283\) 10.3540 10.3540i 0.615481 0.615481i −0.328888 0.944369i \(-0.606674\pi\)
0.944369 + 0.328888i \(0.106674\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −37.7780 37.7780i −2.22996 2.22996i
\(288\) 0 0
\(289\) 16.0693i 0.945253i
\(290\) 0 0
\(291\) 12.6510i 0.741613i
\(292\) 0 0
\(293\) −1.50918 1.50918i −0.0881673 0.0881673i 0.661648 0.749815i \(-0.269857\pi\)
−0.749815 + 0.661648i \(0.769857\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.14626 2.14626i 0.124539 0.124539i
\(298\) 0 0
\(299\) 27.3477 1.58156
\(300\) 0 0
\(301\) −40.1608 −2.31483
\(302\) 0 0
\(303\) 3.20220 3.20220i 0.183962 0.183962i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.64601 + 5.64601i 0.322235 + 0.322235i 0.849624 0.527389i \(-0.176829\pi\)
−0.527389 + 0.849624i \(0.676829\pi\)
\(308\) 0 0
\(309\) 7.58630i 0.431570i
\(310\) 0 0
\(311\) 29.3205i 1.66261i 0.555814 + 0.831307i \(0.312407\pi\)
−0.555814 + 0.831307i \(0.687593\pi\)
\(312\) 0 0
\(313\) 0.139581 + 0.139581i 0.00788956 + 0.00788956i 0.711041 0.703151i \(-0.248224\pi\)
−0.703151 + 0.711041i \(0.748224\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.8272 15.8272i 0.888943 0.888943i −0.105478 0.994422i \(-0.533637\pi\)
0.994422 + 0.105478i \(0.0336374\pi\)
\(318\) 0 0
\(319\) 1.21290 0.0679094
\(320\) 0 0
\(321\) 12.1976 0.680801
\(322\) 0 0
\(323\) −1.83964 + 1.83964i −0.102360 + 0.102360i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.17726 + 1.17726i 0.0651027 + 0.0651027i
\(328\) 0 0
\(329\) 27.8564i 1.53577i
\(330\) 0 0
\(331\) 29.4616i 1.61936i 0.586874 + 0.809678i \(0.300358\pi\)
−0.586874 + 0.809678i \(0.699642\pi\)
\(332\) 0 0
\(333\) 4.29253 + 4.29253i 0.235229 + 0.235229i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 24.8244 24.8244i 1.35227 1.35227i 0.469157 0.883115i \(-0.344558\pi\)
0.883115 0.469157i \(-0.155442\pi\)
\(338\) 0 0
\(339\) 11.3137 0.614476
\(340\) 0 0
\(341\) 15.0552 0.815285
\(342\) 0 0
\(343\) 33.2072 33.2072i 1.79302 1.79302i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.7468 + 18.7468i 1.00638 + 1.00638i 0.999980 + 0.00640288i \(0.00203811\pi\)
0.00640288 + 0.999980i \(0.497962\pi\)
\(348\) 0 0
\(349\) 5.45481i 0.291989i 0.989285 + 0.145995i \(0.0466383\pi\)
−0.989285 + 0.145995i \(0.953362\pi\)
\(350\) 0 0
\(351\) 3.73205i 0.199202i
\(352\) 0 0
\(353\) 12.8233 + 12.8233i 0.682514 + 0.682514i 0.960566 0.278052i \(-0.0896889\pi\)
−0.278052 + 0.960566i \(0.589689\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.31784 3.31784i 0.175599 0.175599i
\(358\) 0 0
\(359\) −17.6135 −0.929607 −0.464803 0.885414i \(-0.653875\pi\)
−0.464803 + 0.885414i \(0.653875\pi\)
\(360\) 0 0
\(361\) −11.7274 −0.617232
\(362\) 0 0
\(363\) −1.26367 + 1.26367i −0.0663254 + 0.0663254i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.95315 + 4.95315i 0.258552 + 0.258552i 0.824465 0.565913i \(-0.191476\pi\)
−0.565913 + 0.824465i \(0.691476\pi\)
\(368\) 0 0
\(369\) 10.9847i 0.571839i
\(370\) 0 0
\(371\) 69.1949i 3.59242i
\(372\) 0 0
\(373\) −0.0166514 0.0166514i −0.000862177 0.000862177i 0.706676 0.707538i \(-0.250194\pi\)
−0.707538 + 0.706676i \(0.750194\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.05453 1.05453i 0.0543112 0.0543112i
\(378\) 0 0
\(379\) 8.23143 0.422820 0.211410 0.977397i \(-0.432194\pi\)
0.211410 + 0.977397i \(0.432194\pi\)
\(380\) 0 0
\(381\) −10.5145 −0.538674
\(382\) 0 0
\(383\) −15.9202 + 15.9202i −0.813482 + 0.813482i −0.985154 0.171672i \(-0.945083\pi\)
0.171672 + 0.985154i \(0.445083\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.83876 5.83876i −0.296801 0.296801i
\(388\) 0 0
\(389\) 19.7012i 0.998891i −0.866345 0.499445i \(-0.833537\pi\)
0.866345 0.499445i \(-0.166463\pi\)
\(390\) 0 0
\(391\) 7.06931i 0.357510i
\(392\) 0 0
\(393\) −2.03992 2.03992i −0.102900 0.102900i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.08188 5.08188i 0.255052 0.255052i −0.567986 0.823038i \(-0.692277\pi\)
0.823038 + 0.567986i \(0.192277\pi\)
\(398\) 0 0
\(399\) −13.1163 −0.656637
\(400\) 0 0
\(401\) −19.0976 −0.953687 −0.476844 0.878988i \(-0.658219\pi\)
−0.476844 + 0.878988i \(0.658219\pi\)
\(402\) 0 0
\(403\) 13.0894 13.0894i 0.652032 0.652032i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.0290 + 13.0290i 0.645824 + 0.645824i
\(408\) 0 0
\(409\) 27.1104i 1.34052i 0.742124 + 0.670262i \(0.233818\pi\)
−0.742124 + 0.670262i \(0.766182\pi\)
\(410\) 0 0
\(411\) 13.3935i 0.660655i
\(412\) 0 0
\(413\) −11.9136 11.9136i −0.586230 0.586230i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.378937 0.378937i 0.0185566 0.0185566i
\(418\) 0 0
\(419\) −13.9542 −0.681707 −0.340853 0.940116i \(-0.610716\pi\)
−0.340853 + 0.940116i \(0.610716\pi\)
\(420\) 0 0
\(421\) −17.0411 −0.830533 −0.415267 0.909700i \(-0.636312\pi\)
−0.415267 + 0.909700i \(0.636312\pi\)
\(422\) 0 0
\(423\) −4.04989 + 4.04989i −0.196912 + 0.196912i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9.89721 + 9.89721i 0.478959 + 0.478959i
\(428\) 0 0
\(429\) 11.3278i 0.546912i
\(430\) 0 0
\(431\) 11.0751i 0.533471i −0.963770 0.266736i \(-0.914055\pi\)
0.963770 0.266736i \(-0.0859450\pi\)
\(432\) 0 0
\(433\) −13.7234 13.7234i −0.659504 0.659504i 0.295759 0.955263i \(-0.404428\pi\)
−0.955263 + 0.295759i \(0.904428\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.9734 13.9734i 0.668441 0.668441i
\(438\) 0 0
\(439\) 9.48669 0.452775 0.226387 0.974037i \(-0.427308\pi\)
0.226387 + 0.974037i \(0.427308\pi\)
\(440\) 0 0
\(441\) 16.6556 0.793124
\(442\) 0 0
\(443\) 24.6050 24.6050i 1.16902 1.16902i 0.186578 0.982440i \(-0.440260\pi\)
0.982440 0.186578i \(-0.0597398\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.24140 + 9.24140i 0.437103 + 0.437103i
\(448\) 0 0
\(449\) 12.0000i 0.566315i −0.959073 0.283158i \(-0.908618\pi\)
0.959073 0.283158i \(-0.0913819\pi\)
\(450\) 0 0
\(451\) 33.3415i 1.56999i
\(452\) 0 0
\(453\) −4.21353 4.21353i −0.197969 0.197969i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.8284 + 10.8284i −0.506532 + 0.506532i −0.913460 0.406928i \(-0.866600\pi\)
0.406928 + 0.913460i \(0.366600\pi\)
\(458\) 0 0
\(459\) 0.964724 0.0450295
\(460\) 0 0
\(461\) 6.26811 0.291935 0.145968 0.989289i \(-0.453370\pi\)
0.145968 + 0.989289i \(0.453370\pi\)
\(462\) 0 0
\(463\) 2.73545 2.73545i 0.127127 0.127127i −0.640680 0.767808i \(-0.721348\pi\)
0.767808 + 0.640680i \(0.221348\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.3519 + 11.3519i 0.525302 + 0.525302i 0.919168 0.393866i \(-0.128863\pi\)
−0.393866 + 0.919168i \(0.628863\pi\)
\(468\) 0 0
\(469\) 50.5745i 2.33531i
\(470\) 0 0
\(471\) 18.1881i 0.838064i
\(472\) 0 0
\(473\) −17.7222 17.7222i −0.814870 0.814870i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.0599 10.0599i 0.460609 0.460609i
\(478\) 0 0
\(479\) 17.3750 0.793883 0.396941 0.917844i \(-0.370072\pi\)
0.396941 + 0.917844i \(0.370072\pi\)
\(480\) 0 0
\(481\) 22.6556 1.03301
\(482\) 0 0
\(483\) −25.2015 + 25.2015i −1.14671 + 1.14671i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.11792 2.11792i −0.0959721 0.0959721i 0.657491 0.753463i \(-0.271618\pi\)
−0.753463 + 0.657491i \(0.771618\pi\)
\(488\) 0 0
\(489\) 17.5992i 0.795861i
\(490\) 0 0
\(491\) 20.3855i 0.919985i −0.887923 0.459992i \(-0.847852\pi\)
0.887923 0.459992i \(-0.152148\pi\)
\(492\) 0 0
\(493\) 0.272593 + 0.272593i 0.0122770 + 0.0122770i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 48.4429 48.4429i 2.17296 2.17296i
\(498\) 0 0
\(499\) −9.63427 −0.431289 −0.215644 0.976472i \(-0.569185\pi\)
−0.215644 + 0.976472i \(0.569185\pi\)
\(500\) 0 0
\(501\) 4.94230 0.220806
\(502\) 0 0
\(503\) −8.10118 + 8.10118i −0.361214 + 0.361214i −0.864260 0.503046i \(-0.832213\pi\)
0.503046 + 0.864260i \(0.332213\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.656339 0.656339i −0.0291490 0.0291490i
\(508\) 0 0
\(509\) 33.3233i 1.47703i −0.674237 0.738515i \(-0.735527\pi\)
0.674237 0.738515i \(-0.264473\pi\)
\(510\) 0 0
\(511\) 65.0971i 2.87973i
\(512\) 0 0
\(513\) −1.90691 1.90691i −0.0841920 0.0841920i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12.2925 + 12.2925i −0.540625 + 0.540625i
\(518\) 0 0
\(519\) 24.4780 1.07446
\(520\) 0 0
\(521\) −5.64276 −0.247214 −0.123607 0.992331i \(-0.539446\pi\)
−0.123607 + 0.992331i \(0.539446\pi\)
\(522\) 0 0
\(523\) 13.3837 13.3837i 0.585230 0.585230i −0.351106 0.936336i \(-0.614194\pi\)
0.936336 + 0.351106i \(0.114194\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.38358 + 3.38358i 0.147391 + 0.147391i
\(528\) 0 0
\(529\) 30.6967i 1.33464i
\(530\) 0 0
\(531\) 3.46410i 0.150329i
\(532\) 0 0
\(533\) −28.9881 28.9881i −1.25561 1.25561i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 18.2767 18.2767i 0.788697 0.788697i
\(538\) 0 0
\(539\) 50.5544 2.17753
\(540\) 0 0
\(541\) −10.9907 −0.472528 −0.236264 0.971689i \(-0.575923\pi\)
−0.236264 + 0.971689i \(0.575923\pi\)
\(542\) 0 0
\(543\) 0.427946 0.427946i 0.0183649 0.0183649i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15.1623 15.1623i −0.648292 0.648292i 0.304288 0.952580i \(-0.401582\pi\)
−0.952580 + 0.304288i \(0.901582\pi\)
\(548\) 0 0
\(549\) 2.87780i 0.122821i
\(550\) 0 0
\(551\) 1.07764i 0.0459088i
\(552\) 0 0
\(553\) −8.96399 8.96399i −0.381188 0.381188i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.144856 0.144856i 0.00613775 0.00613775i −0.704031 0.710169i \(-0.748619\pi\)
0.710169 + 0.704031i \(0.248619\pi\)
\(558\) 0 0
\(559\) −30.8165 −1.30340
\(560\) 0 0
\(561\) 2.92820 0.123629
\(562\) 0 0
\(563\) −21.8182 + 21.8182i −0.919529 + 0.919529i −0.996995 0.0774656i \(-0.975317\pi\)
0.0774656 + 0.996995i \(0.475317\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.43916 + 3.43916i 0.144431 + 0.144431i
\(568\) 0 0
\(569\) 0.0725439i 0.00304120i −0.999999 0.00152060i \(-0.999516\pi\)
0.999999 0.00152060i \(-0.000484022\pi\)
\(570\) 0 0
\(571\) 10.7741i 0.450883i 0.974257 + 0.225442i \(0.0723825\pi\)
−0.974257 + 0.225442i \(0.927618\pi\)
\(572\) 0 0
\(573\) 11.7515 + 11.7515i 0.490925 + 0.490925i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.9587 + 24.9587i −1.03905 + 1.03905i −0.0398390 + 0.999206i \(0.512684\pi\)
−0.999206 + 0.0398390i \(0.987316\pi\)
\(578\) 0 0
\(579\) −23.1163 −0.960681
\(580\) 0 0
\(581\) 13.6145 0.564824
\(582\) 0 0
\(583\) 30.5344 30.5344i 1.26461 1.26461i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.51467 + 7.51467i 0.310164 + 0.310164i 0.844973 0.534809i \(-0.179617\pi\)
−0.534809 + 0.844973i \(0.679617\pi\)
\(588\) 0 0
\(589\) 13.3762i 0.551157i
\(590\) 0 0
\(591\) 21.5347i 0.885817i
\(592\) 0 0
\(593\) 22.8790 + 22.8790i 0.939528 + 0.939528i 0.998273 0.0587453i \(-0.0187100\pi\)
−0.0587453 + 0.998273i \(0.518710\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.4768 + 10.4768i −0.428788 + 0.428788i
\(598\) 0 0
\(599\) −24.5947 −1.00491 −0.502456 0.864603i \(-0.667570\pi\)
−0.502456 + 0.864603i \(0.667570\pi\)
\(600\) 0 0
\(601\) −40.2830 −1.64318 −0.821589 0.570080i \(-0.806912\pi\)
−0.821589 + 0.570080i \(0.806912\pi\)
\(602\) 0 0
\(603\) −7.35275 + 7.35275i −0.299427 + 0.299427i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.1399 + 25.1399i 1.02040 + 1.02040i 0.999788 + 0.0206078i \(0.00656014\pi\)
0.0206078 + 0.999788i \(0.493440\pi\)
\(608\) 0 0
\(609\) 1.94354i 0.0787564i
\(610\) 0 0
\(611\) 21.3750i 0.864739i
\(612\) 0 0
\(613\) −18.5558 18.5558i −0.749463 0.749463i 0.224915 0.974378i \(-0.427789\pi\)
−0.974378 + 0.224915i \(0.927789\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.4960 + 20.4960i −0.825137 + 0.825137i −0.986840 0.161703i \(-0.948301\pi\)
0.161703 + 0.986840i \(0.448301\pi\)
\(618\) 0 0
\(619\) −24.6169 −0.989438 −0.494719 0.869053i \(-0.664729\pi\)
−0.494719 + 0.869053i \(0.664729\pi\)
\(620\) 0 0
\(621\) −7.32780 −0.294055
\(622\) 0 0
\(623\) −2.74859 + 2.74859i −0.110120 + 0.110120i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.78799 5.78799i −0.231150 0.231150i
\(628\) 0 0
\(629\) 5.85641i 0.233510i
\(630\) 0 0
\(631\) 5.36847i 0.213716i 0.994274 + 0.106858i \(0.0340789\pi\)
−0.994274 + 0.106858i \(0.965921\pi\)
\(632\) 0 0
\(633\) −9.77917 9.77917i −0.388687 0.388687i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 43.9535 43.9535i 1.74150 1.74150i
\(638\) 0 0
\(639\) 14.0857 0.557221
\(640\) 0 0
\(641\) −8.91610 −0.352165 −0.176082 0.984375i \(-0.556343\pi\)
−0.176082 + 0.984375i \(0.556343\pi\)
\(642\) 0 0
\(643\) −4.05165 + 4.05165i −0.159781 + 0.159781i −0.782470 0.622688i \(-0.786040\pi\)
0.622688 + 0.782470i \(0.286040\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.00804 + 3.00804i 0.118258 + 0.118258i 0.763759 0.645501i \(-0.223351\pi\)
−0.645501 + 0.763759i \(0.723351\pi\)
\(648\) 0 0
\(649\) 10.5145i 0.412730i
\(650\) 0 0
\(651\) 24.1244i 0.945508i
\(652\) 0 0
\(653\) 6.20861 + 6.20861i 0.242962 + 0.242962i 0.818074 0.575113i \(-0.195042\pi\)
−0.575113 + 0.818074i \(0.695042\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9.46410 9.46410i 0.369230 0.369230i
\(658\) 0 0
\(659\) −12.6002 −0.490834 −0.245417 0.969418i \(-0.578925\pi\)
−0.245417 + 0.969418i \(0.578925\pi\)
\(660\) 0 0
\(661\) −36.5241 −1.42062 −0.710312 0.703887i \(-0.751446\pi\)
−0.710312 + 0.703887i \(0.751446\pi\)
\(662\) 0 0
\(663\) 2.54587 2.54587i 0.0988732 0.0988732i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.07055 2.07055i −0.0801721 0.0801721i
\(668\) 0 0
\(669\) 5.54999i 0.214575i
\(670\) 0 0
\(671\) 8.73492i 0.337208i
\(672\) 0 0
\(673\) 0.879044 + 0.879044i 0.0338847 + 0.0338847i 0.723846 0.689961i \(-0.242373\pi\)
−0.689961 + 0.723846i \(0.742373\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.7525 21.7525i 0.836017 0.836017i −0.152315 0.988332i \(-0.548673\pi\)
0.988332 + 0.152315i \(0.0486729\pi\)
\(678\) 0 0
\(679\) 61.5305 2.36133
\(680\) 0 0
\(681\) −29.2548 −1.12104
\(682\) 0 0
\(683\) 17.7181 17.7181i 0.677965 0.677965i −0.281574 0.959539i \(-0.590857\pi\)
0.959539 + 0.281574i \(0.0908566\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 15.4905 + 15.4905i 0.590998 + 0.590998i
\(688\) 0 0
\(689\) 53.0951i 2.02276i
\(690\) 0 0
\(691\) 32.3762i 1.23165i 0.787883 + 0.615825i \(0.211177\pi\)
−0.787883 + 0.615825i \(0.788823\pi\)
\(692\) 0 0
\(693\) 10.4388 + 10.4388i 0.396537 + 0.396537i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 7.49333 7.49333i 0.283830 0.283830i
\(698\) 0 0
\(699\) −3.57117 −0.135074
\(700\) 0 0
\(701\) 2.94230 0.111129 0.0555646 0.998455i \(-0.482304\pi\)
0.0555646 + 0.998455i \(0.482304\pi\)
\(702\) 0 0
\(703\) 11.5760 11.5760i 0.436596 0.436596i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.5746 + 15.5746i 0.585742 + 0.585742i
\(708\) 0 0
\(709\) 43.7471i 1.64296i 0.570239 + 0.821479i \(0.306851\pi\)
−0.570239 + 0.821479i \(0.693149\pi\)
\(710\) 0 0
\(711\) 2.60645i 0.0977495i
\(712\) 0 0
\(713\) −25.7009 25.7009i −0.962505 0.962505i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.88828 4.88828i 0.182556 0.182556i
\(718\) 0 0
\(719\) 4.90628 0.182973 0.0914866 0.995806i \(-0.470838\pi\)
0.0914866 + 0.995806i \(0.470838\pi\)
\(720\) 0 0
\(721\) −36.8975 −1.37414
\(722\) 0 0
\(723\) 9.66453 9.66453i 0.359428 0.359428i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 29.6226 + 29.6226i 1.09864 + 1.09864i 0.994570 + 0.104073i \(0.0331874\pi\)
0.104073 + 0.994570i \(0.466813\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 7.96597i 0.294632i
\(732\) 0 0
\(733\) 17.5254 + 17.5254i 0.647314 + 0.647314i 0.952343 0.305029i \(-0.0986661\pi\)
−0.305029 + 0.952343i \(0.598666\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22.3176 + 22.3176i −0.822080 + 0.822080i
\(738\) 0 0
\(739\) −19.5322 −0.718502 −0.359251 0.933241i \(-0.616968\pi\)
−0.359251 + 0.933241i \(0.616968\pi\)
\(740\) 0 0
\(741\) −10.0645 −0.369729
\(742\) 0 0
\(743\) 9.53568 9.53568i 0.349830 0.349830i −0.510216 0.860046i \(-0.670435\pi\)
0.860046 + 0.510216i \(0.170435\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.97934 + 1.97934i 0.0724201 + 0.0724201i
\(748\) 0 0
\(749\) 59.3253i 2.16770i
\(750\) 0 0
\(751\) 21.5649i 0.786915i −0.919343 0.393457i \(-0.871279\pi\)
0.919343 0.393457i \(-0.128721\pi\)
\(752\) 0 0
\(753\) 6.78710 + 6.78710i 0.247336 + 0.247336i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.86093 4.86093i 0.176674 0.176674i −0.613230 0.789904i \(-0.710130\pi\)
0.789904 + 0.613230i \(0.210130\pi\)
\(758\) 0 0
\(759\) −22.2419 −0.807330
\(760\) 0 0
\(761\) −15.6241 −0.566374 −0.283187 0.959065i \(-0.591392\pi\)
−0.283187 + 0.959065i \(0.591392\pi\)
\(762\) 0 0
\(763\) −5.72585 + 5.72585i −0.207290 + 0.207290i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.14162 9.14162i −0.330085 0.330085i
\(768\) 0 0
\(769\) 26.2855i 0.947880i 0.880557 + 0.473940i \(0.157169\pi\)
−0.880557 + 0.473940i \(0.842831\pi\)
\(770\) 0 0
\(771\) 10.2419i 0.368853i
\(772\) 0 0
\(773\) 21.2221 + 21.2221i 0.763307 + 0.763307i 0.976919 0.213611i \(-0.0685226\pi\)
−0.213611 + 0.976919i \(0.568523\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −20.8776 + 20.8776i −0.748979 + 0.748979i
\(778\) 0 0
\(779\) −29.6232 −1.06136
\(780\) 0 0
\(781\) 42.7539 1.52986
\(782\) 0 0
\(783\) −0.282561 + 0.282561i −0.0100979 + 0.0100979i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −15.6367 15.6367i −0.557389 0.557389i 0.371174 0.928563i \(-0.378955\pi\)
−0.928563 + 0.371174i \(0.878955\pi\)
\(788\) 0 0
\(789\) 3.08589i 0.109861i
\(790\) 0 0
\(791\) 55.0265i 1.95652i
\(792\) 0 0
\(793\) 7.59439 + 7.59439i 0.269685 + 0.269685i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.9282 + 18.9282i −0.670471 + 0.670471i −0.957825 0.287353i \(-0.907225\pi\)
0.287353 + 0.957825i \(0.407225\pi\)
\(798\) 0 0
\(799\) −5.52537 −0.195473
\(800\) 0 0
\(801\) −0.799203 −0.0282385
\(802\) 0 0
\(803\) 28.7262 28.7262i 1.01372 1.01372i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.42367 + 4.42367i 0.155720 + 0.155720i
\(808\) 0 0
\(809\) 21.1283i 0.742830i 0.928467 + 0.371415i \(0.121127\pi\)
−0.928467 + 0.371415i \(0.878873\pi\)
\(810\) 0 0
\(811\) 38.3229i 1.34570i 0.739779 + 0.672850i \(0.234930\pi\)
−0.739779 + 0.672850i \(0.765070\pi\)
\(812\) 0 0
\(813\) −11.4069 11.4069i −0.400058 0.400058i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −15.7458 + 15.7458i −0.550876 + 0.550876i
\(818\) 0 0
\(819\) 18.1516 0.634268
\(820\) 0 0
\(821\) −18.3855 −0.641659 −0.320829 0.947137i \(-0.603962\pi\)
−0.320829 + 0.947137i \(0.603962\pi\)
\(822\) 0 0
\(823\) −19.3576 + 19.3576i −0.674762 + 0.674762i −0.958810 0.284048i \(-0.908322\pi\)
0.284048 + 0.958810i \(0.408322\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.39496 + 7.39496i 0.257148 + 0.257148i 0.823893 0.566745i \(-0.191798\pi\)
−0.566745 + 0.823893i \(0.691798\pi\)
\(828\) 0 0
\(829\) 49.8403i 1.73103i −0.500887 0.865513i \(-0.666993\pi\)
0.500887 0.865513i \(-0.333007\pi\)
\(830\) 0 0
\(831\) 9.98325i 0.346315i
\(832\) 0 0
\(833\) 11.3618 + 11.3618i 0.393664 + 0.393664i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.50731 + 3.50731i −0.121230 + 0.121230i
\(838\) 0 0
\(839\) 45.9303 1.58569 0.792845 0.609423i \(-0.208599\pi\)
0.792845 + 0.609423i \(0.208599\pi\)
\(840\) 0 0
\(841\) 28.8403 0.994494
\(842\) 0 0
\(843\) 14.7386 14.7386i 0.507625 0.507625i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.14611 6.14611i −0.211183 0.211183i
\(848\) 0 0
\(849\) 14.6428i 0.502538i
\(850\) 0 0
\(851\) 44.4838i 1.52489i
\(852\) 0 0
\(853\) −5.20305 5.20305i −0.178149 0.178149i 0.612399 0.790548i \(-0.290204\pi\)
−0.790548 + 0.612399i \(0.790204\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.7473 + 11.7473i −0.401282 + 0.401282i −0.878684 0.477403i \(-0.841578\pi\)
0.477403 + 0.878684i \(0.341578\pi\)
\(858\) 0 0
\(859\) 17.3205 0.590968 0.295484 0.955348i \(-0.404519\pi\)
0.295484 + 0.955348i \(0.404519\pi\)
\(860\) 0 0
\(861\) 53.4261 1.82076
\(862\) 0 0
\(863\) −25.7181 + 25.7181i −0.875455 + 0.875455i −0.993060 0.117605i \(-0.962478\pi\)
0.117605 + 0.993060i \(0.462478\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11.3627 11.3627i −0.385898 0.385898i
\(868\) 0 0
\(869\) 7.91130i 0.268372i
\(870\) 0 0
\(871\) 38.8072i 1.31493i
\(872\) 0 0
\(873\) 8.94558 + 8.94558i 0.302762 + 0.302762i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.78154 + 5.78154i −0.195229 + 0.195229i −0.797951 0.602722i \(-0.794083\pi\)
0.602722 + 0.797951i \(0.294083\pi\)
\(878\) 0 0
\(879\) 2.13431 0.0719883
\(880\) 0 0
\(881\) −15.3419 −0.516882 −0.258441 0.966027i \(-0.583209\pi\)
−0.258441 + 0.966027i \(0.583209\pi\)
\(882\) 0 0
\(883\) −31.4856 + 31.4856i −1.05957 + 1.05957i −0.0614655 + 0.998109i \(0.519577\pi\)
−0.998109 + 0.0614655i \(0.980423\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.89722 4.89722i −0.164433 0.164433i 0.620095 0.784527i \(-0.287094\pi\)
−0.784527 + 0.620095i \(0.787094\pi\)
\(888\) 0 0
\(889\) 51.1394i 1.71516i
\(890\) 0 0
\(891\) 3.03528i 0.101686i
\(892\) 0 0
\(893\) 10.9216 + 10.9216i 0.365479 + 0.365479i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −19.3378 + 19.3378i −0.645669 + 0.645669i
\(898\) 0 0
\(899\) −1.98206 −0.0661053
\(900\) 0 0
\(901\) 13.7249 0.457243
\(902\) 0 0
\(903\) 28.3980 28.3980i 0.945026 0.945026i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 7.90022 + 7.90022i 0.262323 + 0.262323i 0.825997 0.563674i \(-0.190613\pi\)
−0.563674 + 0.825997i \(0.690613\pi\)
\(908\) 0 0
\(909\) 4.52860i 0.150204i
\(910\) 0 0
\(911\) 11.3608i 0.376400i −0.982131 0.188200i \(-0.939735\pi\)
0.982131 0.188200i \(-0.0602654\pi\)
\(912\) 0 0
\(913\) 6.00783 + 6.00783i 0.198830 + 0.198830i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.92157 9.92157i 0.327639 0.327639i
\(918\) 0 0
\(919\) −25.9891 −0.857301 −0.428650 0.903470i \(-0.641011\pi\)
−0.428650 + 0.903470i \(0.641011\pi\)
\(920\) 0 0
\(921\) −7.98466 −0.263103
\(922\) 0 0
\(923\) 37.1715 37.1715i 1.22352 1.22352i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5.36433 5.36433i −0.176188 0.176188i
\(928\) 0 0
\(929\) 28.0444i 0.920105i −0.887892 0.460053i \(-0.847831\pi\)
0.887892 0.460053i \(-0.152169\pi\)
\(930\) 0 0
\(931\) 44.9164i 1.47208i
\(932\) 0 0
\(933\) −20.7327 20.7327i −0.678759 0.678759i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −9.20335 + 9.20335i −0.300660 + 0.300660i −0.841272 0.540612i \(-0.818193\pi\)
0.540612 + 0.841272i \(0.318193\pi\)
\(938\) 0 0
\(939\) −0.197397 −0.00644180
\(940\) 0 0
\(941\) −22.1507 −0.722093 −0.361046 0.932548i \(-0.617580\pi\)
−0.361046 + 0.932548i \(0.617580\pi\)
\(942\) 0 0
\(943\) −56.9175 + 56.9175i −1.85349 + 1.85349i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.34101 8.34101i −0.271046 0.271046i 0.558475 0.829521i \(-0.311387\pi\)
−0.829521 + 0.558475i \(0.811387\pi\)
\(948\) 0 0
\(949\) 49.9507i 1.62147i
\(950\) 0 0
\(951\) 22.3830i 0.725819i
\(952\) 0 0
\(953\) −39.6461 39.6461i −1.28426 1.28426i −0.938218 0.346046i \(-0.887524\pi\)
−0.346046 0.938218i \(-0.612476\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.857651 + 0.857651i −0.0277239 + 0.0277239i
\(958\) 0 0
\(959\) −65.1422 −2.10355
\(960\) 0 0
\(961\) 6.39761 0.206375
\(962\) 0 0
\(963\) −8.62498 + 8.62498i −0.277936 + 0.277936i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12.7165 12.7165i −0.408937 0.408937i 0.472431 0.881368i \(-0.343377\pi\)
−0.881368 + 0.472431i \(0.843377\pi\)
\(968\) 0 0
\(969\) 2.60164i 0.0835768i
\(970\) 0 0
\(971\) 28.2049i 0.905137i −0.891730 0.452568i \(-0.850508\pi\)
0.891730 0.452568i \(-0.149492\pi\)
\(972\) 0 0
\(973\) 1.84304 + 1.84304i 0.0590851 + 0.0590851i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.6221 + 17.6221i −0.563781 + 0.563781i −0.930379 0.366599i \(-0.880522\pi\)
0.366599 + 0.930379i \(0.380522\pi\)
\(978\) 0 0
\(979\) −2.42580 −0.0775290
\(980\) 0 0
\(981\) −1.66490 −0.0531561
\(982\) 0 0
\(983\) −4.24088 + 4.24088i −0.135263 + 0.135263i −0.771497 0.636233i \(-0.780492\pi\)
0.636233 + 0.771497i \(0.280492\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −19.6975 19.6975i −0.626977 0.626977i
\(988\) 0 0
\(989\) 60.5075i 1.92403i
\(990\) 0 0
\(991\) 3.08702i 0.0980623i −0.998797 0.0490312i \(-0.984387\pi\)
0.998797 0.0490312i \(-0.0156134\pi\)
\(992\) 0 0
\(993\) −20.8325 20.8325i −0.661100 0.661100i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.3125 32.3125i 1.02335 1.02335i 0.0236251 0.999721i \(-0.492479\pi\)
0.999721 0.0236251i \(-0.00752081\pi\)
\(998\) 0 0
\(999\) −6.07055 −0.192064
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.w.h.2143.1 yes 8
4.3 odd 2 2400.2.w.l.2143.4 yes 8
5.2 odd 4 2400.2.w.l.607.4 yes 8
5.3 odd 4 2400.2.w.g.607.1 8
5.4 even 2 2400.2.w.k.2143.4 yes 8
20.3 even 4 2400.2.w.k.607.4 yes 8
20.7 even 4 inner 2400.2.w.h.607.1 yes 8
20.19 odd 2 2400.2.w.g.2143.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.2.w.g.607.1 8 5.3 odd 4
2400.2.w.g.2143.1 yes 8 20.19 odd 2
2400.2.w.h.607.1 yes 8 20.7 even 4 inner
2400.2.w.h.2143.1 yes 8 1.1 even 1 trivial
2400.2.w.k.607.4 yes 8 20.3 even 4
2400.2.w.k.2143.4 yes 8 5.4 even 2
2400.2.w.l.607.4 yes 8 5.2 odd 4
2400.2.w.l.2143.4 yes 8 4.3 odd 2