Properties

Label 2400.2.w.l.607.2
Level $2400$
Weight $2$
Character 2400.607
Analytic conductor $19.164$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,2,Mod(607,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.607");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 607.2
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2400.607
Dual form 2400.2.w.l.2143.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(2.02494 - 2.02494i) q^{7} +1.00000i q^{9} -0.964724i q^{11} +(2.63896 - 2.63896i) q^{13} +(-2.14626 - 2.14626i) q^{17} +4.76733 q^{19} -2.86370 q^{21} +(0.282561 + 0.282561i) q^{23} +(0.707107 - 0.707107i) q^{27} +7.32780i q^{29} -8.42418i q^{31} +(-0.682163 + 0.682163i) q^{33} +(1.36433 + 1.36433i) q^{37} -3.73205 q^{39} -8.05646 q^{41} +(3.30286 + 3.30286i) q^{43} +(6.87832 - 6.87832i) q^{47} -1.20080i q^{49} +3.03528i q^{51} +(2.33245 - 2.33245i) q^{53} +(-3.37101 - 3.37101i) q^{57} -3.46410 q^{59} -10.0504 q^{61} +(2.02494 + 2.02494i) q^{63} +(1.03956 - 1.03956i) q^{67} -0.399602i q^{69} +4.84252i q^{71} +(9.46410 - 9.46410i) q^{73} +(-1.95351 - 1.95351i) q^{77} +1.53465 q^{79} -1.00000 q^{81} +(8.94887 + 8.94887i) q^{83} +(5.18154 - 5.18154i) q^{87} -14.6556i q^{89} -10.6875i q^{91} +(-5.95680 + 5.95680i) q^{93} +(-12.9108 - 12.9108i) q^{97} +0.964724 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} + 8 q^{17} + 16 q^{19} + 8 q^{21} + 8 q^{23} - 8 q^{33} + 16 q^{37} - 16 q^{39} - 16 q^{41} - 24 q^{43} + 16 q^{47} + 8 q^{53} + 8 q^{57} - 24 q^{61} + 8 q^{63} - 8 q^{67} + 48 q^{73} - 8 q^{77}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.02494 2.02494i 0.765357 0.765357i −0.211928 0.977285i \(-0.567974\pi\)
0.977285 + 0.211928i \(0.0679743\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 0.964724i 0.290875i −0.989367 0.145438i \(-0.953541\pi\)
0.989367 0.145438i \(-0.0464590\pi\)
\(12\) 0 0
\(13\) 2.63896 2.63896i 0.731915 0.731915i −0.239084 0.970999i \(-0.576847\pi\)
0.970999 + 0.239084i \(0.0768470\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.14626 2.14626i −0.520546 0.520546i 0.397191 0.917736i \(-0.369985\pi\)
−0.917736 + 0.397191i \(0.869985\pi\)
\(18\) 0 0
\(19\) 4.76733 1.09370 0.546850 0.837231i \(-0.315827\pi\)
0.546850 + 0.837231i \(0.315827\pi\)
\(20\) 0 0
\(21\) −2.86370 −0.624911
\(22\) 0 0
\(23\) 0.282561 + 0.282561i 0.0589181 + 0.0589181i 0.735952 0.677034i \(-0.236735\pi\)
−0.677034 + 0.735952i \(0.736735\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 7.32780i 1.36074i 0.732869 + 0.680370i \(0.238181\pi\)
−0.732869 + 0.680370i \(0.761819\pi\)
\(30\) 0 0
\(31\) 8.42418i 1.51303i −0.653978 0.756514i \(-0.726901\pi\)
0.653978 0.756514i \(-0.273099\pi\)
\(32\) 0 0
\(33\) −0.682163 + 0.682163i −0.118749 + 0.118749i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.36433 + 1.36433i 0.224294 + 0.224294i 0.810304 0.586010i \(-0.199302\pi\)
−0.586010 + 0.810304i \(0.699302\pi\)
\(38\) 0 0
\(39\) −3.73205 −0.597606
\(40\) 0 0
\(41\) −8.05646 −1.25821 −0.629104 0.777322i \(-0.716578\pi\)
−0.629104 + 0.777322i \(0.716578\pi\)
\(42\) 0 0
\(43\) 3.30286 + 3.30286i 0.503682 + 0.503682i 0.912580 0.408898i \(-0.134087\pi\)
−0.408898 + 0.912580i \(0.634087\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.87832 6.87832i 1.00331 1.00331i 0.00331087 0.999995i \(-0.498946\pi\)
0.999995 0.00331087i \(-0.00105388\pi\)
\(48\) 0 0
\(49\) 1.20080i 0.171542i
\(50\) 0 0
\(51\) 3.03528i 0.425024i
\(52\) 0 0
\(53\) 2.33245 2.33245i 0.320387 0.320387i −0.528529 0.848915i \(-0.677256\pi\)
0.848915 + 0.528529i \(0.177256\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.37101 3.37101i −0.446501 0.446501i
\(58\) 0 0
\(59\) −3.46410 −0.450988 −0.225494 0.974245i \(-0.572400\pi\)
−0.225494 + 0.974245i \(0.572400\pi\)
\(60\) 0 0
\(61\) −10.0504 −1.28682 −0.643411 0.765521i \(-0.722481\pi\)
−0.643411 + 0.765521i \(0.722481\pi\)
\(62\) 0 0
\(63\) 2.02494 + 2.02494i 0.255119 + 0.255119i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.03956 1.03956i 0.127002 0.127002i −0.640749 0.767751i \(-0.721376\pi\)
0.767751 + 0.640749i \(0.221376\pi\)
\(68\) 0 0
\(69\) 0.399602i 0.0481064i
\(70\) 0 0
\(71\) 4.84252i 0.574702i 0.957825 + 0.287351i \(0.0927746\pi\)
−0.957825 + 0.287351i \(0.907225\pi\)
\(72\) 0 0
\(73\) 9.46410 9.46410i 1.10769 1.10769i 0.114236 0.993454i \(-0.463558\pi\)
0.993454 0.114236i \(-0.0364419\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.95351 1.95351i −0.222623 0.222623i
\(78\) 0 0
\(79\) 1.53465 0.172662 0.0863310 0.996267i \(-0.472486\pi\)
0.0863310 + 0.996267i \(0.472486\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 8.94887 + 8.94887i 0.982266 + 0.982266i 0.999845 0.0175796i \(-0.00559606\pi\)
−0.0175796 + 0.999845i \(0.505596\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.18154 5.18154i 0.555519 0.555519i
\(88\) 0 0
\(89\) 14.6556i 1.55349i −0.629814 0.776746i \(-0.716869\pi\)
0.629814 0.776746i \(-0.283131\pi\)
\(90\) 0 0
\(91\) 10.6875i 1.12035i
\(92\) 0 0
\(93\) −5.95680 + 5.95680i −0.617691 + 0.617691i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.9108 12.9108i −1.31090 1.31090i −0.920756 0.390140i \(-0.872427\pi\)
−0.390140 0.920756i \(-0.627573\pi\)
\(98\) 0 0
\(99\) 0.964724 0.0969584
\(100\) 0 0
\(101\) −12.2560 −1.21952 −0.609759 0.792587i \(-0.708734\pi\)
−0.609759 + 0.792587i \(0.708734\pi\)
\(102\) 0 0
\(103\) 0.292529 + 0.292529i 0.0288237 + 0.0288237i 0.721372 0.692548i \(-0.243512\pi\)
−0.692548 + 0.721372i \(0.743512\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.6955 10.6955i 1.03398 1.03398i 0.0345738 0.999402i \(-0.488993\pi\)
0.999402 0.0345738i \(-0.0110074\pi\)
\(108\) 0 0
\(109\) 17.1197i 1.63977i 0.572528 + 0.819885i \(0.305963\pi\)
−0.572528 + 0.819885i \(0.694037\pi\)
\(110\) 0 0
\(111\) 1.92945i 0.183135i
\(112\) 0 0
\(113\) −8.00000 + 8.00000i −0.752577 + 0.752577i −0.974959 0.222383i \(-0.928617\pi\)
0.222383 + 0.974959i \(0.428617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.63896 + 2.63896i 0.243972 + 0.243972i
\(118\) 0 0
\(119\) −8.69213 −0.796806
\(120\) 0 0
\(121\) 10.0693 0.915392
\(122\) 0 0
\(123\) 5.69677 + 5.69677i 0.513661 + 0.513661i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.36308 2.36308i 0.209690 0.209690i −0.594446 0.804136i \(-0.702629\pi\)
0.804136 + 0.594446i \(0.202629\pi\)
\(128\) 0 0
\(129\) 4.67095i 0.411254i
\(130\) 0 0
\(131\) 21.8131i 1.90582i −0.303256 0.952909i \(-0.598074\pi\)
0.303256 0.952909i \(-0.401926\pi\)
\(132\) 0 0
\(133\) 9.65357 9.65357i 0.837071 0.837071i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.3989 12.3989i −1.05931 1.05931i −0.998127 0.0611805i \(-0.980513\pi\)
−0.0611805 0.998127i \(-0.519487\pi\)
\(138\) 0 0
\(139\) 0.535898 0.0454543 0.0227272 0.999742i \(-0.492765\pi\)
0.0227272 + 0.999742i \(0.492765\pi\)
\(140\) 0 0
\(141\) −9.72741 −0.819195
\(142\) 0 0
\(143\) −2.54587 2.54587i −0.212896 0.212896i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.849091 + 0.849091i −0.0700319 + 0.0700319i
\(148\) 0 0
\(149\) 4.78710i 0.392174i 0.980586 + 0.196087i \(0.0628236\pi\)
−0.980586 + 0.196087i \(0.937176\pi\)
\(150\) 0 0
\(151\) 11.5665i 0.941271i −0.882328 0.470635i \(-0.844025\pi\)
0.882328 0.470635i \(-0.155975\pi\)
\(152\) 0 0
\(153\) 2.14626 2.14626i 0.173515 0.173515i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −6.06727 6.06727i −0.484221 0.484221i 0.422256 0.906477i \(-0.361238\pi\)
−0.906477 + 0.422256i \(0.861238\pi\)
\(158\) 0 0
\(159\) −3.29858 −0.261595
\(160\) 0 0
\(161\) 1.14434 0.0901867
\(162\) 0 0
\(163\) −14.9804 14.9804i −1.17335 1.17335i −0.981405 0.191949i \(-0.938519\pi\)
−0.191949 0.981405i \(-0.561481\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.0306 + 14.0306i −1.08572 + 1.08572i −0.0897594 + 0.995963i \(0.528610\pi\)
−0.995963 + 0.0897594i \(0.971390\pi\)
\(168\) 0 0
\(169\) 0.928203i 0.0714002i
\(170\) 0 0
\(171\) 4.76733i 0.364567i
\(172\) 0 0
\(173\) 10.7727 10.7727i 0.819029 0.819029i −0.166938 0.985967i \(-0.553388\pi\)
0.985967 + 0.166938i \(0.0533880\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.44949 + 2.44949i 0.184115 + 0.184115i
\(178\) 0 0
\(179\) −5.06251 −0.378390 −0.189195 0.981940i \(-0.560588\pi\)
−0.189195 + 0.981940i \(0.560588\pi\)
\(180\) 0 0
\(181\) 7.67700 0.570627 0.285314 0.958434i \(-0.407902\pi\)
0.285314 + 0.958434i \(0.407902\pi\)
\(182\) 0 0
\(183\) 7.10671 + 7.10671i 0.525343 + 0.525343i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.07055 + 2.07055i −0.151414 + 0.151414i
\(188\) 0 0
\(189\) 2.86370i 0.208304i
\(190\) 0 0
\(191\) 0.906276i 0.0655759i 0.999462 + 0.0327879i \(0.0104386\pi\)
−0.999462 + 0.0327879i \(0.989561\pi\)
\(192\) 0 0
\(193\) 2.58250 2.58250i 0.185893 0.185893i −0.608025 0.793918i \(-0.708038\pi\)
0.793918 + 0.608025i \(0.208038\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.2991 + 12.2991i 0.876274 + 0.876274i 0.993147 0.116873i \(-0.0372869\pi\)
−0.116873 + 0.993147i \(0.537287\pi\)
\(198\) 0 0
\(199\) −1.43223 −0.101528 −0.0507639 0.998711i \(-0.516166\pi\)
−0.0507639 + 0.998711i \(0.516166\pi\)
\(200\) 0 0
\(201\) −1.47015 −0.103697
\(202\) 0 0
\(203\) 14.8384 + 14.8384i 1.04145 + 1.04145i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.282561 + 0.282561i −0.0196394 + 0.0196394i
\(208\) 0 0
\(209\) 4.59915i 0.318130i
\(210\) 0 0
\(211\) 19.1503i 1.31836i −0.751983 0.659182i \(-0.770903\pi\)
0.751983 0.659182i \(-0.229097\pi\)
\(212\) 0 0
\(213\) 3.42418 3.42418i 0.234621 0.234621i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −17.0585 17.0585i −1.15801 1.15801i
\(218\) 0 0
\(219\) −13.3843 −0.904425
\(220\) 0 0
\(221\) −11.3278 −0.761991
\(222\) 0 0
\(223\) −14.4603 14.4603i −0.968336 0.968336i 0.0311780 0.999514i \(-0.490074\pi\)
−0.999514 + 0.0311780i \(0.990074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.2939 12.2939i 0.815977 0.815977i −0.169545 0.985522i \(-0.554230\pi\)
0.985522 + 0.169545i \(0.0542299\pi\)
\(228\) 0 0
\(229\) 14.7342i 0.973664i 0.873496 + 0.486832i \(0.161848\pi\)
−0.873496 + 0.486832i \(0.838152\pi\)
\(230\) 0 0
\(231\) 2.76268i 0.181771i
\(232\) 0 0
\(233\) −1.06110 + 1.06110i −0.0695150 + 0.0695150i −0.741010 0.671495i \(-0.765653\pi\)
0.671495 + 0.741010i \(0.265653\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.08516 1.08516i −0.0704890 0.0704890i
\(238\) 0 0
\(239\) 12.0151 0.777194 0.388597 0.921408i \(-0.372960\pi\)
0.388597 + 0.921408i \(0.372960\pi\)
\(240\) 0 0
\(241\) 25.5241 1.64415 0.822077 0.569377i \(-0.192815\pi\)
0.822077 + 0.569377i \(0.192815\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.5808 12.5808i 0.800496 0.800496i
\(248\) 0 0
\(249\) 12.6556i 0.802017i
\(250\) 0 0
\(251\) 21.3112i 1.34515i 0.740028 + 0.672576i \(0.234812\pi\)
−0.740028 + 0.672576i \(0.765188\pi\)
\(252\) 0 0
\(253\) 0.272593 0.272593i 0.0171378 0.0171378i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.75787 8.75787i −0.546301 0.546301i 0.379068 0.925369i \(-0.376245\pi\)
−0.925369 + 0.379068i \(0.876245\pi\)
\(258\) 0 0
\(259\) 5.52537 0.343330
\(260\) 0 0
\(261\) −7.32780 −0.453580
\(262\) 0 0
\(263\) 12.7180 + 12.7180i 0.784223 + 0.784223i 0.980540 0.196318i \(-0.0628984\pi\)
−0.196318 + 0.980540i \(0.562898\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −10.3631 + 10.3631i −0.634210 + 0.634210i
\(268\) 0 0
\(269\) 1.47140i 0.0897127i −0.998993 0.0448564i \(-0.985717\pi\)
0.998993 0.0448564i \(-0.0142830\pi\)
\(270\) 0 0
\(271\) 23.0600i 1.40080i −0.713752 0.700398i \(-0.753006\pi\)
0.713752 0.700398i \(-0.246994\pi\)
\(272\) 0 0
\(273\) −7.55719 + 7.55719i −0.457382 + 0.457382i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.9156 + 12.9156i 0.776025 + 0.776025i 0.979152 0.203127i \(-0.0651105\pi\)
−0.203127 + 0.979152i \(0.565111\pi\)
\(278\) 0 0
\(279\) 8.42418 0.504343
\(280\) 0 0
\(281\) −10.0846 −0.601600 −0.300800 0.953687i \(-0.597254\pi\)
−0.300800 + 0.953687i \(0.597254\pi\)
\(282\) 0 0
\(283\) −8.18191 8.18191i −0.486364 0.486364i 0.420793 0.907157i \(-0.361752\pi\)
−0.907157 + 0.420793i \(0.861752\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −16.3139 + 16.3139i −0.962977 + 0.962977i
\(288\) 0 0
\(289\) 7.78710i 0.458065i
\(290\) 0 0
\(291\) 18.2587i 1.07034i
\(292\) 0 0
\(293\) −20.3472 + 20.3472i −1.18870 + 1.18870i −0.211270 + 0.977428i \(0.567760\pi\)
−0.977428 + 0.211270i \(0.932240\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.682163 0.682163i −0.0395831 0.0395831i
\(298\) 0 0
\(299\) 1.49133 0.0862461
\(300\) 0 0
\(301\) 13.3762 0.770992
\(302\) 0 0
\(303\) 8.66631 + 8.66631i 0.497866 + 0.497866i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7.81809 + 7.81809i −0.446202 + 0.446202i −0.894090 0.447888i \(-0.852176\pi\)
0.447888 + 0.894090i \(0.352176\pi\)
\(308\) 0 0
\(309\) 0.413698i 0.0235345i
\(310\) 0 0
\(311\) 29.3205i 1.66261i 0.555814 + 0.831307i \(0.312407\pi\)
−0.555814 + 0.831307i \(0.687593\pi\)
\(312\) 0 0
\(313\) −3.06778 + 3.06778i −0.173401 + 0.173401i −0.788472 0.615071i \(-0.789127\pi\)
0.615071 + 0.788472i \(0.289127\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.02922 + 6.02922i 0.338635 + 0.338635i 0.855853 0.517218i \(-0.173033\pi\)
−0.517218 + 0.855853i \(0.673033\pi\)
\(318\) 0 0
\(319\) 7.06931 0.395805
\(320\) 0 0
\(321\) −15.1258 −0.844238
\(322\) 0 0
\(323\) −10.2319 10.2319i −0.569321 0.569321i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12.1055 12.1055i 0.669434 0.669434i
\(328\) 0 0
\(329\) 27.8564i 1.53577i
\(330\) 0 0
\(331\) 21.1794i 1.16413i 0.813144 + 0.582063i \(0.197754\pi\)
−0.813144 + 0.582063i \(0.802246\pi\)
\(332\) 0 0
\(333\) −1.36433 + 1.36433i −0.0747646 + 0.0747646i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.9602 + 15.9602i 0.869407 + 0.869407i 0.992407 0.122999i \(-0.0392514\pi\)
−0.122999 + 0.992407i \(0.539251\pi\)
\(338\) 0 0
\(339\) 11.3137 0.614476
\(340\) 0 0
\(341\) −8.12701 −0.440102
\(342\) 0 0
\(343\) 11.7431 + 11.7431i 0.634066 + 0.634066i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.81862 7.81862i 0.419726 0.419726i −0.465383 0.885109i \(-0.654084\pi\)
0.885109 + 0.465383i \(0.154084\pi\)
\(348\) 0 0
\(349\) 25.4548i 1.36256i 0.732021 + 0.681282i \(0.238577\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(350\) 0 0
\(351\) 3.73205i 0.199202i
\(352\) 0 0
\(353\) 1.71263 1.71263i 0.0911541 0.0911541i −0.660059 0.751213i \(-0.729469\pi\)
0.751213 + 0.660059i \(0.229469\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.14626 + 6.14626i 0.325295 + 0.325295i
\(358\) 0 0
\(359\) −18.3981 −0.971017 −0.485508 0.874232i \(-0.661365\pi\)
−0.485508 + 0.874232i \(0.661365\pi\)
\(360\) 0 0
\(361\) 3.72741 0.196179
\(362\) 0 0
\(363\) −7.12008 7.12008i −0.373707 0.373707i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6.36736 + 6.36736i −0.332374 + 0.332374i −0.853487 0.521114i \(-0.825517\pi\)
0.521114 + 0.853487i \(0.325517\pi\)
\(368\) 0 0
\(369\) 8.05646i 0.419402i
\(370\) 0 0
\(371\) 9.44616i 0.490420i
\(372\) 0 0
\(373\) 10.1602 10.1602i 0.526078 0.526078i −0.393323 0.919400i \(-0.628675\pi\)
0.919400 + 0.393323i \(0.128675\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.3378 + 19.3378i 0.995946 + 0.995946i
\(378\) 0 0
\(379\) −6.16088 −0.316463 −0.158231 0.987402i \(-0.550579\pi\)
−0.158231 + 0.987402i \(0.550579\pi\)
\(380\) 0 0
\(381\) −3.34190 −0.171211
\(382\) 0 0
\(383\) −10.8484 10.8484i −0.554325 0.554325i 0.373361 0.927686i \(-0.378205\pi\)
−0.927686 + 0.373361i \(0.878205\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.30286 + 3.30286i −0.167894 + 0.167894i
\(388\) 0 0
\(389\) 13.0834i 0.663355i 0.943393 + 0.331677i \(0.107615\pi\)
−0.943393 + 0.331677i \(0.892385\pi\)
\(390\) 0 0
\(391\) 1.21290i 0.0613391i
\(392\) 0 0
\(393\) −15.4242 + 15.4242i −0.778047 + 0.778047i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.7745 + 16.7745i 0.841889 + 0.841889i 0.989104 0.147215i \(-0.0470310\pi\)
−0.147215 + 0.989104i \(0.547031\pi\)
\(398\) 0 0
\(399\) −13.6522 −0.683465
\(400\) 0 0
\(401\) 38.0258 1.89892 0.949458 0.313893i \(-0.101633\pi\)
0.949458 + 0.313893i \(0.101633\pi\)
\(402\) 0 0
\(403\) −22.2311 22.2311i −1.10741 1.10741i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.31620 1.31620i 0.0652415 0.0652415i
\(408\) 0 0
\(409\) 19.2540i 0.952050i 0.879432 + 0.476025i \(0.157923\pi\)
−0.879432 + 0.476025i \(0.842077\pi\)
\(410\) 0 0
\(411\) 17.5347i 0.864921i
\(412\) 0 0
\(413\) −7.01461 + 7.01461i −0.345166 + 0.345166i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.378937 0.378937i −0.0185566 0.0185566i
\(418\) 0 0
\(419\) −19.0260 −0.929480 −0.464740 0.885447i \(-0.653852\pi\)
−0.464740 + 0.885447i \(0.653852\pi\)
\(420\) 0 0
\(421\) 21.0411 1.02548 0.512741 0.858544i \(-0.328630\pi\)
0.512741 + 0.858544i \(0.328630\pi\)
\(422\) 0 0
\(423\) 6.87832 + 6.87832i 0.334435 + 0.334435i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.3515 + 20.3515i −0.984878 + 0.984878i
\(428\) 0 0
\(429\) 3.60040i 0.173829i
\(430\) 0 0
\(431\) 33.2187i 1.60009i 0.599940 + 0.800045i \(0.295191\pi\)
−0.599940 + 0.800045i \(0.704809\pi\)
\(432\) 0 0
\(433\) 4.93878 4.93878i 0.237343 0.237343i −0.578406 0.815749i \(-0.696325\pi\)
0.815749 + 0.578406i \(0.196325\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.34706 + 1.34706i 0.0644387 + 0.0644387i
\(438\) 0 0
\(439\) 34.8072 1.66126 0.830628 0.556827i \(-0.187981\pi\)
0.830628 + 0.556827i \(0.187981\pi\)
\(440\) 0 0
\(441\) 1.20080 0.0571808
\(442\) 0 0
\(443\) 7.82038 + 7.82038i 0.371558 + 0.371558i 0.868044 0.496487i \(-0.165377\pi\)
−0.496487 + 0.868044i \(0.665377\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.38499 3.38499i 0.160105 0.160105i
\(448\) 0 0
\(449\) 12.0000i 0.566315i 0.959073 + 0.283158i \(0.0913819\pi\)
−0.959073 + 0.283158i \(0.908618\pi\)
\(450\) 0 0
\(451\) 7.77225i 0.365981i
\(452\) 0 0
\(453\) −8.17877 + 8.17877i −0.384272 + 0.384272i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.17157 5.17157i −0.241916 0.241916i 0.575726 0.817642i \(-0.304719\pi\)
−0.817642 + 0.575726i \(0.804719\pi\)
\(458\) 0 0
\(459\) −3.03528 −0.141675
\(460\) 0 0
\(461\) −25.1963 −1.17351 −0.586755 0.809765i \(-0.699595\pi\)
−0.586755 + 0.809765i \(0.699595\pi\)
\(462\) 0 0
\(463\) −14.0492 14.0492i −0.652920 0.652920i 0.300775 0.953695i \(-0.402755\pi\)
−0.953695 + 0.300775i \(0.902755\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.96864 + 7.96864i −0.368745 + 0.368745i −0.867019 0.498275i \(-0.833967\pi\)
0.498275 + 0.867019i \(0.333967\pi\)
\(468\) 0 0
\(469\) 4.21009i 0.194404i
\(470\) 0 0
\(471\) 8.58041i 0.395365i
\(472\) 0 0
\(473\) 3.18635 3.18635i 0.146508 0.146508i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.33245 + 2.33245i 0.106796 + 0.106796i
\(478\) 0 0
\(479\) 40.3032 1.84150 0.920750 0.390154i \(-0.127578\pi\)
0.920750 + 0.390154i \(0.127578\pi\)
\(480\) 0 0
\(481\) 7.20080 0.328328
\(482\) 0 0
\(483\) −0.809171 0.809171i −0.0368186 0.0368186i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13.4384 + 13.4384i −0.608953 + 0.608953i −0.942673 0.333719i \(-0.891696\pi\)
0.333719 + 0.942673i \(0.391696\pi\)
\(488\) 0 0
\(489\) 21.1855i 0.958039i
\(490\) 0 0
\(491\) 2.24191i 0.101176i 0.998720 + 0.0505880i \(0.0161095\pi\)
−0.998720 + 0.0505880i \(0.983890\pi\)
\(492\) 0 0
\(493\) 15.7274 15.7274i 0.708327 0.708327i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.80584 + 9.80584i 0.439852 + 0.439852i
\(498\) 0 0
\(499\) 42.6144 1.90768 0.953842 0.300308i \(-0.0970895\pi\)
0.953842 + 0.300308i \(0.0970895\pi\)
\(500\) 0 0
\(501\) 19.8423 0.886489
\(502\) 0 0
\(503\) −13.5653 13.5653i −0.604846 0.604846i 0.336748 0.941595i \(-0.390673\pi\)
−0.941595 + 0.336748i \(0.890673\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.656339 + 0.656339i −0.0291490 + 0.0291490i
\(508\) 0 0
\(509\) 21.3233i 0.945140i −0.881293 0.472570i \(-0.843326\pi\)
0.881293 0.472570i \(-0.156674\pi\)
\(510\) 0 0
\(511\) 38.3286i 1.69556i
\(512\) 0 0
\(513\) 3.37101 3.37101i 0.148834 0.148834i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6.63567 6.63567i −0.291837 0.291837i
\(518\) 0 0
\(519\) −15.2348 −0.668735
\(520\) 0 0
\(521\) 20.5710 0.901230 0.450615 0.892718i \(-0.351205\pi\)
0.450615 + 0.892718i \(0.351205\pi\)
\(522\) 0 0
\(523\) −11.0086 11.0086i −0.481371 0.481371i 0.424198 0.905569i \(-0.360556\pi\)
−0.905569 + 0.424198i \(0.860556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.0805 + 18.0805i −0.787600 + 0.787600i
\(528\) 0 0
\(529\) 22.8403i 0.993057i
\(530\) 0 0
\(531\) 3.46410i 0.150329i
\(532\) 0 0
\(533\) −21.2607 + 21.2607i −0.920901 + 0.920901i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.57973 + 3.57973i 0.154477 + 0.154477i
\(538\) 0 0
\(539\) −1.15844 −0.0498974
\(540\) 0 0
\(541\) 19.9189 0.856381 0.428191 0.903688i \(-0.359151\pi\)
0.428191 + 0.903688i \(0.359151\pi\)
\(542\) 0 0
\(543\) −5.42846 5.42846i −0.232958 0.232958i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −10.0905 + 10.0905i −0.431438 + 0.431438i −0.889117 0.457679i \(-0.848681\pi\)
0.457679 + 0.889117i \(0.348681\pi\)
\(548\) 0 0
\(549\) 10.0504i 0.428941i
\(550\) 0 0
\(551\) 34.9340i 1.48824i
\(552\) 0 0
\(553\) 3.10759 3.10759i 0.132148 0.132148i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.6398 + 24.6398i 1.04402 + 1.04402i 0.998985 + 0.0450344i \(0.0143398\pi\)
0.0450344 + 0.998985i \(0.485660\pi\)
\(558\) 0 0
\(559\) 17.4322 0.737305
\(560\) 0 0
\(561\) 2.92820 0.123629
\(562\) 0 0
\(563\) 2.57406 + 2.57406i 0.108484 + 0.108484i 0.759265 0.650781i \(-0.225559\pi\)
−0.650781 + 0.759265i \(0.725559\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.02494 + 2.02494i −0.0850397 + 0.0850397i
\(568\) 0 0
\(569\) 34.5685i 1.44919i 0.689177 + 0.724593i \(0.257972\pi\)
−0.689177 + 0.724593i \(0.742028\pi\)
\(570\) 0 0
\(571\) 31.3310i 1.31116i 0.755125 + 0.655581i \(0.227576\pi\)
−0.755125 + 0.655581i \(0.772424\pi\)
\(572\) 0 0
\(573\) 0.640834 0.640834i 0.0267712 0.0267712i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 14.8151 + 14.8151i 0.616762 + 0.616762i 0.944699 0.327938i \(-0.106354\pi\)
−0.327938 + 0.944699i \(0.606354\pi\)
\(578\) 0 0
\(579\) −3.65221 −0.151781
\(580\) 0 0
\(581\) 36.2419 1.50357
\(582\) 0 0
\(583\) −2.25017 2.25017i −0.0931925 0.0931925i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.1224 31.1224i 1.28456 1.28456i 0.346512 0.938046i \(-0.387366\pi\)
0.938046 0.346512i \(-0.112634\pi\)
\(588\) 0 0
\(589\) 40.1608i 1.65480i
\(590\) 0 0
\(591\) 17.3935i 0.715475i
\(592\) 0 0
\(593\) −21.4149 + 21.4149i −0.879404 + 0.879404i −0.993473 0.114069i \(-0.963612\pi\)
0.114069 + 0.993473i \(0.463612\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.01274 + 1.01274i 0.0414485 + 0.0414485i
\(598\) 0 0
\(599\) −18.7383 −0.765625 −0.382812 0.923826i \(-0.625044\pi\)
−0.382812 + 0.923826i \(0.625044\pi\)
\(600\) 0 0
\(601\) 20.4266 0.833219 0.416610 0.909085i \(-0.363218\pi\)
0.416610 + 0.909085i \(0.363218\pi\)
\(602\) 0 0
\(603\) 1.03956 + 1.03956i 0.0423340 + 0.0423340i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −12.7165 + 12.7165i −0.516149 + 0.516149i −0.916404 0.400255i \(-0.868922\pi\)
0.400255 + 0.916404i \(0.368922\pi\)
\(608\) 0 0
\(609\) 20.9847i 0.850341i
\(610\) 0 0
\(611\) 36.3032i 1.46867i
\(612\) 0 0
\(613\) 2.55583 2.55583i 0.103229 0.103229i −0.653606 0.756835i \(-0.726745\pi\)
0.756835 + 0.653606i \(0.226745\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.11172 7.11172i −0.286307 0.286307i 0.549311 0.835618i \(-0.314890\pi\)
−0.835618 + 0.549311i \(0.814890\pi\)
\(618\) 0 0
\(619\) −0.0810355 −0.00325709 −0.00162855 0.999999i \(-0.500518\pi\)
−0.00162855 + 0.999999i \(0.500518\pi\)
\(620\) 0 0
\(621\) 0.399602 0.0160355
\(622\) 0 0
\(623\) −29.6768 29.6768i −1.18898 1.18898i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3.25209 + 3.25209i −0.129876 + 0.129876i
\(628\) 0 0
\(629\) 5.85641i 0.233510i
\(630\) 0 0
\(631\) 45.5213i 1.81217i 0.423093 + 0.906086i \(0.360944\pi\)
−0.423093 + 0.906086i \(0.639056\pi\)
\(632\) 0 0
\(633\) −13.5413 + 13.5413i −0.538220 + 0.538220i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.16885 3.16885i −0.125555 0.125555i
\(638\) 0 0
\(639\) −4.84252 −0.191567
\(640\) 0 0
\(641\) −32.6531 −1.28972 −0.644860 0.764300i \(-0.723084\pi\)
−0.644860 + 0.764300i \(0.723084\pi\)
\(642\) 0 0
\(643\) 1.02015 + 1.02015i 0.0402307 + 0.0402307i 0.726936 0.686705i \(-0.240944\pi\)
−0.686705 + 0.726936i \(0.740944\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −29.7766 + 29.7766i −1.17064 + 1.17064i −0.188580 + 0.982058i \(0.560388\pi\)
−0.982058 + 0.188580i \(0.939612\pi\)
\(648\) 0 0
\(649\) 3.34190i 0.131181i
\(650\) 0 0
\(651\) 24.1244i 0.945508i
\(652\) 0 0
\(653\) 3.93498 3.93498i 0.153988 0.153988i −0.625909 0.779896i \(-0.715272\pi\)
0.779896 + 0.625909i \(0.215272\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9.46410 + 9.46410i 0.369230 + 0.369230i
\(658\) 0 0
\(659\) −3.81558 −0.148634 −0.0743169 0.997235i \(-0.523678\pi\)
−0.0743169 + 0.997235i \(0.523678\pi\)
\(660\) 0 0
\(661\) 2.66771 0.103762 0.0518810 0.998653i \(-0.483478\pi\)
0.0518810 + 0.998653i \(0.483478\pi\)
\(662\) 0 0
\(663\) 8.00997 + 8.00997i 0.311081 + 0.311081i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.07055 + 2.07055i −0.0801721 + 0.0801721i
\(668\) 0 0
\(669\) 20.4500i 0.790643i
\(670\) 0 0
\(671\) 9.69586i 0.374305i
\(672\) 0 0
\(673\) 12.1928 12.1928i 0.469996 0.469996i −0.431917 0.901913i \(-0.642163\pi\)
0.901913 + 0.431917i \(0.142163\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.36020 9.36020i −0.359742 0.359742i 0.503976 0.863718i \(-0.331870\pi\)
−0.863718 + 0.503976i \(0.831870\pi\)
\(678\) 0 0
\(679\) −52.2874 −2.00661
\(680\) 0 0
\(681\) −17.3863 −0.666243
\(682\) 0 0
\(683\) 28.6463 + 28.6463i 1.09612 + 1.09612i 0.994860 + 0.101261i \(0.0322878\pi\)
0.101261 + 0.994860i \(0.467712\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.4187 10.4187i 0.397497 0.397497i
\(688\) 0 0
\(689\) 12.3105i 0.468992i
\(690\) 0 0
\(691\) 21.1608i 0.804996i −0.915421 0.402498i \(-0.868142\pi\)
0.915421 0.402498i \(-0.131858\pi\)
\(692\) 0 0
\(693\) 1.95351 1.95351i 0.0742078 0.0742078i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17.2913 + 17.2913i 0.654954 + 0.654954i
\(698\) 0 0
\(699\) 1.50062 0.0567587
\(700\) 0 0
\(701\) 17.8423 0.673895 0.336947 0.941523i \(-0.390606\pi\)
0.336947 + 0.941523i \(0.390606\pi\)
\(702\) 0 0
\(703\) 6.50419 + 6.50419i 0.245310 + 0.245310i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.8177 + 24.8177i −0.933367 + 0.933367i
\(708\) 0 0
\(709\) 16.9625i 0.637041i 0.947916 + 0.318520i \(0.103186\pi\)
−0.947916 + 0.318520i \(0.896814\pi\)
\(710\) 0 0
\(711\) 1.53465i 0.0575540i
\(712\) 0 0
\(713\) 2.38035 2.38035i 0.0891446 0.0891446i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.49598 8.49598i −0.317288 0.317288i
\(718\) 0 0
\(719\) 12.6191 0.470613 0.235306 0.971921i \(-0.424391\pi\)
0.235306 + 0.971921i \(0.424391\pi\)
\(720\) 0 0
\(721\) 1.18471 0.0441209
\(722\) 0 0
\(723\) −18.0483 18.0483i −0.671223 0.671223i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0149 14.0149i 0.519785 0.519785i −0.397721 0.917506i \(-0.630199\pi\)
0.917506 + 0.397721i \(0.130199\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 14.1776i 0.524378i
\(732\) 0 0
\(733\) −17.5254 + 17.5254i −0.647314 + 0.647314i −0.952343 0.305029i \(-0.901334\pi\)
0.305029 + 0.952343i \(0.401334\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.00288 1.00288i −0.0369417 0.0369417i
\(738\) 0 0
\(739\) 7.10885 0.261503 0.130752 0.991415i \(-0.458261\pi\)
0.130752 + 0.991415i \(0.458261\pi\)
\(740\) 0 0
\(741\) −17.7919 −0.653602
\(742\) 0 0
\(743\) 14.6075 + 14.6075i 0.535897 + 0.535897i 0.922321 0.386425i \(-0.126290\pi\)
−0.386425 + 0.922321i \(0.626290\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.94887 + 8.94887i −0.327422 + 0.327422i
\(748\) 0 0
\(749\) 43.3157i 1.58272i
\(750\) 0 0
\(751\) 7.21970i 0.263451i −0.991286 0.131725i \(-0.957948\pi\)
0.991286 0.131725i \(-0.0420517\pi\)
\(752\) 0 0
\(753\) 15.0693 15.0693i 0.549156 0.549156i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.93273 1.93273i −0.0702463 0.0702463i 0.671111 0.741357i \(-0.265817\pi\)
−0.741357 + 0.671111i \(0.765817\pi\)
\(758\) 0 0
\(759\) −0.385505 −0.0139930
\(760\) 0 0
\(761\) −6.23230 −0.225921 −0.112960 0.993600i \(-0.536033\pi\)
−0.112960 + 0.993600i \(0.536033\pi\)
\(762\) 0 0
\(763\) 34.6665 + 34.6665i 1.25501 + 1.25501i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.14162 + 9.14162i −0.330085 + 0.330085i
\(768\) 0 0
\(769\) 26.1419i 0.942702i 0.881946 + 0.471351i \(0.156233\pi\)
−0.881946 + 0.471351i \(0.843767\pi\)
\(770\) 0 0
\(771\) 12.3855i 0.446053i
\(772\) 0 0
\(773\) −11.7580 + 11.7580i −0.422907 + 0.422907i −0.886203 0.463296i \(-0.846667\pi\)
0.463296 + 0.886203i \(0.346667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3.90702 3.90702i −0.140164 0.140164i
\(778\) 0 0
\(779\) −38.4078 −1.37610
\(780\) 0 0
\(781\) 4.67170 0.167166
\(782\) 0 0
\(783\) 5.18154 + 5.18154i 0.185173 + 0.185173i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −13.1008 + 13.1008i −0.466994 + 0.466994i −0.900939 0.433945i \(-0.857121\pi\)
0.433945 + 0.900939i \(0.357121\pi\)
\(788\) 0 0
\(789\) 17.9859i 0.640315i
\(790\) 0 0
\(791\) 32.3991i 1.15198i
\(792\) 0 0
\(793\) −26.5226 + 26.5226i −0.941845 + 0.941845i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.9282 18.9282i −0.670471 0.670471i 0.287353 0.957825i \(-0.407225\pi\)
−0.957825 + 0.287353i \(0.907225\pi\)
\(798\) 0 0
\(799\) −29.5254 −1.04453
\(800\) 0 0
\(801\) 14.6556 0.517831
\(802\) 0 0
\(803\) −9.13024 9.13024i −0.322199 0.322199i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.04044 + 1.04044i −0.0366251 + 0.0366251i
\(808\) 0 0
\(809\) 2.08714i 0.0733799i −0.999327 0.0366899i \(-0.988319\pi\)
0.999327 0.0366899i \(-0.0116814\pi\)
\(810\) 0 0
\(811\) 9.00244i 0.316118i −0.987430 0.158059i \(-0.949476\pi\)
0.987430 0.158059i \(-0.0505237\pi\)
\(812\) 0 0
\(813\) −16.3059 + 16.3059i −0.571873 + 0.571873i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.7458 + 15.7458i 0.550876 + 0.550876i
\(818\) 0 0
\(819\) 10.6875 0.373451
\(820\) 0 0
\(821\) 4.24191 0.148044 0.0740219 0.997257i \(-0.476417\pi\)
0.0740219 + 0.997257i \(0.476417\pi\)
\(822\) 0 0
\(823\) −2.96525 2.96525i −0.103362 0.103362i 0.653535 0.756897i \(-0.273285\pi\)
−0.756897 + 0.653535i \(0.773285\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.7873 15.7873i 0.548977 0.548977i −0.377168 0.926145i \(-0.623102\pi\)
0.926145 + 0.377168i \(0.123102\pi\)
\(828\) 0 0
\(829\) 3.69672i 0.128393i −0.997937 0.0641963i \(-0.979552\pi\)
0.997937 0.0641963i \(-0.0204484\pi\)
\(830\) 0 0
\(831\) 18.2655i 0.633622i
\(832\) 0 0
\(833\) −2.57723 + 2.57723i −0.0892956 + 0.0892956i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.95680 5.95680i −0.205897 0.205897i
\(838\) 0 0
\(839\) 2.50468 0.0864713 0.0432356 0.999065i \(-0.486233\pi\)
0.0432356 + 0.999065i \(0.486233\pi\)
\(840\) 0 0
\(841\) −24.6967 −0.851611
\(842\) 0 0
\(843\) 7.13092 + 7.13092i 0.245602 + 0.245602i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 20.3898 20.3898i 0.700601 0.700601i
\(848\) 0 0
\(849\) 11.5710i 0.397114i
\(850\) 0 0
\(851\) 0.771011i 0.0264299i
\(852\) 0 0
\(853\) −29.7252 + 29.7252i −1.01777 + 1.01777i −0.0179306 + 0.999839i \(0.505708\pi\)
−0.999839 + 0.0179306i \(0.994292\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.8191 + 24.8191i 0.847806 + 0.847806i 0.989859 0.142053i \(-0.0453705\pi\)
−0.142053 + 0.989859i \(0.545370\pi\)
\(858\) 0 0
\(859\) −17.3205 −0.590968 −0.295484 0.955348i \(-0.595481\pi\)
−0.295484 + 0.955348i \(0.595481\pi\)
\(860\) 0 0
\(861\) 23.0713 0.786268
\(862\) 0 0
\(863\) −20.6463 20.6463i −0.702809 0.702809i 0.262204 0.965013i \(-0.415551\pi\)
−0.965013 + 0.262204i \(0.915551\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5.50631 + 5.50631i −0.187004 + 0.187004i
\(868\) 0 0
\(869\) 1.48052i 0.0502231i
\(870\) 0 0
\(871\) 5.48669i 0.185909i
\(872\) 0 0
\(873\) 12.9108 12.9108i 0.436965 0.436965i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −40.8595 40.8595i −1.37973 1.37973i −0.845069 0.534658i \(-0.820440\pi\)
−0.534658 0.845069i \(-0.679560\pi\)
\(878\) 0 0
\(879\) 28.7753 0.970567
\(880\) 0 0
\(881\) −22.5145 −0.758533 −0.379266 0.925287i \(-0.623824\pi\)
−0.379266 + 0.925287i \(0.623824\pi\)
\(882\) 0 0
\(883\) −34.0215 34.0215i −1.14491 1.14491i −0.987539 0.157376i \(-0.949697\pi\)
−0.157376 0.987539i \(-0.550303\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.959187 0.959187i 0.0322063 0.0322063i −0.690820 0.723027i \(-0.742750\pi\)
0.723027 + 0.690820i \(0.242750\pi\)
\(888\) 0 0
\(889\) 9.57021i 0.320975i
\(890\) 0 0
\(891\) 0.964724i 0.0323195i
\(892\) 0 0
\(893\) 32.7912 32.7912i 1.09731 1.09731i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.05453 1.05453i −0.0352098 0.0352098i
\(898\) 0 0
\(899\) 61.7308 2.05884
\(900\) 0 0
\(901\) −10.0121 −0.333552
\(902\) 0 0
\(903\) −9.45841 9.45841i −0.314756 0.314756i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.24337 + 2.24337i −0.0744899 + 0.0744899i −0.743370 0.668880i \(-0.766774\pi\)
0.668880 + 0.743370i \(0.266774\pi\)
\(908\) 0 0
\(909\) 12.2560i 0.406506i
\(910\) 0 0
\(911\) 17.4238i 0.577276i −0.957438 0.288638i \(-0.906798\pi\)
0.957438 0.288638i \(-0.0932025\pi\)
\(912\) 0 0
\(913\) 8.63319 8.63319i 0.285717 0.285717i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −44.1703 44.1703i −1.45863 1.45863i
\(918\) 0 0
\(919\) −1.74038 −0.0574098 −0.0287049 0.999588i \(-0.509138\pi\)
−0.0287049 + 0.999588i \(0.509138\pi\)
\(920\) 0 0
\(921\) 11.0565 0.364323
\(922\) 0 0
\(923\) 12.7792 + 12.7792i 0.420633 + 0.420633i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −0.292529 + 0.292529i −0.00960790 + 0.00960790i
\(928\) 0 0
\(929\) 32.7403i 1.07417i 0.843527 + 0.537087i \(0.180475\pi\)
−0.843527 + 0.537087i \(0.819525\pi\)
\(930\) 0 0
\(931\) 5.72459i 0.187616i
\(932\) 0 0
\(933\) 20.7327 20.7327i 0.678759 0.678759i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.418742 + 0.418742i 0.0136797 + 0.0136797i 0.713914 0.700234i \(-0.246921\pi\)
−0.700234 + 0.713914i \(0.746921\pi\)
\(938\) 0 0
\(939\) 4.33850 0.141582
\(940\) 0 0
\(941\) 18.1507 0.591697 0.295848 0.955235i \(-0.404398\pi\)
0.295848 + 0.955235i \(0.404398\pi\)
\(942\) 0 0
\(943\) −2.27644 2.27644i −0.0741311 0.0741311i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.8359 32.8359i 1.06702 1.06702i 0.0694373 0.997586i \(-0.477880\pi\)
0.997586 0.0694373i \(-0.0221204\pi\)
\(948\) 0 0
\(949\) 49.9507i 1.62147i
\(950\) 0 0
\(951\) 8.52661i 0.276494i
\(952\) 0 0
\(953\) 30.8615 30.8615i 0.999702 0.999702i −0.000297967 1.00000i \(-0.500095\pi\)
1.00000 0.000297967i \(9.48460e-5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4.99876 4.99876i −0.161587 0.161587i
\(958\) 0 0
\(959\) −50.2140 −1.62150
\(960\) 0 0
\(961\) −39.9668 −1.28925
\(962\) 0 0
\(963\) 10.6955 + 10.6955i 0.344659 + 0.344659i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 25.1399 25.1399i 0.808443 0.808443i −0.175955 0.984398i \(-0.556301\pi\)
0.984398 + 0.175955i \(0.0563013\pi\)
\(968\) 0 0
\(969\) 14.4702i 0.464848i
\(970\) 0 0
\(971\) 6.84587i 0.219695i 0.993948 + 0.109847i \(0.0350362\pi\)
−0.993948 + 0.109847i \(0.964964\pi\)
\(972\) 0 0
\(973\) 1.08516 1.08516i 0.0347888 0.0347888i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.62209 + 1.62209i 0.0518954 + 0.0518954i 0.732578 0.680683i \(-0.238317\pi\)
−0.680683 + 0.732578i \(0.738317\pi\)
\(978\) 0 0
\(979\) −14.1386 −0.451872
\(980\) 0 0
\(981\) −17.1197 −0.546590
\(982\) 0 0
\(983\) 1.61553 + 1.61553i 0.0515273 + 0.0515273i 0.732401 0.680874i \(-0.238400\pi\)
−0.680874 + 0.732401i \(0.738400\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −19.6975 + 19.6975i −0.626977 + 0.626977i
\(988\) 0 0
\(989\) 1.86652i 0.0593519i
\(990\) 0 0
\(991\) 45.1617i 1.43461i −0.696760 0.717304i \(-0.745376\pi\)
0.696760 0.717304i \(-0.254624\pi\)
\(992\) 0 0
\(993\) 14.9761 14.9761i 0.475252 0.475252i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.54394 + 5.54394i 0.175578 + 0.175578i 0.789425 0.613847i \(-0.210379\pi\)
−0.613847 + 0.789425i \(0.710379\pi\)
\(998\) 0 0
\(999\) 1.92945 0.0610450
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.w.l.607.2 yes 8
4.3 odd 2 2400.2.w.h.607.3 yes 8
5.2 odd 4 2400.2.w.k.2143.2 yes 8
5.3 odd 4 2400.2.w.h.2143.3 yes 8
5.4 even 2 2400.2.w.g.607.3 8
20.3 even 4 inner 2400.2.w.l.2143.2 yes 8
20.7 even 4 2400.2.w.g.2143.3 yes 8
20.19 odd 2 2400.2.w.k.607.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.2.w.g.607.3 8 5.4 even 2
2400.2.w.g.2143.3 yes 8 20.7 even 4
2400.2.w.h.607.3 yes 8 4.3 odd 2
2400.2.w.h.2143.3 yes 8 5.3 odd 4
2400.2.w.k.607.2 yes 8 20.19 odd 2
2400.2.w.k.2143.2 yes 8 5.2 odd 4
2400.2.w.l.607.2 yes 8 1.1 even 1 trivial
2400.2.w.l.2143.2 yes 8 20.3 even 4 inner