Properties

Label 2400.4.a.c
Level 24002400
Weight 44
Character orbit 2400.a
Self dual yes
Analytic conductor 141.605141.605
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2400=25352 2400 = 2^{5} \cdot 3 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 141.604584014141.604584014
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 96)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q3q312q7+9q9+60q11+42q1310q17+132q19+36q21+48q2327q27+226q29252q31180q33+362q37126q3994q41+228q43++540q99+O(q100) q - 3 q^{3} - 12 q^{7} + 9 q^{9} + 60 q^{11} + 42 q^{13} - 10 q^{17} + 132 q^{19} + 36 q^{21} + 48 q^{23} - 27 q^{27} + 226 q^{29} - 252 q^{31} - 180 q^{33} + 362 q^{37} - 126 q^{39} - 94 q^{41} + 228 q^{43}+ \cdots + 540 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −3.00000 0 0 0 −12.0000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.4.a.c 1
4.b odd 2 1 2400.4.a.t 1
5.b even 2 1 96.4.a.e yes 1
15.d odd 2 1 288.4.a.f 1
20.d odd 2 1 96.4.a.b 1
40.e odd 2 1 192.4.a.j 1
40.f even 2 1 192.4.a.d 1
60.h even 2 1 288.4.a.e 1
80.k odd 4 2 768.4.d.m 2
80.q even 4 2 768.4.d.d 2
120.i odd 2 1 576.4.a.o 1
120.m even 2 1 576.4.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.4.a.b 1 20.d odd 2 1
96.4.a.e yes 1 5.b even 2 1
192.4.a.d 1 40.f even 2 1
192.4.a.j 1 40.e odd 2 1
288.4.a.e 1 60.h even 2 1
288.4.a.f 1 15.d odd 2 1
576.4.a.n 1 120.m even 2 1
576.4.a.o 1 120.i odd 2 1
768.4.d.d 2 80.q even 4 2
768.4.d.m 2 80.k odd 4 2
2400.4.a.c 1 1.a even 1 1 trivial
2400.4.a.t 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2400))S_{4}^{\mathrm{new}}(\Gamma_0(2400)):

T7+12 T_{7} + 12 Copy content Toggle raw display
T1160 T_{11} - 60 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+3 T + 3 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+12 T + 12 Copy content Toggle raw display
1111 T60 T - 60 Copy content Toggle raw display
1313 T42 T - 42 Copy content Toggle raw display
1717 T+10 T + 10 Copy content Toggle raw display
1919 T132 T - 132 Copy content Toggle raw display
2323 T48 T - 48 Copy content Toggle raw display
2929 T226 T - 226 Copy content Toggle raw display
3131 T+252 T + 252 Copy content Toggle raw display
3737 T362 T - 362 Copy content Toggle raw display
4141 T+94 T + 94 Copy content Toggle raw display
4343 T228 T - 228 Copy content Toggle raw display
4747 T408 T - 408 Copy content Toggle raw display
5353 T+346 T + 346 Copy content Toggle raw display
5959 T+300 T + 300 Copy content Toggle raw display
6161 T+466 T + 466 Copy content Toggle raw display
6767 T+204 T + 204 Copy content Toggle raw display
7171 T1056 T - 1056 Copy content Toggle raw display
7373 T+330 T + 330 Copy content Toggle raw display
7979 T612 T - 612 Copy content Toggle raw display
8383 T+564 T + 564 Copy content Toggle raw display
8989 T+1510 T + 1510 Copy content Toggle raw display
9797 T+594 T + 594 Copy content Toggle raw display
show more
show less