Properties

Label 576.4.a.n
Level $576$
Weight $4$
Character orbit 576.a
Self dual yes
Analytic conductor $33.985$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,4,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 96)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{5} - 12 q^{7} - 60 q^{11} + 42 q^{13} - 10 q^{17} + 132 q^{19} - 48 q^{23} - 121 q^{25} + 226 q^{29} + 252 q^{31} - 24 q^{35} + 362 q^{37} + 94 q^{41} - 228 q^{43} - 408 q^{47} - 199 q^{49} + 346 q^{53}+ \cdots + 594 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 2.00000 0 −12.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.4.a.n 1
3.b odd 2 1 192.4.a.j 1
4.b odd 2 1 576.4.a.o 1
8.b even 2 1 288.4.a.e 1
8.d odd 2 1 288.4.a.f 1
12.b even 2 1 192.4.a.d 1
24.f even 2 1 96.4.a.e yes 1
24.h odd 2 1 96.4.a.b 1
48.i odd 4 2 768.4.d.m 2
48.k even 4 2 768.4.d.d 2
120.i odd 2 1 2400.4.a.t 1
120.m even 2 1 2400.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.4.a.b 1 24.h odd 2 1
96.4.a.e yes 1 24.f even 2 1
192.4.a.d 1 12.b even 2 1
192.4.a.j 1 3.b odd 2 1
288.4.a.e 1 8.b even 2 1
288.4.a.f 1 8.d odd 2 1
576.4.a.n 1 1.a even 1 1 trivial
576.4.a.o 1 4.b odd 2 1
768.4.d.d 2 48.k even 4 2
768.4.d.m 2 48.i odd 4 2
2400.4.a.c 1 120.m even 2 1
2400.4.a.t 1 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(576))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{7} + 12 \) Copy content Toggle raw display
\( T_{11} + 60 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T + 12 \) Copy content Toggle raw display
$11$ \( T + 60 \) Copy content Toggle raw display
$13$ \( T - 42 \) Copy content Toggle raw display
$17$ \( T + 10 \) Copy content Toggle raw display
$19$ \( T - 132 \) Copy content Toggle raw display
$23$ \( T + 48 \) Copy content Toggle raw display
$29$ \( T - 226 \) Copy content Toggle raw display
$31$ \( T - 252 \) Copy content Toggle raw display
$37$ \( T - 362 \) Copy content Toggle raw display
$41$ \( T - 94 \) Copy content Toggle raw display
$43$ \( T + 228 \) Copy content Toggle raw display
$47$ \( T + 408 \) Copy content Toggle raw display
$53$ \( T - 346 \) Copy content Toggle raw display
$59$ \( T - 300 \) Copy content Toggle raw display
$61$ \( T - 466 \) Copy content Toggle raw display
$67$ \( T - 204 \) Copy content Toggle raw display
$71$ \( T - 1056 \) Copy content Toggle raw display
$73$ \( T - 330 \) Copy content Toggle raw display
$79$ \( T + 612 \) Copy content Toggle raw display
$83$ \( T + 564 \) Copy content Toggle raw display
$89$ \( T - 1510 \) Copy content Toggle raw display
$97$ \( T - 594 \) Copy content Toggle raw display
show more
show less