Properties

Label 243.2.g.a.37.6
Level $243$
Weight $2$
Character 243.37
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(10,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 243.37
Dual form 243.2.g.a.46.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.395901 - 1.32240i) q^{2} +(0.0789711 + 0.0519401i) q^{4} +(-1.59916 + 3.70727i) q^{5} +(0.206731 + 3.54944i) q^{7} +(2.21483 - 1.85846i) q^{8} +(4.26939 + 3.58244i) q^{10} +(-0.0970299 + 0.130334i) q^{11} +(-0.239595 + 0.253956i) q^{13} +(4.77563 + 1.13184i) q^{14} +(-1.50590 - 3.49108i) q^{16} +(0.388085 - 2.20094i) q^{17} +(-0.215481 - 1.22205i) q^{19} +(-0.318844 + 0.209707i) q^{20} +(0.133939 + 0.179912i) q^{22} +(0.176164 - 3.02462i) q^{23} +(-7.75535 - 8.22019i) q^{25} +(0.240975 + 0.417381i) q^{26} +(-0.168033 + 0.291041i) q^{28} +(6.91689 - 1.63933i) q^{29} +(-0.773247 + 0.388339i) q^{31} +(0.530624 - 0.0620210i) q^{32} +(-2.75688 - 1.38456i) q^{34} +(-13.4893 - 4.90972i) q^{35} +(4.23271 - 1.54058i) q^{37} +(-1.70135 - 0.198860i) q^{38} +(3.34796 + 11.1830i) q^{40} +(2.02741 + 6.77201i) q^{41} +(9.37262 + 1.09550i) q^{43} +(-0.0144321 + 0.00525286i) q^{44} +(-3.93001 - 1.43041i) q^{46} +(-3.90796 - 1.96265i) q^{47} +(-5.60313 + 0.654911i) q^{49} +(-13.9407 + 7.00129i) q^{50} +(-0.0321115 + 0.00761057i) q^{52} +(-2.32646 + 4.02955i) q^{53} +(-0.328016 - 0.568141i) q^{55} +(7.05439 + 7.47721i) q^{56} +(0.570547 - 9.79591i) q^{58} +(-3.02485 - 4.06308i) q^{59} +(7.71017 - 5.07106i) q^{61} +(0.207411 + 1.17629i) q^{62} +(1.44849 - 8.21478i) q^{64} +(-0.558332 - 1.29436i) q^{65} +(-12.6466 - 2.99731i) q^{67} +(0.144965 - 0.153654i) q^{68} +(-11.8331 + 15.8945i) q^{70} +(1.23797 + 1.03878i) q^{71} +(-8.94621 + 7.50676i) q^{73} +(-0.361531 - 6.20725i) q^{74} +(0.0464569 - 0.107699i) q^{76} +(-0.482671 - 0.317458i) q^{77} +(2.06871 - 6.90998i) q^{79} +15.3506 q^{80} +9.75795 q^{82} +(-0.659082 + 2.20149i) q^{83} +(7.53888 + 4.95840i) q^{85} +(5.15932 - 11.9606i) q^{86} +(0.0273158 + 0.468994i) q^{88} +(-8.92827 + 7.49171i) q^{89} +(-0.950932 - 0.797927i) q^{91} +(0.171011 - 0.229707i) q^{92} +(-4.14257 + 4.39087i) q^{94} +(4.87508 + 1.15541i) q^{95} +(-1.66422 - 3.85810i) q^{97} +(-1.35223 + 7.66885i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{16}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.395901 1.32240i 0.279944 0.935078i −0.696181 0.717867i \(-0.745119\pi\)
0.976125 0.217211i \(-0.0696961\pi\)
\(3\) 0 0
\(4\) 0.0789711 + 0.0519401i 0.0394856 + 0.0259701i
\(5\) −1.59916 + 3.70727i −0.715167 + 1.65794i 0.0372929 + 0.999304i \(0.488127\pi\)
−0.752460 + 0.658638i \(0.771133\pi\)
\(6\) 0 0
\(7\) 0.206731 + 3.54944i 0.0781371 + 1.34156i 0.778441 + 0.627718i \(0.216011\pi\)
−0.700304 + 0.713845i \(0.746952\pi\)
\(8\) 2.21483 1.85846i 0.783061 0.657066i
\(9\) 0 0
\(10\) 4.26939 + 3.58244i 1.35010 + 1.13287i
\(11\) −0.0970299 + 0.130334i −0.0292556 + 0.0392971i −0.816510 0.577331i \(-0.804094\pi\)
0.787255 + 0.616628i \(0.211502\pi\)
\(12\) 0 0
\(13\) −0.239595 + 0.253956i −0.0664516 + 0.0704346i −0.759746 0.650220i \(-0.774677\pi\)
0.693295 + 0.720654i \(0.256158\pi\)
\(14\) 4.77563 + 1.13184i 1.27634 + 0.302498i
\(15\) 0 0
\(16\) −1.50590 3.49108i −0.376476 0.872770i
\(17\) 0.388085 2.20094i 0.0941245 0.533807i −0.900888 0.434053i \(-0.857083\pi\)
0.995012 0.0997542i \(-0.0318057\pi\)
\(18\) 0 0
\(19\) −0.215481 1.22205i −0.0494348 0.280358i 0.950063 0.312059i \(-0.101019\pi\)
−0.999497 + 0.0317008i \(0.989908\pi\)
\(20\) −0.318844 + 0.209707i −0.0712956 + 0.0468919i
\(21\) 0 0
\(22\) 0.133939 + 0.179912i 0.0285559 + 0.0383573i
\(23\) 0.176164 3.02462i 0.0367327 0.630676i −0.928830 0.370506i \(-0.879184\pi\)
0.965563 0.260170i \(-0.0837787\pi\)
\(24\) 0 0
\(25\) −7.75535 8.22019i −1.55107 1.64404i
\(26\) 0.240975 + 0.417381i 0.0472591 + 0.0818552i
\(27\) 0 0
\(28\) −0.168033 + 0.291041i −0.0317552 + 0.0550016i
\(29\) 6.91689 1.63933i 1.28443 0.304417i 0.468965 0.883217i \(-0.344627\pi\)
0.815469 + 0.578800i \(0.196479\pi\)
\(30\) 0 0
\(31\) −0.773247 + 0.388339i −0.138879 + 0.0697478i −0.516882 0.856057i \(-0.672907\pi\)
0.378003 + 0.925805i \(0.376611\pi\)
\(32\) 0.530624 0.0620210i 0.0938019 0.0109639i
\(33\) 0 0
\(34\) −2.75688 1.38456i −0.472801 0.237450i
\(35\) −13.4893 4.90972i −2.28012 0.829894i
\(36\) 0 0
\(37\) 4.23271 1.54058i 0.695853 0.253270i 0.0302136 0.999543i \(-0.490381\pi\)
0.665639 + 0.746274i \(0.268159\pi\)
\(38\) −1.70135 0.198860i −0.275996 0.0322593i
\(39\) 0 0
\(40\) 3.34796 + 11.1830i 0.529359 + 1.76818i
\(41\) 2.02741 + 6.77201i 0.316628 + 1.05761i 0.957131 + 0.289655i \(0.0935405\pi\)
−0.640504 + 0.767955i \(0.721274\pi\)
\(42\) 0 0
\(43\) 9.37262 + 1.09550i 1.42931 + 0.167063i 0.795279 0.606244i \(-0.207324\pi\)
0.634033 + 0.773306i \(0.281398\pi\)
\(44\) −0.0144321 + 0.00525286i −0.00217572 + 0.000791898i
\(45\) 0 0
\(46\) −3.93001 1.43041i −0.579448 0.210902i
\(47\) −3.90796 1.96265i −0.570034 0.286282i 0.140343 0.990103i \(-0.455179\pi\)
−0.710377 + 0.703821i \(0.751476\pi\)
\(48\) 0 0
\(49\) −5.60313 + 0.654911i −0.800447 + 0.0935588i
\(50\) −13.9407 + 7.00129i −1.97152 + 0.990132i
\(51\) 0 0
\(52\) −0.0321115 + 0.00761057i −0.00445307 + 0.00105540i
\(53\) −2.32646 + 4.02955i −0.319564 + 0.553502i −0.980397 0.197031i \(-0.936870\pi\)
0.660833 + 0.750533i \(0.270203\pi\)
\(54\) 0 0
\(55\) −0.328016 0.568141i −0.0442297 0.0766081i
\(56\) 7.05439 + 7.47721i 0.942682 + 0.999185i
\(57\) 0 0
\(58\) 0.570547 9.79591i 0.0749165 1.28627i
\(59\) −3.02485 4.06308i −0.393802 0.528968i 0.560364 0.828247i \(-0.310661\pi\)
−0.954166 + 0.299279i \(0.903254\pi\)
\(60\) 0 0
\(61\) 7.71017 5.07106i 0.987186 0.649282i 0.0502327 0.998738i \(-0.484004\pi\)
0.936953 + 0.349455i \(0.113633\pi\)
\(62\) 0.207411 + 1.17629i 0.0263412 + 0.149388i
\(63\) 0 0
\(64\) 1.44849 8.21478i 0.181061 1.02685i
\(65\) −0.558332 1.29436i −0.0692526 0.160545i
\(66\) 0 0
\(67\) −12.6466 2.99731i −1.54503 0.366179i −0.632295 0.774728i \(-0.717887\pi\)
−0.912737 + 0.408548i \(0.866035\pi\)
\(68\) 0.144965 0.153654i 0.0175795 0.0186332i
\(69\) 0 0
\(70\) −11.8331 + 15.8945i −1.41432 + 1.89976i
\(71\) 1.23797 + 1.03878i 0.146921 + 0.123281i 0.713286 0.700874i \(-0.247206\pi\)
−0.566365 + 0.824155i \(0.691651\pi\)
\(72\) 0 0
\(73\) −8.94621 + 7.50676i −1.04707 + 0.878600i −0.992783 0.119925i \(-0.961734\pi\)
−0.0542914 + 0.998525i \(0.517290\pi\)
\(74\) −0.361531 6.20725i −0.0420271 0.721578i
\(75\) 0 0
\(76\) 0.0464569 0.107699i 0.00532897 0.0123539i
\(77\) −0.482671 0.317458i −0.0550055 0.0361777i
\(78\) 0 0
\(79\) 2.06871 6.90998i 0.232748 0.777434i −0.759207 0.650849i \(-0.774413\pi\)
0.991956 0.126585i \(-0.0404017\pi\)
\(80\) 15.3506 1.71625
\(81\) 0 0
\(82\) 9.75795 1.07759
\(83\) −0.659082 + 2.20149i −0.0723437 + 0.241645i −0.986512 0.163691i \(-0.947660\pi\)
0.914168 + 0.405335i \(0.132845\pi\)
\(84\) 0 0
\(85\) 7.53888 + 4.95840i 0.817706 + 0.537814i
\(86\) 5.15932 11.9606i 0.556344 1.28975i
\(87\) 0 0
\(88\) 0.0273158 + 0.468994i 0.00291187 + 0.0499949i
\(89\) −8.92827 + 7.49171i −0.946395 + 0.794119i −0.978687 0.205359i \(-0.934164\pi\)
0.0322920 + 0.999478i \(0.489719\pi\)
\(90\) 0 0
\(91\) −0.950932 0.797927i −0.0996848 0.0836455i
\(92\) 0.171011 0.229707i 0.0178291 0.0239486i
\(93\) 0 0
\(94\) −4.14257 + 4.39087i −0.427273 + 0.452883i
\(95\) 4.87508 + 1.15541i 0.500172 + 0.118543i
\(96\) 0 0
\(97\) −1.66422 3.85810i −0.168976 0.391730i 0.812595 0.582829i \(-0.198054\pi\)
−0.981571 + 0.191099i \(0.938795\pi\)
\(98\) −1.35223 + 7.66885i −0.136595 + 0.774671i
\(99\) 0 0
\(100\) −0.185491 1.05197i −0.0185491 0.105197i
\(101\) −1.39966 + 0.920574i −0.139272 + 0.0916005i −0.617233 0.786780i \(-0.711746\pi\)
0.477961 + 0.878381i \(0.341376\pi\)
\(102\) 0 0
\(103\) 2.00543 + 2.69376i 0.197601 + 0.265424i 0.889869 0.456217i \(-0.150796\pi\)
−0.692268 + 0.721641i \(0.743388\pi\)
\(104\) −0.0586946 + 1.00775i −0.00575548 + 0.0988177i
\(105\) 0 0
\(106\) 4.40763 + 4.67182i 0.428107 + 0.453767i
\(107\) −5.90368 10.2255i −0.570730 0.988534i −0.996491 0.0836983i \(-0.973327\pi\)
0.425761 0.904836i \(-0.360007\pi\)
\(108\) 0 0
\(109\) 5.03157 8.71493i 0.481937 0.834739i −0.517848 0.855472i \(-0.673267\pi\)
0.999785 + 0.0207336i \(0.00660019\pi\)
\(110\) −0.881172 + 0.208842i −0.0840164 + 0.0199123i
\(111\) 0 0
\(112\) 12.0801 6.06684i 1.14146 0.573262i
\(113\) 3.87592 0.453029i 0.364615 0.0426174i 0.0681871 0.997673i \(-0.478279\pi\)
0.296428 + 0.955055i \(0.404204\pi\)
\(114\) 0 0
\(115\) 10.9314 + 5.48994i 1.01935 + 0.511939i
\(116\) 0.631382 + 0.229804i 0.0586223 + 0.0213368i
\(117\) 0 0
\(118\) −6.57056 + 2.39149i −0.604869 + 0.220154i
\(119\) 7.89234 + 0.922482i 0.723490 + 0.0845638i
\(120\) 0 0
\(121\) 3.14726 + 10.5126i 0.286115 + 0.955690i
\(122\) −3.65351 12.2036i −0.330773 1.10486i
\(123\) 0 0
\(124\) −0.0812345 0.00949496i −0.00729508 0.000852672i
\(125\) 23.9066 8.70129i 2.13827 0.778267i
\(126\) 0 0
\(127\) −8.01819 2.91838i −0.711499 0.258965i −0.0391867 0.999232i \(-0.512477\pi\)
−0.672313 + 0.740267i \(0.734699\pi\)
\(128\) −9.33494 4.68818i −0.825100 0.414381i
\(129\) 0 0
\(130\) −1.93270 + 0.225901i −0.169509 + 0.0198128i
\(131\) 14.4538 7.25896i 1.26283 0.634218i 0.313827 0.949480i \(-0.398389\pi\)
0.949005 + 0.315262i \(0.102092\pi\)
\(132\) 0 0
\(133\) 4.29306 1.01747i 0.372256 0.0882262i
\(134\) −8.97045 + 15.5373i −0.774929 + 1.34222i
\(135\) 0 0
\(136\) −3.23083 5.59596i −0.277041 0.479849i
\(137\) −2.34600 2.48662i −0.200432 0.212446i 0.619359 0.785108i \(-0.287392\pi\)
−0.819792 + 0.572662i \(0.805911\pi\)
\(138\) 0 0
\(139\) 0.655687 11.2577i 0.0556147 0.954867i −0.848935 0.528498i \(-0.822755\pi\)
0.904549 0.426369i \(-0.140208\pi\)
\(140\) −0.810257 1.08836i −0.0684792 0.0919835i
\(141\) 0 0
\(142\) 1.86380 1.22584i 0.156407 0.102870i
\(143\) −0.00985114 0.0558686i −0.000823793 0.00467196i
\(144\) 0 0
\(145\) −4.98377 + 28.2644i −0.413879 + 2.34723i
\(146\) 6.38513 + 14.8024i 0.528437 + 1.22505i
\(147\) 0 0
\(148\) 0.414279 + 0.0981860i 0.0340536 + 0.00807084i
\(149\) −0.410178 + 0.434764i −0.0336031 + 0.0356172i −0.743957 0.668227i \(-0.767053\pi\)
0.710354 + 0.703845i \(0.248535\pi\)
\(150\) 0 0
\(151\) 1.00156 1.34533i 0.0815058 0.109481i −0.759500 0.650507i \(-0.774556\pi\)
0.841006 + 0.541026i \(0.181964\pi\)
\(152\) −2.74840 2.30618i −0.222925 0.187056i
\(153\) 0 0
\(154\) −0.610896 + 0.512603i −0.0492274 + 0.0413067i
\(155\) −0.203133 3.48765i −0.0163160 0.280135i
\(156\) 0 0
\(157\) 3.61313 8.37618i 0.288359 0.668492i −0.711040 0.703152i \(-0.751776\pi\)
0.999399 + 0.0346599i \(0.0110348\pi\)
\(158\) −8.31876 5.47133i −0.661805 0.435276i
\(159\) 0 0
\(160\) −0.618624 + 2.06635i −0.0489065 + 0.163359i
\(161\) 10.7721 0.848962
\(162\) 0 0
\(163\) −21.8751 −1.71339 −0.856697 0.515821i \(-0.827487\pi\)
−0.856697 + 0.515821i \(0.827487\pi\)
\(164\) −0.191632 + 0.640097i −0.0149640 + 0.0499831i
\(165\) 0 0
\(166\) 2.65032 + 1.74314i 0.205704 + 0.135294i
\(167\) 2.06311 4.78282i 0.159648 0.370106i −0.819551 0.573006i \(-0.805777\pi\)
0.979199 + 0.202900i \(0.0650366\pi\)
\(168\) 0 0
\(169\) 0.748795 + 12.8563i 0.0575996 + 0.988947i
\(170\) 9.54163 8.00638i 0.731810 0.614061i
\(171\) 0 0
\(172\) 0.683266 + 0.573328i 0.0520985 + 0.0437159i
\(173\) −12.4570 + 16.7326i −0.947087 + 1.27216i 0.0151331 + 0.999885i \(0.495183\pi\)
−0.962220 + 0.272273i \(0.912225\pi\)
\(174\) 0 0
\(175\) 27.5738 29.2265i 2.08438 2.20932i
\(176\) 0.601123 + 0.142469i 0.0453114 + 0.0107390i
\(177\) 0 0
\(178\) 6.37233 + 14.7727i 0.477626 + 1.10726i
\(179\) 0.709018 4.02104i 0.0529945 0.300547i −0.946778 0.321888i \(-0.895683\pi\)
0.999772 + 0.0213413i \(0.00679365\pi\)
\(180\) 0 0
\(181\) 2.85517 + 16.1925i 0.212223 + 1.20358i 0.885661 + 0.464333i \(0.153706\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(182\) −1.43165 + 0.941613i −0.106121 + 0.0697970i
\(183\) 0 0
\(184\) −5.23097 7.02641i −0.385632 0.517994i
\(185\) −1.05743 + 18.1554i −0.0777441 + 1.33481i
\(186\) 0 0
\(187\) 0.249201 + 0.264138i 0.0182234 + 0.0193157i
\(188\) −0.206675 0.357972i −0.0150734 0.0261078i
\(189\) 0 0
\(190\) 3.45797 5.98937i 0.250867 0.434515i
\(191\) 0.00405677 0.000961473i 0.000293538 6.95698e-5i −0.230469 0.973080i \(-0.574026\pi\)
0.230763 + 0.973010i \(0.425878\pi\)
\(192\) 0 0
\(193\) −18.7551 + 9.41917i −1.35002 + 0.678007i −0.969116 0.246607i \(-0.920684\pi\)
−0.380907 + 0.924613i \(0.624388\pi\)
\(194\) −5.76081 + 0.673342i −0.413602 + 0.0483432i
\(195\) 0 0
\(196\) −0.476501 0.239308i −0.0340358 0.0170934i
\(197\) 9.14507 + 3.32853i 0.651559 + 0.237148i 0.646588 0.762839i \(-0.276195\pi\)
0.00497138 + 0.999988i \(0.498418\pi\)
\(198\) 0 0
\(199\) 22.6674 8.25026i 1.60685 0.584846i 0.626036 0.779794i \(-0.284676\pi\)
0.980814 + 0.194948i \(0.0624539\pi\)
\(200\) −32.4537 3.79329i −2.29482 0.268226i
\(201\) 0 0
\(202\) 0.663239 + 2.21537i 0.0466653 + 0.155873i
\(203\) 7.24866 + 24.2122i 0.508756 + 1.69936i
\(204\) 0 0
\(205\) −28.3478 3.31339i −1.97990 0.231417i
\(206\) 4.35618 1.58552i 0.303509 0.110468i
\(207\) 0 0
\(208\) 1.24739 + 0.454011i 0.0864907 + 0.0314800i
\(209\) 0.180183 + 0.0904913i 0.0124635 + 0.00625942i
\(210\) 0 0
\(211\) −14.9458 + 1.74691i −1.02891 + 0.120262i −0.613762 0.789491i \(-0.710345\pi\)
−0.415149 + 0.909753i \(0.636271\pi\)
\(212\) −0.393019 + 0.197382i −0.0269926 + 0.0135562i
\(213\) 0 0
\(214\) −15.8594 + 3.75876i −1.08413 + 0.256943i
\(215\) −19.0497 + 32.9950i −1.29918 + 2.25024i
\(216\) 0 0
\(217\) −1.53824 2.66431i −0.104423 0.180865i
\(218\) −9.53262 10.1040i −0.645631 0.684329i
\(219\) 0 0
\(220\) 0.00360549 0.0619039i 0.000243082 0.00417356i
\(221\) 0.465958 + 0.625890i 0.0313437 + 0.0421019i
\(222\) 0 0
\(223\) −7.95827 + 5.23424i −0.532925 + 0.350511i −0.787275 0.616602i \(-0.788509\pi\)
0.254350 + 0.967112i \(0.418139\pi\)
\(224\) 0.329837 + 1.87060i 0.0220381 + 0.124984i
\(225\) 0 0
\(226\) 0.935391 5.30486i 0.0622213 0.352874i
\(227\) −4.85191 11.2480i −0.322033 0.746556i −0.999935 0.0114038i \(-0.996370\pi\)
0.677902 0.735152i \(-0.262889\pi\)
\(228\) 0 0
\(229\) 3.63295 + 0.861025i 0.240072 + 0.0568981i 0.348890 0.937164i \(-0.386559\pi\)
−0.108818 + 0.994062i \(0.534707\pi\)
\(230\) 11.5876 12.2822i 0.764065 0.809862i
\(231\) 0 0
\(232\) 12.2731 16.4856i 0.805769 1.08234i
\(233\) −15.7065 13.1793i −1.02896 0.863404i −0.0382373 0.999269i \(-0.512174\pi\)
−0.990727 + 0.135865i \(0.956619\pi\)
\(234\) 0 0
\(235\) 13.5255 11.3493i 0.882308 0.740344i
\(236\) −0.0278390 0.477977i −0.00181216 0.0311136i
\(237\) 0 0
\(238\) 4.34447 10.0716i 0.281610 0.652846i
\(239\) −10.8213 7.11728i −0.699972 0.460379i 0.148986 0.988839i \(-0.452399\pi\)
−0.848958 + 0.528461i \(0.822769\pi\)
\(240\) 0 0
\(241\) −3.47782 + 11.6167i −0.224026 + 0.748299i 0.769892 + 0.638174i \(0.220310\pi\)
−0.993918 + 0.110124i \(0.964875\pi\)
\(242\) 15.1479 0.973741
\(243\) 0 0
\(244\) 0.872272 0.0558415
\(245\) 6.53237 21.8196i 0.417338 1.39400i
\(246\) 0 0
\(247\) 0.361976 + 0.238075i 0.0230320 + 0.0151484i
\(248\) −0.990897 + 2.29716i −0.0629220 + 0.145870i
\(249\) 0 0
\(250\) −2.04195 35.0589i −0.129144 2.21732i
\(251\) 21.7457 18.2468i 1.37257 1.15173i 0.400705 0.916207i \(-0.368765\pi\)
0.971869 0.235520i \(-0.0756794\pi\)
\(252\) 0 0
\(253\) 0.377117 + 0.316438i 0.0237091 + 0.0198943i
\(254\) −7.03368 + 9.44787i −0.441332 + 0.592812i
\(255\) 0 0
\(256\) 1.55321 1.64631i 0.0970756 0.102894i
\(257\) −26.7471 6.33917i −1.66844 0.395426i −0.715503 0.698610i \(-0.753802\pi\)
−0.952932 + 0.303183i \(0.901951\pi\)
\(258\) 0 0
\(259\) 6.34323 + 14.7053i 0.394149 + 0.913740i
\(260\) 0.0231371 0.131217i 0.00143490 0.00813772i
\(261\) 0 0
\(262\) −3.87699 21.9875i −0.239521 1.35839i
\(263\) 3.87982 2.55179i 0.239240 0.157350i −0.424228 0.905555i \(-0.639454\pi\)
0.663468 + 0.748205i \(0.269084\pi\)
\(264\) 0 0
\(265\) −11.2183 15.0687i −0.689132 0.925666i
\(266\) 0.354118 6.07997i 0.0217123 0.372787i
\(267\) 0 0
\(268\) −0.843038 0.893568i −0.0514967 0.0545834i
\(269\) −2.50768 4.34343i −0.152896 0.264824i 0.779395 0.626533i \(-0.215527\pi\)
−0.932291 + 0.361709i \(0.882193\pi\)
\(270\) 0 0
\(271\) −8.04356 + 13.9319i −0.488612 + 0.846300i −0.999914 0.0131007i \(-0.995830\pi\)
0.511303 + 0.859401i \(0.329163\pi\)
\(272\) −8.26808 + 1.95957i −0.501326 + 0.118816i
\(273\) 0 0
\(274\) −4.21708 + 2.11790i −0.254763 + 0.127947i
\(275\) 1.82387 0.213180i 0.109983 0.0128552i
\(276\) 0 0
\(277\) 8.79442 + 4.41672i 0.528405 + 0.265375i 0.692939 0.720996i \(-0.256316\pi\)
−0.164534 + 0.986371i \(0.552612\pi\)
\(278\) −14.6276 5.32402i −0.877306 0.319313i
\(279\) 0 0
\(280\) −39.0012 + 14.1953i −2.33077 + 0.848329i
\(281\) 21.5953 + 2.52413i 1.28827 + 0.150577i 0.732503 0.680763i \(-0.238352\pi\)
0.555764 + 0.831340i \(0.312426\pi\)
\(282\) 0 0
\(283\) 1.37756 + 4.60137i 0.0818874 + 0.273523i 0.989121 0.147104i \(-0.0469953\pi\)
−0.907234 + 0.420627i \(0.861810\pi\)
\(284\) 0.0438097 + 0.146334i 0.00259963 + 0.00868335i
\(285\) 0 0
\(286\) −0.0777807 0.00909126i −0.00459927 0.000537577i
\(287\) −23.6177 + 8.59614i −1.39411 + 0.507414i
\(288\) 0 0
\(289\) 11.2812 + 4.10604i 0.663602 + 0.241532i
\(290\) 35.4037 + 17.7804i 2.07898 + 1.04410i
\(291\) 0 0
\(292\) −1.09639 + 0.128150i −0.0641616 + 0.00749941i
\(293\) 5.04906 2.53574i 0.294969 0.148139i −0.295160 0.955448i \(-0.595373\pi\)
0.590130 + 0.807309i \(0.299077\pi\)
\(294\) 0 0
\(295\) 19.9002 4.71643i 1.15863 0.274601i
\(296\) 6.51162 11.2785i 0.378480 0.655547i
\(297\) 0 0
\(298\) 0.412542 + 0.714543i 0.0238979 + 0.0413924i
\(299\) 0.725910 + 0.769420i 0.0419805 + 0.0444967i
\(300\) 0 0
\(301\) −1.95081 + 33.4941i −0.112443 + 1.93057i
\(302\) −1.38254 1.85708i −0.0795565 0.106863i
\(303\) 0 0
\(304\) −3.94179 + 2.59256i −0.226077 + 0.148693i
\(305\) 6.46999 + 36.6931i 0.370470 + 2.10104i
\(306\) 0 0
\(307\) 1.38619 7.86146i 0.0791139 0.448677i −0.919358 0.393421i \(-0.871291\pi\)
0.998472 0.0552559i \(-0.0175975\pi\)
\(308\) −0.0216283 0.0501400i −0.00123239 0.00285699i
\(309\) 0 0
\(310\) −4.69249 1.11214i −0.266516 0.0631654i
\(311\) −14.1673 + 15.0165i −0.803354 + 0.851506i −0.991429 0.130649i \(-0.958294\pi\)
0.188074 + 0.982155i \(0.439775\pi\)
\(312\) 0 0
\(313\) 11.6045 15.5876i 0.655928 0.881064i −0.342359 0.939569i \(-0.611226\pi\)
0.998287 + 0.0585052i \(0.0186334\pi\)
\(314\) −9.64622 8.09414i −0.544367 0.456779i
\(315\) 0 0
\(316\) 0.522274 0.438240i 0.0293802 0.0246529i
\(317\) 1.69124 + 29.0374i 0.0949894 + 1.63090i 0.623391 + 0.781910i \(0.285754\pi\)
−0.528402 + 0.848994i \(0.677209\pi\)
\(318\) 0 0
\(319\) −0.457485 + 1.06057i −0.0256142 + 0.0593805i
\(320\) 28.1381 + 18.5067i 1.57296 + 1.03456i
\(321\) 0 0
\(322\) 4.26469 14.2450i 0.237662 0.793845i
\(323\) −2.77330 −0.154310
\(324\) 0 0
\(325\) 3.94570 0.218868
\(326\) −8.66038 + 28.9277i −0.479654 + 1.60216i
\(327\) 0 0
\(328\) 17.0759 + 11.2310i 0.942859 + 0.620128i
\(329\) 6.15841 14.2768i 0.339524 0.787106i
\(330\) 0 0
\(331\) −0.178574 3.06600i −0.00981533 0.168523i −0.999653 0.0263240i \(-0.991620\pi\)
0.989838 0.142199i \(-0.0454172\pi\)
\(332\) −0.166394 + 0.139621i −0.00913206 + 0.00766271i
\(333\) 0 0
\(334\) −5.50801 4.62177i −0.301385 0.252892i
\(335\) 31.3358 42.0913i 1.71206 2.29970i
\(336\) 0 0
\(337\) −19.0790 + 20.2226i −1.03930 + 1.10159i −0.0445753 + 0.999006i \(0.514193\pi\)
−0.994724 + 0.102587i \(0.967288\pi\)
\(338\) 17.2976 + 4.09962i 0.940867 + 0.222990i
\(339\) 0 0
\(340\) 0.337814 + 0.783140i 0.0183205 + 0.0424718i
\(341\) 0.0244144 0.138461i 0.00132211 0.00749807i
\(342\) 0 0
\(343\) 0.838878 + 4.75751i 0.0452951 + 0.256882i
\(344\) 22.7947 14.9923i 1.22901 0.808333i
\(345\) 0 0
\(346\) 17.1955 + 23.0976i 0.924436 + 1.24173i
\(347\) −0.203769 + 3.49857i −0.0109389 + 0.187813i 0.988412 + 0.151794i \(0.0485049\pi\)
−0.999351 + 0.0360195i \(0.988532\pi\)
\(348\) 0 0
\(349\) 7.85075 + 8.32131i 0.420241 + 0.445430i 0.902559 0.430567i \(-0.141686\pi\)
−0.482318 + 0.875996i \(0.660205\pi\)
\(350\) −27.7327 48.0344i −1.48237 2.56755i
\(351\) 0 0
\(352\) −0.0434029 + 0.0751761i −0.00231338 + 0.00400690i
\(353\) 1.78513 0.423083i 0.0950127 0.0225184i −0.182835 0.983144i \(-0.558527\pi\)
0.277847 + 0.960625i \(0.410379\pi\)
\(354\) 0 0
\(355\) −5.83078 + 2.92833i −0.309466 + 0.155419i
\(356\) −1.09420 + 0.127893i −0.0579922 + 0.00677832i
\(357\) 0 0
\(358\) −5.03672 2.52954i −0.266199 0.133690i
\(359\) −18.9025 6.87995i −0.997636 0.363110i −0.208964 0.977923i \(-0.567009\pi\)
−0.788673 + 0.614814i \(0.789231\pi\)
\(360\) 0 0
\(361\) 16.4072 5.97172i 0.863536 0.314301i
\(362\) 22.5433 + 2.63493i 1.18485 + 0.138489i
\(363\) 0 0
\(364\) −0.0336518 0.112405i −0.00176383 0.00589161i
\(365\) −13.5232 45.1705i −0.707835 2.36433i
\(366\) 0 0
\(367\) −26.2319 3.06607i −1.36929 0.160048i −0.600542 0.799594i \(-0.705048\pi\)
−0.768753 + 0.639546i \(0.779122\pi\)
\(368\) −10.8245 + 3.93978i −0.564264 + 0.205375i
\(369\) 0 0
\(370\) 23.5901 + 8.58610i 1.22639 + 0.446370i
\(371\) −14.7836 7.42461i −0.767527 0.385467i
\(372\) 0 0
\(373\) 29.4383 3.44084i 1.52426 0.178160i 0.687682 0.726012i \(-0.258628\pi\)
0.836575 + 0.547852i \(0.184554\pi\)
\(374\) 0.447955 0.224971i 0.0231632 0.0116330i
\(375\) 0 0
\(376\) −12.3030 + 2.91586i −0.634478 + 0.150374i
\(377\) −1.24093 + 2.14936i −0.0639113 + 0.110698i
\(378\) 0 0
\(379\) 5.75292 + 9.96436i 0.295508 + 0.511835i 0.975103 0.221753i \(-0.0711778\pi\)
−0.679595 + 0.733587i \(0.737844\pi\)
\(380\) 0.324978 + 0.344456i 0.0166710 + 0.0176702i
\(381\) 0 0
\(382\) 0.000334627 0.00574533i 1.71210e−5 0.000293956i
\(383\) 17.1767 + 23.0723i 0.877689 + 1.17894i 0.982835 + 0.184485i \(0.0590616\pi\)
−0.105146 + 0.994457i \(0.533531\pi\)
\(384\) 0 0
\(385\) 1.94877 1.28173i 0.0993186 0.0653229i
\(386\) 5.03075 + 28.5308i 0.256059 + 1.45218i
\(387\) 0 0
\(388\) 0.0689646 0.391118i 0.00350115 0.0198560i
\(389\) 4.53722 + 10.5185i 0.230046 + 0.533307i 0.993668 0.112357i \(-0.0358400\pi\)
−0.763622 + 0.645664i \(0.776581\pi\)
\(390\) 0 0
\(391\) −6.58864 1.56154i −0.333202 0.0789703i
\(392\) −11.1929 + 11.8637i −0.565324 + 0.599209i
\(393\) 0 0
\(394\) 8.02219 10.7757i 0.404152 0.542871i
\(395\) 22.3090 + 18.7195i 1.12249 + 0.941878i
\(396\) 0 0
\(397\) 8.38197 7.03331i 0.420679 0.352992i −0.407742 0.913097i \(-0.633684\pi\)
0.828421 + 0.560105i \(0.189239\pi\)
\(398\) −1.93611 33.2417i −0.0970482 1.66625i
\(399\) 0 0
\(400\) −17.0185 + 39.4533i −0.850926 + 1.97267i
\(401\) 0.290388 + 0.190991i 0.0145013 + 0.00953765i 0.556739 0.830688i \(-0.312052\pi\)
−0.542238 + 0.840225i \(0.682423\pi\)
\(402\) 0 0
\(403\) 0.0866450 0.289414i 0.00431609 0.0144168i
\(404\) −0.158348 −0.00787810
\(405\) 0 0
\(406\) 34.8880 1.73146
\(407\) −0.209910 + 0.701147i −0.0104048 + 0.0347546i
\(408\) 0 0
\(409\) −22.2252 14.6178i −1.09897 0.722802i −0.135539 0.990772i \(-0.543277\pi\)
−0.963427 + 0.267970i \(0.913647\pi\)
\(410\) −15.6045 + 36.1754i −0.770653 + 1.78658i
\(411\) 0 0
\(412\) 0.0184568 + 0.316891i 0.000909303 + 0.0156121i
\(413\) 13.7963 11.5765i 0.678873 0.569642i
\(414\) 0 0
\(415\) −7.10754 5.96393i −0.348895 0.292758i
\(416\) −0.111384 + 0.149615i −0.00546105 + 0.00733547i
\(417\) 0 0
\(418\) 0.191000 0.202449i 0.00934213 0.00990208i
\(419\) −12.4465 2.94986i −0.608049 0.144110i −0.0849545 0.996385i \(-0.527074\pi\)
−0.523095 + 0.852275i \(0.675223\pi\)
\(420\) 0 0
\(421\) −4.30731 9.98546i −0.209925 0.486662i 0.780425 0.625250i \(-0.215003\pi\)
−0.990350 + 0.138588i \(0.955744\pi\)
\(422\) −3.60693 + 20.4559i −0.175583 + 0.995779i
\(423\) 0 0
\(424\) 2.33606 + 13.2484i 0.113449 + 0.643401i
\(425\) −21.1019 + 13.8789i −1.02359 + 0.673227i
\(426\) 0 0
\(427\) 19.5934 + 26.3184i 0.948189 + 1.27364i
\(428\) 0.0648921 1.11416i 0.00313668 0.0538547i
\(429\) 0 0
\(430\) 36.0908 + 38.2540i 1.74045 + 1.84477i
\(431\) −1.22970 2.12989i −0.0592323 0.102593i 0.834889 0.550419i \(-0.185532\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(432\) 0 0
\(433\) 6.44336 11.1602i 0.309648 0.536326i −0.668637 0.743589i \(-0.733122\pi\)
0.978285 + 0.207263i \(0.0664554\pi\)
\(434\) −4.13228 + 0.979368i −0.198356 + 0.0470112i
\(435\) 0 0
\(436\) 0.850003 0.426887i 0.0407077 0.0204442i
\(437\) −3.73421 + 0.436466i −0.178631 + 0.0208790i
\(438\) 0 0
\(439\) −24.6343 12.3718i −1.17573 0.590473i −0.249847 0.968285i \(-0.580380\pi\)
−0.925882 + 0.377812i \(0.876677\pi\)
\(440\) −1.78237 0.648730i −0.0849712 0.0309270i
\(441\) 0 0
\(442\) 1.01215 0.368393i 0.0481431 0.0175227i
\(443\) 5.69485 + 0.665633i 0.270571 + 0.0316252i 0.250296 0.968169i \(-0.419472\pi\)
0.0202743 + 0.999794i \(0.493546\pi\)
\(444\) 0 0
\(445\) −13.4961 45.0800i −0.639775 2.13700i
\(446\) 3.77107 + 12.5963i 0.178565 + 0.596450i
\(447\) 0 0
\(448\) 29.4573 + 3.44307i 1.39173 + 0.162670i
\(449\) 32.3537 11.7758i 1.52687 0.555734i 0.564015 0.825764i \(-0.309256\pi\)
0.962852 + 0.270030i \(0.0870338\pi\)
\(450\) 0 0
\(451\) −1.07934 0.392848i −0.0508242 0.0184985i
\(452\) 0.329616 + 0.165539i 0.0155038 + 0.00778631i
\(453\) 0 0
\(454\) −16.7952 + 1.96308i −0.788239 + 0.0921319i
\(455\) 4.47883 2.24935i 0.209971 0.105451i
\(456\) 0 0
\(457\) −7.38263 + 1.74972i −0.345345 + 0.0818483i −0.399628 0.916677i \(-0.630861\pi\)
0.0542832 + 0.998526i \(0.482713\pi\)
\(458\) 2.57691 4.46333i 0.120411 0.208558i
\(459\) 0 0
\(460\) 0.578114 + 1.00132i 0.0269547 + 0.0466869i
\(461\) −1.26349 1.33922i −0.0588467 0.0623738i 0.697281 0.716797i \(-0.254393\pi\)
−0.756128 + 0.654424i \(0.772911\pi\)
\(462\) 0 0
\(463\) 1.30847 22.4655i 0.0608096 1.04406i −0.820538 0.571592i \(-0.806326\pi\)
0.881347 0.472469i \(-0.156637\pi\)
\(464\) −16.1392 21.6787i −0.749245 1.00641i
\(465\) 0 0
\(466\) −23.6465 + 15.5525i −1.09540 + 0.720458i
\(467\) −6.84563 38.8235i −0.316778 1.79654i −0.562071 0.827089i \(-0.689995\pi\)
0.245292 0.969449i \(-0.421116\pi\)
\(468\) 0 0
\(469\) 8.02431 45.5081i 0.370528 2.10137i
\(470\) −9.65350 22.3793i −0.445283 1.03228i
\(471\) 0 0
\(472\) −14.2506 3.37746i −0.655938 0.155460i
\(473\) −1.05221 + 1.11527i −0.0483805 + 0.0512803i
\(474\) 0 0
\(475\) −8.37438 + 11.2487i −0.384243 + 0.516128i
\(476\) 0.575353 + 0.482779i 0.0263713 + 0.0221281i
\(477\) 0 0
\(478\) −13.6960 + 11.4923i −0.626443 + 0.525648i
\(479\) −0.153461 2.63482i −0.00701182 0.120388i −0.999998 0.00215507i \(-0.999314\pi\)
0.992986 0.118233i \(-0.0377230\pi\)
\(480\) 0 0
\(481\) −0.622896 + 1.44403i −0.0284016 + 0.0658423i
\(482\) 13.9851 + 9.19813i 0.637003 + 0.418963i
\(483\) 0 0
\(484\) −0.297482 + 0.993660i −0.0135219 + 0.0451664i
\(485\) 16.9644 0.770312
\(486\) 0 0
\(487\) −25.0040 −1.13304 −0.566519 0.824048i \(-0.691710\pi\)
−0.566519 + 0.824048i \(0.691710\pi\)
\(488\) 7.65234 25.5606i 0.346405 1.15707i
\(489\) 0 0
\(490\) −26.2681 17.2768i −1.18667 0.780486i
\(491\) −11.9246 + 27.6444i −0.538151 + 1.24757i 0.404727 + 0.914437i \(0.367366\pi\)
−0.942878 + 0.333137i \(0.891893\pi\)
\(492\) 0 0
\(493\) −0.923732 15.8599i −0.0416028 0.714293i
\(494\) 0.458137 0.384423i 0.0206126 0.0172960i
\(495\) 0 0
\(496\) 2.52016 + 2.11466i 0.113158 + 0.0949512i
\(497\) −3.43118 + 4.60887i −0.153909 + 0.206736i
\(498\) 0 0
\(499\) 3.86891 4.10081i 0.173196 0.183577i −0.634961 0.772544i \(-0.718984\pi\)
0.808157 + 0.588967i \(0.200465\pi\)
\(500\) 2.33988 + 0.554561i 0.104642 + 0.0248007i
\(501\) 0 0
\(502\) −15.5204 35.9804i −0.692711 1.60588i
\(503\) −2.01083 + 11.4040i −0.0896587 + 0.508479i 0.906595 + 0.422002i \(0.138672\pi\)
−0.996254 + 0.0864779i \(0.972439\pi\)
\(504\) 0 0
\(505\) −1.17453 6.66108i −0.0522659 0.296414i
\(506\) 0.567759 0.373421i 0.0252400 0.0166006i
\(507\) 0 0
\(508\) −0.481624 0.646934i −0.0213686 0.0287030i
\(509\) 2.08525 35.8024i 0.0924273 1.58691i −0.559628 0.828744i \(-0.689056\pi\)
0.652056 0.758171i \(-0.273907\pi\)
\(510\) 0 0
\(511\) −28.4943 30.2022i −1.26051 1.33606i
\(512\) −12.0082 20.7988i −0.530693 0.919188i
\(513\) 0 0
\(514\) −18.9721 + 32.8606i −0.836823 + 1.44942i
\(515\) −13.1935 + 3.12692i −0.581375 + 0.137789i
\(516\) 0 0
\(517\) 0.634988 0.318903i 0.0279267 0.0140253i
\(518\) 21.9575 2.56647i 0.964758 0.112764i
\(519\) 0 0
\(520\) −3.64213 1.82915i −0.159718 0.0802134i
\(521\) −8.36834 3.04583i −0.366624 0.133440i 0.152137 0.988359i \(-0.451384\pi\)
−0.518761 + 0.854919i \(0.673607\pi\)
\(522\) 0 0
\(523\) −15.1809 + 5.52540i −0.663815 + 0.241609i −0.651883 0.758320i \(-0.726021\pi\)
−0.0119324 + 0.999929i \(0.503798\pi\)
\(524\) 1.51846 + 0.177483i 0.0663343 + 0.00775337i
\(525\) 0 0
\(526\) −1.83847 6.14093i −0.0801612 0.267757i
\(527\) 0.554626 + 1.85258i 0.0241599 + 0.0806997i
\(528\) 0 0
\(529\) 13.7272 + 1.60448i 0.596835 + 0.0697600i
\(530\) −24.3682 + 8.86931i −1.05849 + 0.385258i
\(531\) 0 0
\(532\) 0.391876 + 0.142631i 0.0169900 + 0.00618384i
\(533\) −2.20554 1.10767i −0.0955327 0.0479783i
\(534\) 0 0
\(535\) 47.3496 5.53437i 2.04710 0.239272i
\(536\) −33.5805 + 16.8648i −1.45046 + 0.728448i
\(537\) 0 0
\(538\) −6.73655 + 1.59659i −0.290433 + 0.0688339i
\(539\) 0.458314 0.793823i 0.0197410 0.0341924i
\(540\) 0 0
\(541\) 4.75257 + 8.23170i 0.204329 + 0.353908i 0.949919 0.312497i \(-0.101165\pi\)
−0.745590 + 0.666405i \(0.767832\pi\)
\(542\) 15.2390 + 16.1524i 0.654573 + 0.693807i
\(543\) 0 0
\(544\) 0.0694227 1.19194i 0.00297647 0.0511041i
\(545\) 24.2623 + 32.5900i 1.03928 + 1.39600i
\(546\) 0 0
\(547\) −4.43310 + 2.91569i −0.189545 + 0.124666i −0.640735 0.767762i \(-0.721370\pi\)
0.451189 + 0.892428i \(0.351000\pi\)
\(548\) −0.0561112 0.318222i −0.00239695 0.0135938i
\(549\) 0 0
\(550\) 0.440162 2.49628i 0.0187686 0.106442i
\(551\) −3.49381 8.09957i −0.148841 0.345053i
\(552\) 0 0
\(553\) 24.9542 + 5.91427i 1.06116 + 0.251500i
\(554\) 9.32239 9.88115i 0.396070 0.419810i
\(555\) 0 0
\(556\) 0.636507 0.854978i 0.0269939 0.0362591i
\(557\) −25.1867 21.1341i −1.06719 0.895481i −0.0723978 0.997376i \(-0.523065\pi\)
−0.994795 + 0.101895i \(0.967510\pi\)
\(558\) 0 0
\(559\) −2.52384 + 2.11775i −0.106747 + 0.0895714i
\(560\) 3.17344 + 54.4859i 0.134103 + 2.30245i
\(561\) 0 0
\(562\) 11.8875 27.5583i 0.501444 1.16248i
\(563\) 10.6668 + 7.01570i 0.449554 + 0.295676i 0.754026 0.656845i \(-0.228109\pi\)
−0.304471 + 0.952521i \(0.598480\pi\)
\(564\) 0 0
\(565\) −4.51871 + 15.0935i −0.190104 + 0.634990i
\(566\) 6.63022 0.278689
\(567\) 0 0
\(568\) 4.67245 0.196052
\(569\) −12.3260 + 41.1716i −0.516732 + 1.72600i 0.157533 + 0.987514i \(0.449646\pi\)
−0.674265 + 0.738490i \(0.735539\pi\)
\(570\) 0 0
\(571\) 3.17924 + 2.09102i 0.133047 + 0.0875064i 0.614288 0.789082i \(-0.289443\pi\)
−0.481241 + 0.876588i \(0.659814\pi\)
\(572\) 0.00212386 0.00492367i 8.88032e−5 0.000205869i
\(573\) 0 0
\(574\) 2.01728 + 34.6353i 0.0841994 + 1.44565i
\(575\) −26.2291 + 22.0088i −1.09383 + 0.917832i
\(576\) 0 0
\(577\) 11.5311 + 9.67573i 0.480045 + 0.402806i 0.850443 0.526067i \(-0.176334\pi\)
−0.370397 + 0.928873i \(0.620779\pi\)
\(578\) 9.89607 13.2927i 0.411622 0.552905i
\(579\) 0 0
\(580\) −1.86163 + 1.97321i −0.0772999 + 0.0819331i
\(581\) −7.95031 1.88426i −0.329834 0.0781722i
\(582\) 0 0
\(583\) −0.299450 0.694204i −0.0124020 0.0287510i
\(584\) −5.86330 + 33.2524i −0.242625 + 1.37599i
\(585\) 0 0
\(586\) −1.35433 7.68078i −0.0559468 0.317290i
\(587\) −31.8562 + 20.9522i −1.31485 + 0.864789i −0.996533 0.0831959i \(-0.973487\pi\)
−0.318315 + 0.947985i \(0.603117\pi\)
\(588\) 0 0
\(589\) 0.641192 + 0.861270i 0.0264198 + 0.0354880i
\(590\) 1.64149 28.1832i 0.0675789 1.16028i
\(591\) 0 0
\(592\) −11.7523 12.4568i −0.483018 0.511969i
\(593\) −5.81375 10.0697i −0.238742 0.413513i 0.721612 0.692298i \(-0.243402\pi\)
−0.960354 + 0.278785i \(0.910068\pi\)
\(594\) 0 0
\(595\) −16.0410 + 27.7839i −0.657618 + 1.13903i
\(596\) −0.0549739 + 0.0130291i −0.00225182 + 0.000533691i
\(597\) 0 0
\(598\) 1.30487 0.655330i 0.0533601 0.0267984i
\(599\) −40.1027 + 4.68733i −1.63855 + 0.191519i −0.884909 0.465765i \(-0.845779\pi\)
−0.753643 + 0.657284i \(0.771705\pi\)
\(600\) 0 0
\(601\) −17.6188 8.84850i −0.718686 0.360938i 0.0515724 0.998669i \(-0.483577\pi\)
−0.770259 + 0.637731i \(0.779873\pi\)
\(602\) 43.5202 + 15.8401i 1.77375 + 0.645593i
\(603\) 0 0
\(604\) 0.148971 0.0542210i 0.00606154 0.00220622i
\(605\) −44.0060 5.14357i −1.78910 0.209116i
\(606\) 0 0
\(607\) −0.527406 1.76166i −0.0214068 0.0715036i 0.946619 0.322355i \(-0.104475\pi\)
−0.968026 + 0.250852i \(0.919289\pi\)
\(608\) −0.190133 0.635087i −0.00771089 0.0257562i
\(609\) 0 0
\(610\) 51.0845 + 5.97092i 2.06835 + 0.241755i
\(611\) 1.43475 0.522207i 0.0580438 0.0211262i
\(612\) 0 0
\(613\) −33.2921 12.1173i −1.34465 0.489414i −0.433379 0.901212i \(-0.642679\pi\)
−0.911275 + 0.411797i \(0.864901\pi\)
\(614\) −9.84720 4.94545i −0.397401 0.199582i
\(615\) 0 0
\(616\) −1.65902 + 0.193912i −0.0668438 + 0.00781292i
\(617\) 33.1709 16.6591i 1.33541 0.670668i 0.369424 0.929261i \(-0.379555\pi\)
0.965986 + 0.258593i \(0.0832587\pi\)
\(618\) 0 0
\(619\) 33.0588 7.83508i 1.32875 0.314918i 0.495879 0.868392i \(-0.334846\pi\)
0.832867 + 0.553473i \(0.186698\pi\)
\(620\) 0.165108 0.285975i 0.00663088 0.0114850i
\(621\) 0 0
\(622\) 14.2489 + 24.6799i 0.571330 + 0.989573i
\(623\) −28.4371 30.1416i −1.13931 1.20760i
\(624\) 0 0
\(625\) −2.68693 + 46.1327i −0.107477 + 1.84531i
\(626\) −16.0188 21.5170i −0.640240 0.859992i
\(627\) 0 0
\(628\) 0.720392 0.473810i 0.0287468 0.0189071i
\(629\) −1.74807 9.91382i −0.0697003 0.395290i
\(630\) 0 0
\(631\) −1.91892 + 10.8828i −0.0763912 + 0.433236i 0.922493 + 0.386013i \(0.126148\pi\)
−0.998884 + 0.0472226i \(0.984963\pi\)
\(632\) −8.26011 19.1491i −0.328569 0.761710i
\(633\) 0 0
\(634\) 39.0687 + 9.25944i 1.55161 + 0.367739i
\(635\) 23.6416 25.0587i 0.938189 0.994422i
\(636\) 0 0
\(637\) 1.17616 1.57986i 0.0466012 0.0625963i
\(638\) 1.22138 + 1.02486i 0.0483548 + 0.0405745i
\(639\) 0 0
\(640\) 32.3085 27.1100i 1.27710 1.07162i
\(641\) 0.945542 + 16.2343i 0.0373467 + 0.641217i 0.964099 + 0.265544i \(0.0855515\pi\)
−0.926752 + 0.375673i \(0.877411\pi\)
\(642\) 0 0
\(643\) 5.65337 13.1060i 0.222947 0.516849i −0.769627 0.638494i \(-0.779558\pi\)
0.992574 + 0.121645i \(0.0388169\pi\)
\(644\) 0.850686 + 0.559505i 0.0335217 + 0.0220476i
\(645\) 0 0
\(646\) −1.09795 + 3.66741i −0.0431982 + 0.144292i
\(647\) 40.7899 1.60362 0.801808 0.597582i \(-0.203872\pi\)
0.801808 + 0.597582i \(0.203872\pi\)
\(648\) 0 0
\(649\) 0.823057 0.0323078
\(650\) 1.56211 5.21780i 0.0612708 0.204659i
\(651\) 0 0
\(652\) −1.72750 1.13620i −0.0676543 0.0444969i
\(653\) −1.01933 + 2.36308i −0.0398896 + 0.0924745i −0.936996 0.349340i \(-0.886406\pi\)
0.897106 + 0.441815i \(0.145665\pi\)
\(654\) 0 0
\(655\) 3.79702 + 65.1923i 0.148362 + 2.54727i
\(656\) 20.5885 17.2758i 0.803847 0.674508i
\(657\) 0 0
\(658\) −16.4415 13.7961i −0.640957 0.537827i
\(659\) 5.12688 6.88660i 0.199715 0.268264i −0.690971 0.722882i \(-0.742817\pi\)
0.890686 + 0.454618i \(0.150224\pi\)
\(660\) 0 0
\(661\) −25.4540 + 26.9797i −0.990046 + 1.04939i 0.00873230 + 0.999962i \(0.497220\pi\)
−0.998778 + 0.0494251i \(0.984261\pi\)
\(662\) −4.12518 0.977686i −0.160330 0.0379988i
\(663\) 0 0
\(664\) 2.63163 + 6.10081i 0.102127 + 0.236757i
\(665\) −3.09324 + 17.5427i −0.119951 + 0.680275i
\(666\) 0 0
\(667\) −3.73985 21.2097i −0.144807 0.821244i
\(668\) 0.411346 0.270546i 0.0159155 0.0104678i
\(669\) 0 0
\(670\) −43.2557 58.1025i −1.67111 2.24470i
\(671\) −0.0871868 + 1.49694i −0.00336581 + 0.0577887i
\(672\) 0 0
\(673\) −15.2211 16.1335i −0.586731 0.621899i 0.364193 0.931324i \(-0.381345\pi\)
−0.950924 + 0.309425i \(0.899863\pi\)
\(674\) 19.1889 + 33.2362i 0.739130 + 1.28021i
\(675\) 0 0
\(676\) −0.608625 + 1.05417i −0.0234087 + 0.0405450i
\(677\) −4.21498 + 0.998968i −0.161995 + 0.0383935i −0.310813 0.950471i \(-0.600601\pi\)
0.148818 + 0.988865i \(0.452453\pi\)
\(678\) 0 0
\(679\) 13.3500 6.70464i 0.512327 0.257300i
\(680\) 25.9124 3.02872i 0.993694 0.116146i
\(681\) 0 0
\(682\) −0.173435 0.0871022i −0.00664116 0.00333532i
\(683\) 38.0275 + 13.8409i 1.45508 + 0.529607i 0.944006 0.329928i \(-0.107024\pi\)
0.511077 + 0.859535i \(0.329247\pi\)
\(684\) 0 0
\(685\) 12.9702 4.72076i 0.495566 0.180371i
\(686\) 6.62345 + 0.774170i 0.252884 + 0.0295579i
\(687\) 0 0
\(688\) −10.2898 34.3703i −0.392295 1.31036i
\(689\) −0.465919 1.55628i −0.0177501 0.0592895i
\(690\) 0 0
\(691\) 23.1530 + 2.70620i 0.880782 + 0.102949i 0.544448 0.838794i \(-0.316739\pi\)
0.336333 + 0.941743i \(0.390813\pi\)
\(692\) −1.85284 + 0.674377i −0.0704343 + 0.0256360i
\(693\) 0 0
\(694\) 4.54584 + 1.65455i 0.172558 + 0.0628058i
\(695\) 40.6869 + 20.4337i 1.54334 + 0.775095i
\(696\) 0 0
\(697\) 15.6916 1.83408i 0.594362 0.0694709i
\(698\) 14.1122 7.08742i 0.534155 0.268263i
\(699\) 0 0
\(700\) 3.69556 0.875864i 0.139679 0.0331046i
\(701\) 5.97599 10.3507i 0.225710 0.390941i −0.730822 0.682568i \(-0.760863\pi\)
0.956532 + 0.291627i \(0.0941964\pi\)
\(702\) 0 0
\(703\) −2.79474 4.84063i −0.105406 0.182568i
\(704\) 0.930116 + 0.985866i 0.0350551 + 0.0371562i
\(705\) 0 0
\(706\) 0.147248 2.52815i 0.00554175 0.0951481i
\(707\) −3.55688 4.77772i −0.133770 0.179684i
\(708\) 0 0
\(709\) 11.9412 7.85386i 0.448462 0.294958i −0.305118 0.952315i \(-0.598696\pi\)
0.753580 + 0.657357i \(0.228325\pi\)
\(710\) 1.56401 + 8.86995i 0.0586963 + 0.332883i
\(711\) 0 0
\(712\) −5.85154 + 33.1857i −0.219296 + 1.24369i
\(713\) 1.03836 + 2.40719i 0.0388868 + 0.0901498i
\(714\) 0 0
\(715\) 0.222874 + 0.0528220i 0.00833500 + 0.00197543i
\(716\) 0.264845 0.280720i 0.00989773 0.0104910i
\(717\) 0 0
\(718\) −16.5816 + 22.2729i −0.618818 + 0.831217i
\(719\) 10.2202 + 8.57578i 0.381150 + 0.319823i 0.813154 0.582049i \(-0.197749\pi\)
−0.432004 + 0.901872i \(0.642193\pi\)
\(720\) 0 0
\(721\) −9.14676 + 7.67504i −0.340643 + 0.285833i
\(722\) −1.40140 24.0611i −0.0521546 0.895460i
\(723\) 0 0
\(724\) −0.615563 + 1.42704i −0.0228772 + 0.0530354i
\(725\) −67.1185 44.1445i −2.49272 1.63949i
\(726\) 0 0
\(727\) −11.8237 + 39.4940i −0.438518 + 1.46475i 0.398292 + 0.917259i \(0.369603\pi\)
−0.836810 + 0.547493i \(0.815582\pi\)
\(728\) −3.58907 −0.133020
\(729\) 0 0
\(730\) −65.0874 −2.40899
\(731\) 6.04852 20.2034i 0.223712 0.747252i
\(732\) 0 0
\(733\) −9.70117 6.38056i −0.358321 0.235671i 0.357566 0.933888i \(-0.383607\pi\)
−0.715887 + 0.698217i \(0.753977\pi\)
\(734\) −14.4398 + 33.4752i −0.532983 + 1.23559i
\(735\) 0 0
\(736\) −0.0941131 1.61586i −0.00346905 0.0595614i
\(737\) 1.61775 1.35745i 0.0595907 0.0500025i
\(738\) 0 0
\(739\) −27.7185 23.2586i −1.01964 0.855581i −0.0300588 0.999548i \(-0.509569\pi\)
−0.989582 + 0.143968i \(0.954014\pi\)
\(740\) −1.02650 + 1.37883i −0.0377350 + 0.0506869i
\(741\) 0 0
\(742\) −15.6711 + 16.6104i −0.575306 + 0.609789i
\(743\) 49.2204 + 11.6654i 1.80572 + 0.427964i 0.988857 0.148868i \(-0.0475630\pi\)
0.816863 + 0.576832i \(0.195711\pi\)
\(744\) 0 0
\(745\) −0.955846 2.21590i −0.0350195 0.0811843i
\(746\) 7.10447 40.2914i 0.260113 1.47517i
\(747\) 0 0
\(748\) 0.00596034 + 0.0338028i 0.000217932 + 0.00123595i
\(749\) 35.0743 23.0687i 1.28159 0.842912i
\(750\) 0 0
\(751\) 24.1007 + 32.3729i 0.879447 + 1.18130i 0.982432 + 0.186620i \(0.0597532\pi\)
−0.102985 + 0.994683i \(0.532839\pi\)
\(752\) −0.966755 + 16.5985i −0.0352539 + 0.605287i
\(753\) 0 0
\(754\) 2.35103 + 2.49194i 0.0856193 + 0.0907512i
\(755\) 3.38584 + 5.86446i 0.123224 + 0.213429i
\(756\) 0 0
\(757\) 23.2499 40.2700i 0.845032 1.46364i −0.0405607 0.999177i \(-0.512914\pi\)
0.885593 0.464462i \(-0.153752\pi\)
\(758\) 15.4544 3.66277i 0.561331 0.133038i
\(759\) 0 0
\(760\) 12.9448 6.50111i 0.469556 0.235820i
\(761\) −6.68417 + 0.781268i −0.242301 + 0.0283209i −0.236377 0.971662i \(-0.575960\pi\)
−0.00592448 + 0.999982i \(0.501886\pi\)
\(762\) 0 0
\(763\) 31.9733 + 16.0576i 1.15751 + 0.581324i
\(764\) 0.000370307 0 0.000134781i 1.33972e−5 0 4.87620e-6i
\(765\) 0 0
\(766\) 37.3111 13.5801i 1.34811 0.490671i
\(767\) 1.75658 + 0.205315i 0.0634264 + 0.00741348i
\(768\) 0 0
\(769\) −7.51325 25.0960i −0.270935 0.904985i −0.979857 0.199699i \(-0.936004\pi\)
0.708923 0.705286i \(-0.249182\pi\)
\(770\) −0.923437 3.08449i −0.0332783 0.111157i
\(771\) 0 0
\(772\) −1.97034 0.230300i −0.0709143 0.00828869i
\(773\) −15.5434 + 5.65735i −0.559059 + 0.203481i −0.606067 0.795414i \(-0.707254\pi\)
0.0470079 + 0.998895i \(0.485031\pi\)
\(774\) 0 0
\(775\) 9.18902 + 3.34453i 0.330079 + 0.120139i
\(776\) −10.8561 5.45214i −0.389711 0.195720i
\(777\) 0 0
\(778\) 15.7059 1.83576i 0.563084 0.0658151i
\(779\) 7.83889 3.93684i 0.280857 0.141052i
\(780\) 0 0
\(781\) −0.255509 + 0.0605568i −0.00914284 + 0.00216689i
\(782\) −4.67342 + 8.09460i −0.167121 + 0.289462i
\(783\) 0 0
\(784\) 10.7241 + 18.5747i 0.383004 + 0.663383i
\(785\) 25.2748 + 26.7897i 0.902096 + 0.956166i
\(786\) 0 0
\(787\) 0.782826 13.4406i 0.0279047 0.479106i −0.955188 0.295999i \(-0.904348\pi\)
0.983093 0.183107i \(-0.0586154\pi\)
\(788\) 0.549312 + 0.737854i 0.0195684 + 0.0262850i
\(789\) 0 0
\(790\) 33.5868 22.0904i 1.19496 0.785940i
\(791\) 2.40927 + 13.6637i 0.0856640 + 0.485824i
\(792\) 0 0
\(793\) −0.559492 + 3.17304i −0.0198682 + 0.112678i
\(794\) −5.98242 13.8688i −0.212308 0.492186i
\(795\) 0 0
\(796\) 2.21859 + 0.525815i 0.0786358 + 0.0186370i
\(797\) −0.340406 + 0.360810i −0.0120578 + 0.0127805i −0.733374 0.679825i \(-0.762056\pi\)
0.721317 + 0.692605i \(0.243537\pi\)
\(798\) 0 0
\(799\) −5.83630 + 7.83951i −0.206473 + 0.277342i
\(800\) −4.62500 3.88083i −0.163518 0.137208i
\(801\) 0 0
\(802\) 0.367532 0.308396i 0.0129780 0.0108898i
\(803\) −0.110335 1.89437i −0.00389363 0.0668510i
\(804\) 0 0
\(805\) −17.2264 + 39.9352i −0.607149 + 1.40753i
\(806\) −0.348419 0.229159i −0.0122725 0.00807177i
\(807\) 0 0
\(808\) −1.38917 + 4.64014i −0.0488708 + 0.163240i
\(809\) −20.5900 −0.723906 −0.361953 0.932196i \(-0.617890\pi\)
−0.361953 + 0.932196i \(0.617890\pi\)
\(810\) 0 0
\(811\) 27.9946 0.983022 0.491511 0.870871i \(-0.336445\pi\)
0.491511 + 0.870871i \(0.336445\pi\)
\(812\) −0.685150 + 2.28856i −0.0240440 + 0.0803127i
\(813\) 0 0
\(814\) 0.844094 + 0.555169i 0.0295855 + 0.0194587i
\(815\) 34.9819 81.0971i 1.22536 2.84071i
\(816\) 0 0
\(817\) −0.680860 11.6899i −0.0238203 0.408978i
\(818\) −28.1295 + 23.6035i −0.983525 + 0.825275i
\(819\) 0 0
\(820\) −2.06656 1.73405i −0.0721675 0.0605557i
\(821\) −26.4698 + 35.5551i −0.923803 + 1.24088i 0.0464821 + 0.998919i \(0.485199\pi\)
−0.970285 + 0.241964i \(0.922208\pi\)
\(822\) 0 0
\(823\) 9.56078 10.1338i 0.333268 0.353243i −0.538970 0.842325i \(-0.681186\pi\)
0.872238 + 0.489082i \(0.162668\pi\)
\(824\) 9.44795 + 2.23920i 0.329135 + 0.0780064i
\(825\) 0 0
\(826\) −9.84678 22.8274i −0.342613 0.794267i
\(827\) 1.96973 11.1709i 0.0684943 0.388451i −0.931218 0.364463i \(-0.881253\pi\)
0.999712 0.0239878i \(-0.00763628\pi\)
\(828\) 0 0
\(829\) 6.55402 + 37.1697i 0.227630 + 1.29096i 0.857592 + 0.514330i \(0.171959\pi\)
−0.629962 + 0.776626i \(0.716929\pi\)
\(830\) −10.7006 + 7.03788i −0.371423 + 0.244289i
\(831\) 0 0
\(832\) 1.73914 + 2.33607i 0.0602938 + 0.0809886i
\(833\) −0.733069 + 12.5863i −0.0253993 + 0.436090i
\(834\) 0 0
\(835\) 14.4320 + 15.2970i 0.499439 + 0.529374i
\(836\) 0.00952913 + 0.0165049i 0.000329572 + 0.000570835i
\(837\) 0 0
\(838\) −8.82846 + 15.2913i −0.304974 + 0.528231i
\(839\) −27.7309 + 6.57235i −0.957378 + 0.226903i −0.679469 0.733705i \(-0.737790\pi\)
−0.277909 + 0.960607i \(0.589641\pi\)
\(840\) 0 0
\(841\) 19.2406 9.66300i 0.663470 0.333207i
\(842\) −14.9100 + 1.74273i −0.513834 + 0.0600586i
\(843\) 0 0
\(844\) −1.27102 0.638331i −0.0437503 0.0219723i
\(845\) −48.8593 17.7833i −1.68081 0.611765i
\(846\) 0 0
\(847\) −36.6632 + 13.3443i −1.25976 + 0.458516i
\(848\) 17.5709 + 2.05375i 0.603388 + 0.0705260i
\(849\) 0 0
\(850\) 9.99925 + 33.3998i 0.342971 + 1.14560i
\(851\) −3.91401 13.0737i −0.134171 0.448161i
\(852\) 0 0
\(853\) 28.2542 + 3.30244i 0.967405 + 0.113073i 0.585099 0.810962i \(-0.301056\pi\)
0.382306 + 0.924036i \(0.375130\pi\)
\(854\) 42.5605 15.4908i 1.45639 0.530083i
\(855\) 0 0
\(856\) −32.0793 11.6759i −1.09645 0.399075i
\(857\) −14.5454 7.30499i −0.496862 0.249534i 0.182677 0.983173i \(-0.441524\pi\)
−0.679539 + 0.733639i \(0.737820\pi\)
\(858\) 0 0
\(859\) −56.3897 + 6.59101i −1.92399 + 0.224882i −0.990884 0.134716i \(-0.956988\pi\)
−0.933107 + 0.359598i \(0.882914\pi\)
\(860\) −3.21814 + 1.61621i −0.109738 + 0.0551123i
\(861\) 0 0
\(862\) −3.30341 + 0.782922i −0.112515 + 0.0266664i
\(863\) −3.57676 + 6.19512i −0.121754 + 0.210884i −0.920460 0.390838i \(-0.872185\pi\)
0.798705 + 0.601722i \(0.205519\pi\)
\(864\) 0 0
\(865\) −42.1117 72.9396i −1.43184 2.48002i
\(866\) −12.2073 12.9390i −0.414823 0.439686i
\(867\) 0 0
\(868\) 0.0169081 0.290300i 0.000573897 0.00985343i
\(869\) 0.699877 + 0.940098i 0.0237417 + 0.0318907i
\(870\) 0 0
\(871\) 3.79125 2.49354i 0.128462 0.0844905i
\(872\) −5.05231 28.6531i −0.171093 0.970316i
\(873\) 0 0
\(874\) −0.901191 + 5.11091i −0.0304833 + 0.172879i
\(875\) 35.8270 + 83.0562i 1.21117 + 2.80781i
\(876\) 0 0
\(877\) 18.0369 + 4.27483i 0.609063 + 0.144351i 0.523562 0.851987i \(-0.324603\pi\)
0.0855009 + 0.996338i \(0.472751\pi\)
\(878\) −26.1132 + 27.6783i −0.881277 + 0.934099i
\(879\) 0 0
\(880\) −1.48946 + 2.00070i −0.0502098 + 0.0674435i
\(881\) 35.8699 + 30.0984i 1.20849 + 1.01404i 0.999346 + 0.0361571i \(0.0115117\pi\)
0.209142 + 0.977885i \(0.432933\pi\)
\(882\) 0 0
\(883\) −35.2742 + 29.5986i −1.18707 + 0.996071i −0.187166 + 0.982328i \(0.559930\pi\)
−0.999906 + 0.0137426i \(0.995625\pi\)
\(884\) 0.00428841 + 0.0736292i 0.000144235 + 0.00247642i
\(885\) 0 0
\(886\) 3.13483 7.26735i 0.105317 0.244151i
\(887\) 3.06993 + 2.01912i 0.103078 + 0.0677955i 0.600001 0.799999i \(-0.295167\pi\)
−0.496923 + 0.867794i \(0.665537\pi\)
\(888\) 0 0
\(889\) 8.70102 29.0634i 0.291823 0.974756i
\(890\) −64.9569 −2.17736
\(891\) 0 0
\(892\) −0.900341 −0.0301456
\(893\) −1.55637 + 5.19865i −0.0520820 + 0.173966i
\(894\) 0 0
\(895\) 13.7733 + 9.05882i 0.460389 + 0.302803i
\(896\) 14.7106 34.1030i 0.491447 1.13930i
\(897\) 0 0
\(898\) −2.76345 47.4466i −0.0922175 1.58331i
\(899\) −4.71185 + 3.95371i −0.157149 + 0.131864i
\(900\) 0 0
\(901\) 7.96595 + 6.68422i 0.265384 + 0.222684i
\(902\) −0.946813 + 1.27179i −0.0315254 + 0.0423460i
\(903\) 0 0
\(904\) 7.74256 8.20664i 0.257514 0.272949i
\(905\) −64.5958 15.3095i −2.14724 0.508905i
\(906\) 0 0
\(907\) 5.38773 + 12.4902i 0.178897 + 0.414729i 0.983943 0.178483i \(-0.0571189\pi\)
−0.805046 + 0.593212i \(0.797860\pi\)
\(908\) 0.201061 1.14028i 0.00667246 0.0378414i
\(909\) 0 0
\(910\) −1.20137 6.81332i −0.0398251 0.225859i
\(911\) −3.78604 + 2.49012i −0.125437 + 0.0825013i −0.610677 0.791880i \(-0.709103\pi\)
0.485240 + 0.874381i \(0.338732\pi\)
\(912\) 0 0
\(913\) −0.222978 0.299511i −0.00737948 0.00991236i
\(914\) −0.608964 + 10.4555i −0.0201427 + 0.345838i
\(915\) 0 0
\(916\) 0.242176 + 0.256692i 0.00800173 + 0.00848134i
\(917\) 28.7533 + 49.8022i 0.949517 + 1.64461i
\(918\) 0 0
\(919\) 12.4131 21.5002i 0.409472 0.709226i −0.585359 0.810775i \(-0.699046\pi\)
0.994831 + 0.101548i \(0.0323796\pi\)
\(920\) 34.4140 8.15626i 1.13460 0.268904i
\(921\) 0 0
\(922\) −2.27121 + 1.14064i −0.0747982 + 0.0375650i
\(923\) −0.560417 + 0.0655034i −0.0184464 + 0.00215607i
\(924\) 0 0
\(925\) −45.4900 22.8459i −1.49570 0.751169i
\(926\) −29.1904 10.6244i −0.959255 0.349140i
\(927\) 0 0
\(928\) 3.56859 1.29886i 0.117145 0.0426372i
\(929\) 12.8422 + 1.50104i 0.421338 + 0.0492474i 0.324121 0.946016i \(-0.394932\pi\)
0.0972176 + 0.995263i \(0.469006\pi\)
\(930\) 0 0
\(931\) 2.00771 + 6.70620i 0.0657999 + 0.219787i
\(932\) −0.555823 1.85658i −0.0182066 0.0608142i
\(933\) 0 0
\(934\) −54.0504 6.31759i −1.76858 0.206718i
\(935\) −1.37774 + 0.501458i −0.0450570 + 0.0163994i
\(936\) 0 0
\(937\) 54.1109 + 19.6948i 1.76773 + 0.643400i 0.999997 + 0.00262511i \(0.000835598\pi\)
0.767729 + 0.640774i \(0.221387\pi\)
\(938\) −57.0031 28.6280i −1.86122 0.934738i
\(939\) 0 0
\(940\) 1.65761 0.193747i 0.0540652 0.00631932i
\(941\) 14.7478 7.40660i 0.480763 0.241448i −0.191876 0.981419i \(-0.561457\pi\)
0.672639 + 0.739971i \(0.265161\pi\)
\(942\) 0 0
\(943\) 20.8399 4.93914i 0.678640 0.160841i
\(944\) −9.62940 + 16.6786i −0.313410 + 0.542842i
\(945\) 0 0
\(946\) 1.05827 + 1.83297i 0.0344073 + 0.0595951i
\(947\) 12.4502 + 13.1964i 0.404576 + 0.428825i 0.897342 0.441337i \(-0.145496\pi\)
−0.492766 + 0.870162i \(0.664014\pi\)
\(948\) 0 0
\(949\) 0.237081 4.07052i 0.00769597 0.132135i
\(950\) 11.5599 + 15.5277i 0.375053 + 0.503784i
\(951\) 0 0
\(952\) 19.1946 12.6245i 0.622101 0.409162i
\(953\) 4.36891 + 24.7773i 0.141523 + 0.802616i 0.970094 + 0.242732i \(0.0780434\pi\)
−0.828571 + 0.559885i \(0.810845\pi\)
\(954\) 0 0
\(955\) −0.00292299 + 0.0165771i −9.45859e−5 + 0.000536423i
\(956\) −0.484898 1.12412i −0.0156827 0.0363566i
\(957\) 0 0
\(958\) −3.54505 0.840192i −0.114535 0.0271454i
\(959\) 8.34110 8.84105i 0.269348 0.285492i
\(960\) 0 0
\(961\) −18.0648 + 24.2653i −0.582736 + 0.782750i
\(962\) 1.66299 + 1.39541i 0.0536168 + 0.0449899i
\(963\) 0 0
\(964\) −0.878021 + 0.736747i −0.0282791 + 0.0237290i
\(965\) −4.92699 84.5931i −0.158605 2.72315i
\(966\) 0 0
\(967\) −18.7139 + 43.3837i −0.601798 + 1.39513i 0.296200 + 0.955126i \(0.404281\pi\)
−0.897998 + 0.439999i \(0.854979\pi\)
\(968\) 26.5079 + 17.4345i 0.851997 + 0.560368i
\(969\) 0 0
\(970\) 6.71620 22.4337i 0.215644 0.720302i
\(971\) −40.3149 −1.29377 −0.646883 0.762589i \(-0.723928\pi\)
−0.646883 + 0.762589i \(0.723928\pi\)
\(972\) 0 0
\(973\) 40.0942 1.28536
\(974\) −9.89909 + 33.0653i −0.317187 + 1.05948i
\(975\) 0 0
\(976\) −29.3142 19.2803i −0.938326 0.617147i
\(977\) 1.09500 2.53851i 0.0350323 0.0812140i −0.899802 0.436299i \(-0.856289\pi\)
0.934834 + 0.355085i \(0.115548\pi\)
\(978\) 0 0
\(979\) −0.110113 1.89058i −0.00351924 0.0604230i
\(980\) 1.64918 1.38383i 0.0526812 0.0442048i
\(981\) 0 0
\(982\) 31.8360 + 26.7136i 1.01593 + 0.852464i
\(983\) −1.00359 + 1.34805i −0.0320094 + 0.0429961i −0.817840 0.575446i \(-0.804828\pi\)
0.785830 + 0.618442i \(0.212236\pi\)
\(984\) 0 0
\(985\) −26.9642 + 28.5804i −0.859152 + 0.910648i
\(986\) −21.3388 5.05739i −0.679566 0.161060i
\(987\) 0 0
\(988\) 0.0162200 + 0.0376021i 0.000516026 + 0.00119628i
\(989\) 4.96459 28.1556i 0.157865 0.895296i
\(990\) 0 0
\(991\) −1.27536 7.23291i −0.0405130 0.229761i 0.957828 0.287343i \(-0.0927720\pi\)
−0.998341 + 0.0575822i \(0.981661\pi\)
\(992\) −0.386218 + 0.254020i −0.0122624 + 0.00806513i
\(993\) 0 0
\(994\) 4.73636 + 6.36204i 0.150228 + 0.201792i
\(995\) −5.66287 + 97.2278i −0.179525 + 3.08233i
\(996\) 0 0
\(997\) 13.2174 + 14.0096i 0.418598 + 0.443688i 0.902017 0.431701i \(-0.142086\pi\)
−0.483418 + 0.875389i \(0.660605\pi\)
\(998\) −3.89120 6.73976i −0.123174 0.213344i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.37.6 144
3.2 odd 2 81.2.g.a.49.3 yes 144
9.2 odd 6 729.2.g.d.595.6 144
9.4 even 3 729.2.g.b.109.6 144
9.5 odd 6 729.2.g.c.109.3 144
9.7 even 3 729.2.g.a.595.3 144
81.11 odd 54 729.2.g.d.136.6 144
81.16 even 27 729.2.g.b.622.6 144
81.23 odd 54 6561.2.a.c.1.54 72
81.38 odd 54 81.2.g.a.43.3 144
81.43 even 27 inner 243.2.g.a.46.6 144
81.58 even 27 6561.2.a.d.1.19 72
81.65 odd 54 729.2.g.c.622.3 144
81.70 even 27 729.2.g.a.136.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.43.3 144 81.38 odd 54
81.2.g.a.49.3 yes 144 3.2 odd 2
243.2.g.a.37.6 144 1.1 even 1 trivial
243.2.g.a.46.6 144 81.43 even 27 inner
729.2.g.a.136.3 144 81.70 even 27
729.2.g.a.595.3 144 9.7 even 3
729.2.g.b.109.6 144 9.4 even 3
729.2.g.b.622.6 144 81.16 even 27
729.2.g.c.109.3 144 9.5 odd 6
729.2.g.c.622.3 144 81.65 odd 54
729.2.g.d.136.6 144 81.11 odd 54
729.2.g.d.595.6 144 9.2 odd 6
6561.2.a.c.1.54 72 81.23 odd 54
6561.2.a.d.1.19 72 81.58 even 27