Properties

Label 6561.2.a.d.1.19
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6561,2,Mod(1,6561)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6561, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6561.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 6561.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.38039 q^{2} -0.0945210 q^{4} -4.03747 q^{5} -3.55546 q^{7} +2.89126 q^{8} +5.57329 q^{10} -0.162486 q^{11} +0.349140 q^{13} +4.90792 q^{14} -3.80202 q^{16} +2.23489 q^{17} -1.24091 q^{19} +0.381626 q^{20} +0.224294 q^{22} -3.02974 q^{23} +11.3012 q^{25} -0.481950 q^{26} +0.336065 q^{28} +7.10850 q^{29} -0.865285 q^{31} -0.534236 q^{32} -3.08503 q^{34} +14.3551 q^{35} -4.50435 q^{37} +1.71294 q^{38} -11.6734 q^{40} -7.06898 q^{41} -9.43643 q^{43} +0.0153583 q^{44} +4.18223 q^{46} -4.37311 q^{47} +5.64127 q^{49} -15.6001 q^{50} -0.0330011 q^{52} +4.65293 q^{53} +0.656033 q^{55} -10.2797 q^{56} -9.81251 q^{58} -5.06541 q^{59} -9.22834 q^{61} +1.19443 q^{62} +8.34150 q^{64} -1.40965 q^{65} -12.9970 q^{67} -0.211244 q^{68} -19.8156 q^{70} +1.61606 q^{71} -11.6784 q^{73} +6.21777 q^{74} +0.117292 q^{76} +0.577712 q^{77} -7.21301 q^{79} +15.3506 q^{80} +9.75795 q^{82} +2.29803 q^{83} -9.02333 q^{85} +13.0260 q^{86} -0.469789 q^{88} -11.6550 q^{89} -1.24135 q^{91} +0.286374 q^{92} +6.03660 q^{94} +5.01013 q^{95} -4.20173 q^{97} -7.78716 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{2} + 63 q^{4} + 18 q^{5} + 27 q^{8} + 36 q^{11} + 36 q^{14} + 45 q^{16} + 36 q^{17} + 54 q^{20} + 54 q^{23} + 36 q^{25} + 45 q^{26} + 9 q^{28} + 54 q^{29} + 63 q^{32} + 72 q^{35} + 54 q^{38}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38039 −0.976084 −0.488042 0.872820i \(-0.662289\pi\)
−0.488042 + 0.872820i \(0.662289\pi\)
\(3\) 0 0
\(4\) −0.0945210 −0.0472605
\(5\) −4.03747 −1.80561 −0.902806 0.430047i \(-0.858497\pi\)
−0.902806 + 0.430047i \(0.858497\pi\)
\(6\) 0 0
\(7\) −3.55546 −1.34384 −0.671918 0.740625i \(-0.734529\pi\)
−0.671918 + 0.740625i \(0.734529\pi\)
\(8\) 2.89126 1.02221
\(9\) 0 0
\(10\) 5.57329 1.76243
\(11\) −0.162486 −0.0489914 −0.0244957 0.999700i \(-0.507798\pi\)
−0.0244957 + 0.999700i \(0.507798\pi\)
\(12\) 0 0
\(13\) 0.349140 0.0968341 0.0484171 0.998827i \(-0.484582\pi\)
0.0484171 + 0.998827i \(0.484582\pi\)
\(14\) 4.90792 1.31170
\(15\) 0 0
\(16\) −3.80202 −0.950506
\(17\) 2.23489 0.542042 0.271021 0.962573i \(-0.412639\pi\)
0.271021 + 0.962573i \(0.412639\pi\)
\(18\) 0 0
\(19\) −1.24091 −0.284683 −0.142342 0.989818i \(-0.545463\pi\)
−0.142342 + 0.989818i \(0.545463\pi\)
\(20\) 0.381626 0.0853341
\(21\) 0 0
\(22\) 0.224294 0.0478197
\(23\) −3.02974 −0.631745 −0.315872 0.948802i \(-0.602297\pi\)
−0.315872 + 0.948802i \(0.602297\pi\)
\(24\) 0 0
\(25\) 11.3012 2.26024
\(26\) −0.481950 −0.0945182
\(27\) 0 0
\(28\) 0.336065 0.0635103
\(29\) 7.10850 1.32002 0.660008 0.751259i \(-0.270553\pi\)
0.660008 + 0.751259i \(0.270553\pi\)
\(30\) 0 0
\(31\) −0.865285 −0.155410 −0.0777049 0.996976i \(-0.524759\pi\)
−0.0777049 + 0.996976i \(0.524759\pi\)
\(32\) −0.534236 −0.0944405
\(33\) 0 0
\(34\) −3.08503 −0.529078
\(35\) 14.3551 2.42645
\(36\) 0 0
\(37\) −4.50435 −0.740511 −0.370256 0.928930i \(-0.620730\pi\)
−0.370256 + 0.928930i \(0.620730\pi\)
\(38\) 1.71294 0.277875
\(39\) 0 0
\(40\) −11.6734 −1.84572
\(41\) −7.06898 −1.10399 −0.551994 0.833848i \(-0.686133\pi\)
−0.551994 + 0.833848i \(0.686133\pi\)
\(42\) 0 0
\(43\) −9.43643 −1.43904 −0.719521 0.694471i \(-0.755639\pi\)
−0.719521 + 0.694471i \(0.755639\pi\)
\(44\) 0.0153583 0.00231536
\(45\) 0 0
\(46\) 4.18223 0.616636
\(47\) −4.37311 −0.637884 −0.318942 0.947774i \(-0.603328\pi\)
−0.318942 + 0.947774i \(0.603328\pi\)
\(48\) 0 0
\(49\) 5.64127 0.805896
\(50\) −15.6001 −2.20618
\(51\) 0 0
\(52\) −0.0330011 −0.00457643
\(53\) 4.65293 0.639129 0.319564 0.947565i \(-0.396463\pi\)
0.319564 + 0.947565i \(0.396463\pi\)
\(54\) 0 0
\(55\) 0.656033 0.0884594
\(56\) −10.2797 −1.37369
\(57\) 0 0
\(58\) −9.81251 −1.28845
\(59\) −5.06541 −0.659460 −0.329730 0.944075i \(-0.606958\pi\)
−0.329730 + 0.944075i \(0.606958\pi\)
\(60\) 0 0
\(61\) −9.22834 −1.18157 −0.590784 0.806830i \(-0.701181\pi\)
−0.590784 + 0.806830i \(0.701181\pi\)
\(62\) 1.19443 0.151693
\(63\) 0 0
\(64\) 8.34150 1.04269
\(65\) −1.40965 −0.174845
\(66\) 0 0
\(67\) −12.9970 −1.58783 −0.793916 0.608027i \(-0.791961\pi\)
−0.793916 + 0.608027i \(0.791961\pi\)
\(68\) −0.211244 −0.0256171
\(69\) 0 0
\(70\) −19.8156 −2.36842
\(71\) 1.61606 0.191791 0.0958956 0.995391i \(-0.469429\pi\)
0.0958956 + 0.995391i \(0.469429\pi\)
\(72\) 0 0
\(73\) −11.6784 −1.36686 −0.683429 0.730017i \(-0.739512\pi\)
−0.683429 + 0.730017i \(0.739512\pi\)
\(74\) 6.21777 0.722801
\(75\) 0 0
\(76\) 0.117292 0.0134543
\(77\) 0.577712 0.0658364
\(78\) 0 0
\(79\) −7.21301 −0.811527 −0.405763 0.913978i \(-0.632994\pi\)
−0.405763 + 0.913978i \(0.632994\pi\)
\(80\) 15.3506 1.71625
\(81\) 0 0
\(82\) 9.75795 1.07759
\(83\) 2.29803 0.252242 0.126121 0.992015i \(-0.459747\pi\)
0.126121 + 0.992015i \(0.459747\pi\)
\(84\) 0 0
\(85\) −9.02333 −0.978717
\(86\) 13.0260 1.40463
\(87\) 0 0
\(88\) −0.469789 −0.0500797
\(89\) −11.6550 −1.23543 −0.617715 0.786402i \(-0.711942\pi\)
−0.617715 + 0.786402i \(0.711942\pi\)
\(90\) 0 0
\(91\) −1.24135 −0.130129
\(92\) 0.286374 0.0298566
\(93\) 0 0
\(94\) 6.03660 0.622628
\(95\) 5.01013 0.514028
\(96\) 0 0
\(97\) −4.20173 −0.426621 −0.213310 0.976984i \(-0.568425\pi\)
−0.213310 + 0.976984i \(0.568425\pi\)
\(98\) −7.78716 −0.786622
\(99\) 0 0
\(100\) −1.06820 −0.106820
\(101\) 1.67527 0.166695 0.0833476 0.996521i \(-0.473439\pi\)
0.0833476 + 0.996521i \(0.473439\pi\)
\(102\) 0 0
\(103\) 3.35829 0.330902 0.165451 0.986218i \(-0.447092\pi\)
0.165451 + 0.986218i \(0.447092\pi\)
\(104\) 1.00946 0.0989852
\(105\) 0 0
\(106\) −6.42286 −0.623843
\(107\) 11.8074 1.14146 0.570730 0.821137i \(-0.306660\pi\)
0.570730 + 0.821137i \(0.306660\pi\)
\(108\) 0 0
\(109\) −10.0631 −0.963873 −0.481937 0.876206i \(-0.660066\pi\)
−0.481937 + 0.876206i \(0.660066\pi\)
\(110\) −0.905582 −0.0863438
\(111\) 0 0
\(112\) 13.5179 1.27732
\(113\) −3.90230 −0.367098 −0.183549 0.983011i \(-0.558759\pi\)
−0.183549 + 0.983011i \(0.558759\pi\)
\(114\) 0 0
\(115\) 12.2325 1.14069
\(116\) −0.671902 −0.0623846
\(117\) 0 0
\(118\) 6.99224 0.643688
\(119\) −7.94607 −0.728415
\(120\) 0 0
\(121\) −10.9736 −0.997600
\(122\) 12.7387 1.15331
\(123\) 0 0
\(124\) 0.0817876 0.00734474
\(125\) −25.4409 −2.27550
\(126\) 0 0
\(127\) 8.53278 0.757162 0.378581 0.925568i \(-0.376412\pi\)
0.378581 + 0.925568i \(0.376412\pi\)
\(128\) −10.4461 −0.923310
\(129\) 0 0
\(130\) 1.94586 0.170663
\(131\) 16.1742 1.41314 0.706572 0.707641i \(-0.250241\pi\)
0.706572 + 0.707641i \(0.250241\pi\)
\(132\) 0 0
\(133\) 4.41199 0.382568
\(134\) 17.9409 1.54986
\(135\) 0 0
\(136\) 6.46166 0.554082
\(137\) 3.41862 0.292073 0.146036 0.989279i \(-0.453348\pi\)
0.146036 + 0.989279i \(0.453348\pi\)
\(138\) 0 0
\(139\) −11.2768 −0.956485 −0.478243 0.878228i \(-0.658726\pi\)
−0.478243 + 0.878228i \(0.658726\pi\)
\(140\) −1.35685 −0.114675
\(141\) 0 0
\(142\) −2.23080 −0.187204
\(143\) −0.0567304 −0.00474404
\(144\) 0 0
\(145\) −28.7004 −2.38344
\(146\) 16.1208 1.33417
\(147\) 0 0
\(148\) 0.425756 0.0349969
\(149\) 0.597717 0.0489669 0.0244834 0.999700i \(-0.492206\pi\)
0.0244834 + 0.999700i \(0.492206\pi\)
\(150\) 0 0
\(151\) 1.67721 0.136489 0.0682447 0.997669i \(-0.478260\pi\)
0.0682447 + 0.997669i \(0.478260\pi\)
\(152\) −3.58778 −0.291007
\(153\) 0 0
\(154\) −0.797468 −0.0642618
\(155\) 3.49356 0.280610
\(156\) 0 0
\(157\) 9.12223 0.728033 0.364017 0.931392i \(-0.381405\pi\)
0.364017 + 0.931392i \(0.381405\pi\)
\(158\) 9.95677 0.792118
\(159\) 0 0
\(160\) 2.15696 0.170523
\(161\) 10.7721 0.848962
\(162\) 0 0
\(163\) −21.8751 −1.71339 −0.856697 0.515821i \(-0.827487\pi\)
−0.856697 + 0.515821i \(0.827487\pi\)
\(164\) 0.668167 0.0521750
\(165\) 0 0
\(166\) −3.17218 −0.246209
\(167\) 5.20882 0.403070 0.201535 0.979481i \(-0.435407\pi\)
0.201535 + 0.979481i \(0.435407\pi\)
\(168\) 0 0
\(169\) −12.8781 −0.990623
\(170\) 12.4557 0.955310
\(171\) 0 0
\(172\) 0.891940 0.0680098
\(173\) −20.8604 −1.58599 −0.792994 0.609229i \(-0.791479\pi\)
−0.792994 + 0.609229i \(0.791479\pi\)
\(174\) 0 0
\(175\) −40.1809 −3.03739
\(176\) 0.617776 0.0465666
\(177\) 0 0
\(178\) 16.0885 1.20588
\(179\) 4.08307 0.305183 0.152592 0.988289i \(-0.451238\pi\)
0.152592 + 0.988289i \(0.451238\pi\)
\(180\) 0 0
\(181\) 16.4423 1.22214 0.611072 0.791575i \(-0.290738\pi\)
0.611072 + 0.791575i \(0.290738\pi\)
\(182\) 1.71355 0.127017
\(183\) 0 0
\(184\) −8.75977 −0.645778
\(185\) 18.1862 1.33708
\(186\) 0 0
\(187\) −0.363139 −0.0265554
\(188\) 0.413351 0.0301467
\(189\) 0 0
\(190\) −6.91593 −0.501735
\(191\) 0.00416915 0.000301669 0 0.000150835 1.00000i \(-0.499952\pi\)
0.000150835 1.00000i \(0.499952\pi\)
\(192\) 0 0
\(193\) −20.9875 −1.51071 −0.755356 0.655314i \(-0.772536\pi\)
−0.755356 + 0.655314i \(0.772536\pi\)
\(194\) 5.80003 0.416418
\(195\) 0 0
\(196\) −0.533218 −0.0380870
\(197\) −9.73198 −0.693375 −0.346687 0.937981i \(-0.612694\pi\)
−0.346687 + 0.937981i \(0.612694\pi\)
\(198\) 0 0
\(199\) −24.1221 −1.70997 −0.854987 0.518650i \(-0.826435\pi\)
−0.854987 + 0.518650i \(0.826435\pi\)
\(200\) 32.6746 2.31045
\(201\) 0 0
\(202\) −2.31252 −0.162709
\(203\) −25.2740 −1.77388
\(204\) 0 0
\(205\) 28.5408 1.99338
\(206\) −4.63575 −0.322988
\(207\) 0 0
\(208\) −1.32744 −0.0920414
\(209\) 0.201630 0.0139470
\(210\) 0 0
\(211\) 15.0475 1.03592 0.517958 0.855406i \(-0.326692\pi\)
0.517958 + 0.855406i \(0.326692\pi\)
\(212\) −0.439799 −0.0302055
\(213\) 0 0
\(214\) −16.2988 −1.11416
\(215\) 38.0993 2.59835
\(216\) 0 0
\(217\) 3.07648 0.208845
\(218\) 13.8911 0.940821
\(219\) 0 0
\(220\) −0.0620088 −0.00418064
\(221\) 0.780292 0.0524881
\(222\) 0 0
\(223\) 9.52530 0.637861 0.318931 0.947778i \(-0.396676\pi\)
0.318931 + 0.947778i \(0.396676\pi\)
\(224\) 1.89945 0.126913
\(225\) 0 0
\(226\) 5.38670 0.358318
\(227\) −12.2498 −0.813050 −0.406525 0.913640i \(-0.633260\pi\)
−0.406525 + 0.913640i \(0.633260\pi\)
\(228\) 0 0
\(229\) 3.73359 0.246723 0.123361 0.992362i \(-0.460633\pi\)
0.123361 + 0.992362i \(0.460633\pi\)
\(230\) −16.8856 −1.11341
\(231\) 0 0
\(232\) 20.5525 1.34934
\(233\) −20.5033 −1.34322 −0.671609 0.740906i \(-0.734397\pi\)
−0.671609 + 0.740906i \(0.734397\pi\)
\(234\) 0 0
\(235\) 17.6563 1.15177
\(236\) 0.478787 0.0311664
\(237\) 0 0
\(238\) 10.9687 0.710994
\(239\) 12.9521 0.837800 0.418900 0.908032i \(-0.362416\pi\)
0.418900 + 0.908032i \(0.362416\pi\)
\(240\) 0 0
\(241\) 12.1261 0.781114 0.390557 0.920579i \(-0.372282\pi\)
0.390557 + 0.920579i \(0.372282\pi\)
\(242\) 15.1479 0.973741
\(243\) 0 0
\(244\) 0.872272 0.0558415
\(245\) −22.7765 −1.45514
\(246\) 0 0
\(247\) −0.433251 −0.0275671
\(248\) −2.50176 −0.158862
\(249\) 0 0
\(250\) 35.1184 2.22108
\(251\) 28.3870 1.79177 0.895885 0.444287i \(-0.146543\pi\)
0.895885 + 0.444287i \(0.146543\pi\)
\(252\) 0 0
\(253\) 0.492291 0.0309501
\(254\) −11.7786 −0.739053
\(255\) 0 0
\(256\) −2.26336 −0.141460
\(257\) −27.4880 −1.71465 −0.857327 0.514772i \(-0.827876\pi\)
−0.857327 + 0.514772i \(0.827876\pi\)
\(258\) 0 0
\(259\) 16.0150 0.995126
\(260\) 0.133241 0.00826326
\(261\) 0 0
\(262\) −22.3267 −1.37935
\(263\) −4.64377 −0.286347 −0.143174 0.989698i \(-0.545731\pi\)
−0.143174 + 0.989698i \(0.545731\pi\)
\(264\) 0 0
\(265\) −18.7861 −1.15402
\(266\) −6.09027 −0.373418
\(267\) 0 0
\(268\) 1.22849 0.0750417
\(269\) 5.01537 0.305792 0.152896 0.988242i \(-0.451140\pi\)
0.152896 + 0.988242i \(0.451140\pi\)
\(270\) 0 0
\(271\) 16.0871 0.977223 0.488612 0.872501i \(-0.337504\pi\)
0.488612 + 0.872501i \(0.337504\pi\)
\(272\) −8.49712 −0.515214
\(273\) 0 0
\(274\) −4.71903 −0.285087
\(275\) −1.83628 −0.110732
\(276\) 0 0
\(277\) 9.84120 0.591300 0.295650 0.955296i \(-0.404464\pi\)
0.295650 + 0.955296i \(0.404464\pi\)
\(278\) 15.5664 0.933610
\(279\) 0 0
\(280\) 41.5042 2.48035
\(281\) −21.7423 −1.29704 −0.648519 0.761199i \(-0.724611\pi\)
−0.648519 + 0.761199i \(0.724611\pi\)
\(282\) 0 0
\(283\) −4.80315 −0.285518 −0.142759 0.989758i \(-0.545597\pi\)
−0.142759 + 0.989758i \(0.545597\pi\)
\(284\) −0.152752 −0.00906414
\(285\) 0 0
\(286\) 0.0783102 0.00463058
\(287\) 25.1334 1.48358
\(288\) 0 0
\(289\) −12.0052 −0.706191
\(290\) 39.6177 2.32643
\(291\) 0 0
\(292\) 1.10386 0.0645984
\(293\) 5.65004 0.330079 0.165040 0.986287i \(-0.447225\pi\)
0.165040 + 0.986287i \(0.447225\pi\)
\(294\) 0 0
\(295\) 20.4514 1.19073
\(296\) −13.0232 −0.756961
\(297\) 0 0
\(298\) −0.825083 −0.0477958
\(299\) −1.05781 −0.0611745
\(300\) 0 0
\(301\) 33.5508 1.93384
\(302\) −2.31521 −0.133225
\(303\) 0 0
\(304\) 4.71796 0.270593
\(305\) 37.2592 2.13345
\(306\) 0 0
\(307\) 7.98273 0.455599 0.227799 0.973708i \(-0.426847\pi\)
0.227799 + 0.973708i \(0.426847\pi\)
\(308\) −0.0546059 −0.00311146
\(309\) 0 0
\(310\) −4.82249 −0.273899
\(311\) 20.6448 1.17066 0.585329 0.810796i \(-0.300965\pi\)
0.585329 + 0.810796i \(0.300965\pi\)
\(312\) 0 0
\(313\) 19.4329 1.09841 0.549207 0.835686i \(-0.314930\pi\)
0.549207 + 0.835686i \(0.314930\pi\)
\(314\) −12.5922 −0.710621
\(315\) 0 0
\(316\) 0.681780 0.0383531
\(317\) −29.0866 −1.63367 −0.816834 0.576873i \(-0.804273\pi\)
−0.816834 + 0.576873i \(0.804273\pi\)
\(318\) 0 0
\(319\) −1.15503 −0.0646694
\(320\) −33.6786 −1.88269
\(321\) 0 0
\(322\) −14.8697 −0.828658
\(323\) −2.77330 −0.154310
\(324\) 0 0
\(325\) 3.94570 0.218868
\(326\) 30.1962 1.67242
\(327\) 0 0
\(328\) −20.4382 −1.12851
\(329\) 15.5484 0.857212
\(330\) 0 0
\(331\) 3.07120 0.168808 0.0844042 0.996432i \(-0.473101\pi\)
0.0844042 + 0.996432i \(0.473101\pi\)
\(332\) −0.217212 −0.0119211
\(333\) 0 0
\(334\) −7.19020 −0.393430
\(335\) 52.4749 2.86701
\(336\) 0 0
\(337\) 27.8022 1.51448 0.757240 0.653137i \(-0.226547\pi\)
0.757240 + 0.653137i \(0.226547\pi\)
\(338\) 17.7768 0.966931
\(339\) 0 0
\(340\) 0.852893 0.0462546
\(341\) 0.140597 0.00761374
\(342\) 0 0
\(343\) 4.83091 0.260844
\(344\) −27.2832 −1.47101
\(345\) 0 0
\(346\) 28.7955 1.54806
\(347\) 3.50450 0.188131 0.0940657 0.995566i \(-0.470014\pi\)
0.0940657 + 0.995566i \(0.470014\pi\)
\(348\) 0 0
\(349\) −11.4402 −0.612381 −0.306190 0.951970i \(-0.599054\pi\)
−0.306190 + 0.951970i \(0.599054\pi\)
\(350\) 55.4653 2.96475
\(351\) 0 0
\(352\) 0.0868059 0.00462677
\(353\) 1.83458 0.0976447 0.0488223 0.998807i \(-0.484453\pi\)
0.0488223 + 0.998807i \(0.484453\pi\)
\(354\) 0 0
\(355\) −6.52480 −0.346301
\(356\) 1.10164 0.0583870
\(357\) 0 0
\(358\) −5.63624 −0.297884
\(359\) 20.1156 1.06166 0.530831 0.847478i \(-0.321880\pi\)
0.530831 + 0.847478i \(0.321880\pi\)
\(360\) 0 0
\(361\) −17.4602 −0.918955
\(362\) −22.6968 −1.19292
\(363\) 0 0
\(364\) 0.117334 0.00614997
\(365\) 47.1514 2.46802
\(366\) 0 0
\(367\) 26.4105 1.37862 0.689308 0.724468i \(-0.257915\pi\)
0.689308 + 0.724468i \(0.257915\pi\)
\(368\) 11.5192 0.600477
\(369\) 0 0
\(370\) −25.1041 −1.30510
\(371\) −16.5433 −0.858884
\(372\) 0 0
\(373\) −29.6387 −1.53463 −0.767317 0.641268i \(-0.778409\pi\)
−0.767317 + 0.641268i \(0.778409\pi\)
\(374\) 0.501274 0.0259203
\(375\) 0 0
\(376\) −12.6438 −0.652054
\(377\) 2.48187 0.127823
\(378\) 0 0
\(379\) −11.5058 −0.591016 −0.295508 0.955340i \(-0.595489\pi\)
−0.295508 + 0.955340i \(0.595489\pi\)
\(380\) −0.473562 −0.0242932
\(381\) 0 0
\(382\) −0.00575506 −0.000294455 0
\(383\) 28.7641 1.46978 0.734888 0.678188i \(-0.237235\pi\)
0.734888 + 0.678188i \(0.237235\pi\)
\(384\) 0 0
\(385\) −2.33250 −0.118875
\(386\) 28.9709 1.47458
\(387\) 0 0
\(388\) 0.397151 0.0201623
\(389\) 11.4553 0.580808 0.290404 0.956904i \(-0.406210\pi\)
0.290404 + 0.956904i \(0.406210\pi\)
\(390\) 0 0
\(391\) −6.77115 −0.342432
\(392\) 16.3104 0.823798
\(393\) 0 0
\(394\) 13.4339 0.676792
\(395\) 29.1223 1.46530
\(396\) 0 0
\(397\) 10.9419 0.549158 0.274579 0.961565i \(-0.411462\pi\)
0.274579 + 0.961565i \(0.411462\pi\)
\(398\) 33.2980 1.66908
\(399\) 0 0
\(400\) −42.9674 −2.14837
\(401\) −0.347567 −0.0173567 −0.00867834 0.999962i \(-0.502762\pi\)
−0.00867834 + 0.999962i \(0.502762\pi\)
\(402\) 0 0
\(403\) −0.302106 −0.0150490
\(404\) −0.158348 −0.00787810
\(405\) 0 0
\(406\) 34.8880 1.73146
\(407\) 0.731894 0.0362787
\(408\) 0 0
\(409\) 26.6015 1.31536 0.657679 0.753298i \(-0.271538\pi\)
0.657679 + 0.753298i \(0.271538\pi\)
\(410\) −39.3975 −1.94570
\(411\) 0 0
\(412\) −0.317428 −0.0156386
\(413\) 18.0098 0.886206
\(414\) 0 0
\(415\) −9.27823 −0.455450
\(416\) −0.186523 −0.00914506
\(417\) 0 0
\(418\) −0.278328 −0.0136135
\(419\) −12.7912 −0.624893 −0.312447 0.949935i \(-0.601149\pi\)
−0.312447 + 0.949935i \(0.601149\pi\)
\(420\) 0 0
\(421\) −10.8749 −0.530008 −0.265004 0.964247i \(-0.585373\pi\)
−0.265004 + 0.964247i \(0.585373\pi\)
\(422\) −20.7715 −1.01114
\(423\) 0 0
\(424\) 13.4528 0.653326
\(425\) 25.2570 1.22514
\(426\) 0 0
\(427\) 32.8110 1.58783
\(428\) −1.11604 −0.0539460
\(429\) 0 0
\(430\) −52.5920 −2.53621
\(431\) 2.45939 0.118465 0.0592323 0.998244i \(-0.481135\pi\)
0.0592323 + 0.998244i \(0.481135\pi\)
\(432\) 0 0
\(433\) −12.8867 −0.619296 −0.309648 0.950851i \(-0.600211\pi\)
−0.309648 + 0.950851i \(0.600211\pi\)
\(434\) −4.24675 −0.203850
\(435\) 0 0
\(436\) 0.951177 0.0455531
\(437\) 3.75963 0.179847
\(438\) 0 0
\(439\) −27.5664 −1.31567 −0.657837 0.753160i \(-0.728528\pi\)
−0.657837 + 0.753160i \(0.728528\pi\)
\(440\) 1.89676 0.0904245
\(441\) 0 0
\(442\) −1.07711 −0.0512328
\(443\) −5.73362 −0.272413 −0.136206 0.990681i \(-0.543491\pi\)
−0.136206 + 0.990681i \(0.543491\pi\)
\(444\) 0 0
\(445\) 47.0569 2.23071
\(446\) −13.1486 −0.622606
\(447\) 0 0
\(448\) −29.6578 −1.40120
\(449\) −34.4301 −1.62486 −0.812429 0.583060i \(-0.801855\pi\)
−0.812429 + 0.583060i \(0.801855\pi\)
\(450\) 0 0
\(451\) 1.14861 0.0540859
\(452\) 0.368849 0.0173492
\(453\) 0 0
\(454\) 16.9096 0.793605
\(455\) 5.01193 0.234963
\(456\) 0 0
\(457\) −7.58715 −0.354912 −0.177456 0.984129i \(-0.556787\pi\)
−0.177456 + 0.984129i \(0.556787\pi\)
\(458\) −5.15381 −0.240822
\(459\) 0 0
\(460\) −1.15623 −0.0539094
\(461\) 1.84118 0.0857521 0.0428761 0.999080i \(-0.486348\pi\)
0.0428761 + 0.999080i \(0.486348\pi\)
\(462\) 0 0
\(463\) −22.5036 −1.04583 −0.522915 0.852385i \(-0.675156\pi\)
−0.522915 + 0.852385i \(0.675156\pi\)
\(464\) −27.0267 −1.25468
\(465\) 0 0
\(466\) 28.3026 1.31109
\(467\) −39.4224 −1.82425 −0.912126 0.409909i \(-0.865560\pi\)
−0.912126 + 0.409909i \(0.865560\pi\)
\(468\) 0 0
\(469\) 46.2101 2.13379
\(470\) −24.3726 −1.12423
\(471\) 0 0
\(472\) −14.6454 −0.674109
\(473\) 1.53329 0.0705006
\(474\) 0 0
\(475\) −14.0237 −0.643452
\(476\) 0.751070 0.0344252
\(477\) 0 0
\(478\) −17.8789 −0.817763
\(479\) 2.63929 0.120592 0.0602961 0.998181i \(-0.480795\pi\)
0.0602961 + 0.998181i \(0.480795\pi\)
\(480\) 0 0
\(481\) −1.57265 −0.0717068
\(482\) −16.7388 −0.762432
\(483\) 0 0
\(484\) 1.03723 0.0471470
\(485\) 16.9644 0.770312
\(486\) 0 0
\(487\) −25.0040 −1.13304 −0.566519 0.824048i \(-0.691710\pi\)
−0.566519 + 0.824048i \(0.691710\pi\)
\(488\) −26.6815 −1.20782
\(489\) 0 0
\(490\) 31.4404 1.42033
\(491\) −30.1066 −1.35869 −0.679347 0.733817i \(-0.737737\pi\)
−0.679347 + 0.733817i \(0.737737\pi\)
\(492\) 0 0
\(493\) 15.8868 0.715503
\(494\) 0.598055 0.0269078
\(495\) 0 0
\(496\) 3.28983 0.147718
\(497\) −5.74584 −0.257736
\(498\) 0 0
\(499\) −5.63783 −0.252384 −0.126192 0.992006i \(-0.540276\pi\)
−0.126192 + 0.992006i \(0.540276\pi\)
\(500\) 2.40470 0.107541
\(501\) 0 0
\(502\) −39.1851 −1.74892
\(503\) −11.5799 −0.516324 −0.258162 0.966102i \(-0.583117\pi\)
−0.258162 + 0.966102i \(0.583117\pi\)
\(504\) 0 0
\(505\) −6.76384 −0.300987
\(506\) −0.679554 −0.0302098
\(507\) 0 0
\(508\) −0.806526 −0.0357838
\(509\) −35.8631 −1.58960 −0.794802 0.606869i \(-0.792425\pi\)
−0.794802 + 0.606869i \(0.792425\pi\)
\(510\) 0 0
\(511\) 41.5222 1.83683
\(512\) 24.0164 1.06139
\(513\) 0 0
\(514\) 37.9442 1.67365
\(515\) −13.5590 −0.597481
\(516\) 0 0
\(517\) 0.710570 0.0312508
\(518\) −22.1070 −0.971326
\(519\) 0 0
\(520\) −4.07565 −0.178729
\(521\) 8.90540 0.390153 0.195076 0.980788i \(-0.437505\pi\)
0.195076 + 0.980788i \(0.437505\pi\)
\(522\) 0 0
\(523\) 16.1552 0.706417 0.353209 0.935545i \(-0.385091\pi\)
0.353209 + 0.935545i \(0.385091\pi\)
\(524\) −1.52880 −0.0667859
\(525\) 0 0
\(526\) 6.41022 0.279499
\(527\) −1.93382 −0.0842386
\(528\) 0 0
\(529\) −13.8207 −0.600898
\(530\) 25.9321 1.12642
\(531\) 0 0
\(532\) −0.417025 −0.0180803
\(533\) −2.46807 −0.106904
\(534\) 0 0
\(535\) −47.6719 −2.06104
\(536\) −37.5776 −1.62310
\(537\) 0 0
\(538\) −6.92316 −0.298479
\(539\) −0.916627 −0.0394819
\(540\) 0 0
\(541\) −9.50515 −0.408658 −0.204329 0.978902i \(-0.565501\pi\)
−0.204329 + 0.978902i \(0.565501\pi\)
\(542\) −22.2065 −0.953852
\(543\) 0 0
\(544\) −1.19396 −0.0511907
\(545\) 40.6296 1.74038
\(546\) 0 0
\(547\) 5.30600 0.226868 0.113434 0.993546i \(-0.463815\pi\)
0.113434 + 0.993546i \(0.463815\pi\)
\(548\) −0.323131 −0.0138035
\(549\) 0 0
\(550\) 2.53479 0.108084
\(551\) −8.82099 −0.375787
\(552\) 0 0
\(553\) 25.6455 1.09056
\(554\) −13.5847 −0.577159
\(555\) 0 0
\(556\) 1.06589 0.0452040
\(557\) −32.8789 −1.39312 −0.696561 0.717498i \(-0.745287\pi\)
−0.696561 + 0.717498i \(0.745287\pi\)
\(558\) 0 0
\(559\) −3.29464 −0.139348
\(560\) −54.5783 −2.30635
\(561\) 0 0
\(562\) 30.0129 1.26602
\(563\) −12.7672 −0.538074 −0.269037 0.963130i \(-0.586705\pi\)
−0.269037 + 0.963130i \(0.586705\pi\)
\(564\) 0 0
\(565\) 15.7554 0.662836
\(566\) 6.63022 0.278689
\(567\) 0 0
\(568\) 4.67245 0.196052
\(569\) 42.9771 1.80169 0.900847 0.434137i \(-0.142947\pi\)
0.900847 + 0.434137i \(0.142947\pi\)
\(570\) 0 0
\(571\) −3.80525 −0.159245 −0.0796223 0.996825i \(-0.525371\pi\)
−0.0796223 + 0.996825i \(0.525371\pi\)
\(572\) 0.00536221 0.000224205 0
\(573\) 0 0
\(574\) −34.6940 −1.44810
\(575\) −34.2397 −1.42789
\(576\) 0 0
\(577\) 15.0528 0.626655 0.313327 0.949645i \(-0.398556\pi\)
0.313327 + 0.949645i \(0.398556\pi\)
\(578\) 16.5719 0.689302
\(579\) 0 0
\(580\) 2.71279 0.112642
\(581\) −8.17054 −0.338971
\(582\) 0 0
\(583\) −0.756036 −0.0313118
\(584\) −33.7654 −1.39722
\(585\) 0 0
\(586\) −7.79927 −0.322185
\(587\) 38.1289 1.57375 0.786874 0.617113i \(-0.211698\pi\)
0.786874 + 0.617113i \(0.211698\pi\)
\(588\) 0 0
\(589\) 1.07374 0.0442426
\(590\) −28.2310 −1.16225
\(591\) 0 0
\(592\) 17.1257 0.703860
\(593\) 11.6275 0.477484 0.238742 0.971083i \(-0.423265\pi\)
0.238742 + 0.971083i \(0.423265\pi\)
\(594\) 0 0
\(595\) 32.0820 1.31524
\(596\) −0.0564968 −0.00231420
\(597\) 0 0
\(598\) 1.46019 0.0597114
\(599\) 40.3757 1.64971 0.824853 0.565347i \(-0.191258\pi\)
0.824853 + 0.565347i \(0.191258\pi\)
\(600\) 0 0
\(601\) −19.7159 −0.804230 −0.402115 0.915589i \(-0.631725\pi\)
−0.402115 + 0.915589i \(0.631725\pi\)
\(602\) −46.3132 −1.88759
\(603\) 0 0
\(604\) −0.158531 −0.00645055
\(605\) 44.3056 1.80128
\(606\) 0 0
\(607\) 1.83891 0.0746392 0.0373196 0.999303i \(-0.488118\pi\)
0.0373196 + 0.999303i \(0.488118\pi\)
\(608\) 0.662937 0.0268856
\(609\) 0 0
\(610\) −51.4322 −2.08243
\(611\) −1.52683 −0.0617690
\(612\) 0 0
\(613\) 35.4287 1.43095 0.715476 0.698638i \(-0.246210\pi\)
0.715476 + 0.698638i \(0.246210\pi\)
\(614\) −11.0193 −0.444703
\(615\) 0 0
\(616\) 1.67031 0.0672989
\(617\) 37.1192 1.49436 0.747181 0.664621i \(-0.231407\pi\)
0.747181 + 0.664621i \(0.231407\pi\)
\(618\) 0 0
\(619\) 33.9746 1.36555 0.682777 0.730627i \(-0.260772\pi\)
0.682777 + 0.730627i \(0.260772\pi\)
\(620\) −0.330215 −0.0132618
\(621\) 0 0
\(622\) −28.4979 −1.14266
\(623\) 41.4389 1.66022
\(624\) 0 0
\(625\) 46.2109 1.84844
\(626\) −26.8251 −1.07214
\(627\) 0 0
\(628\) −0.862242 −0.0344072
\(629\) −10.0668 −0.401388
\(630\) 0 0
\(631\) −11.0506 −0.439919 −0.219960 0.975509i \(-0.570593\pi\)
−0.219960 + 0.975509i \(0.570593\pi\)
\(632\) −20.8547 −0.829554
\(633\) 0 0
\(634\) 40.1509 1.59460
\(635\) −34.4509 −1.36714
\(636\) 0 0
\(637\) 1.96960 0.0780382
\(638\) 1.59440 0.0631227
\(639\) 0 0
\(640\) 42.1757 1.66714
\(641\) −16.2618 −0.642304 −0.321152 0.947028i \(-0.604070\pi\)
−0.321152 + 0.947028i \(0.604070\pi\)
\(642\) 0 0
\(643\) 14.2733 0.562884 0.281442 0.959578i \(-0.409187\pi\)
0.281442 + 0.959578i \(0.409187\pi\)
\(644\) −1.01819 −0.0401223
\(645\) 0 0
\(646\) 3.82823 0.150620
\(647\) 40.7899 1.60362 0.801808 0.597582i \(-0.203872\pi\)
0.801808 + 0.597582i \(0.203872\pi\)
\(648\) 0 0
\(649\) 0.823057 0.0323078
\(650\) −5.44661 −0.213634
\(651\) 0 0
\(652\) 2.06766 0.0809758
\(653\) −2.57356 −0.100711 −0.0503555 0.998731i \(-0.516035\pi\)
−0.0503555 + 0.998731i \(0.516035\pi\)
\(654\) 0 0
\(655\) −65.3028 −2.55159
\(656\) 26.8764 1.04935
\(657\) 0 0
\(658\) −21.4629 −0.836710
\(659\) 8.58546 0.334442 0.167221 0.985919i \(-0.446521\pi\)
0.167221 + 0.985919i \(0.446521\pi\)
\(660\) 0 0
\(661\) 37.0919 1.44271 0.721353 0.692567i \(-0.243520\pi\)
0.721353 + 0.692567i \(0.243520\pi\)
\(662\) −4.23946 −0.164771
\(663\) 0 0
\(664\) 6.64420 0.257845
\(665\) −17.8133 −0.690770
\(666\) 0 0
\(667\) −21.5369 −0.833913
\(668\) −0.492342 −0.0190493
\(669\) 0 0
\(670\) −72.4359 −2.79844
\(671\) 1.49948 0.0578866
\(672\) 0 0
\(673\) 22.1804 0.854992 0.427496 0.904017i \(-0.359396\pi\)
0.427496 + 0.904017i \(0.359396\pi\)
\(674\) −38.3778 −1.47826
\(675\) 0 0
\(676\) 1.21725 0.0468173
\(677\) −4.33174 −0.166482 −0.0832411 0.996529i \(-0.526527\pi\)
−0.0832411 + 0.996529i \(0.526527\pi\)
\(678\) 0 0
\(679\) 14.9391 0.573309
\(680\) −26.0888 −1.00046
\(681\) 0 0
\(682\) −0.194078 −0.00743165
\(683\) −40.4681 −1.54847 −0.774234 0.632900i \(-0.781864\pi\)
−0.774234 + 0.632900i \(0.781864\pi\)
\(684\) 0 0
\(685\) −13.8026 −0.527370
\(686\) −6.66854 −0.254606
\(687\) 0 0
\(688\) 35.8775 1.36782
\(689\) 1.62453 0.0618895
\(690\) 0 0
\(691\) −23.3106 −0.886778 −0.443389 0.896329i \(-0.646224\pi\)
−0.443389 + 0.896329i \(0.646224\pi\)
\(692\) 1.97175 0.0749546
\(693\) 0 0
\(694\) −4.83758 −0.183632
\(695\) 45.5298 1.72704
\(696\) 0 0
\(697\) −15.7984 −0.598408
\(698\) 15.7920 0.597735
\(699\) 0 0
\(700\) 3.79793 0.143548
\(701\) −11.9520 −0.451420 −0.225710 0.974194i \(-0.572470\pi\)
−0.225710 + 0.974194i \(0.572470\pi\)
\(702\) 0 0
\(703\) 5.58948 0.210811
\(704\) −1.35538 −0.0510827
\(705\) 0 0
\(706\) −2.53243 −0.0953094
\(707\) −5.95634 −0.224011
\(708\) 0 0
\(709\) −14.2925 −0.536766 −0.268383 0.963312i \(-0.586489\pi\)
−0.268383 + 0.963312i \(0.586489\pi\)
\(710\) 9.00678 0.338018
\(711\) 0 0
\(712\) −33.6977 −1.26287
\(713\) 2.62159 0.0981793
\(714\) 0 0
\(715\) 0.229048 0.00856589
\(716\) −0.385936 −0.0144231
\(717\) 0 0
\(718\) −27.7674 −1.03627
\(719\) 13.3415 0.497556 0.248778 0.968561i \(-0.419971\pi\)
0.248778 + 0.968561i \(0.419971\pi\)
\(720\) 0 0
\(721\) −11.9402 −0.444678
\(722\) 24.1018 0.896977
\(723\) 0 0
\(724\) −1.55414 −0.0577591
\(725\) 80.3345 2.98355
\(726\) 0 0
\(727\) 41.2259 1.52899 0.764493 0.644632i \(-0.222990\pi\)
0.764493 + 0.644632i \(0.222990\pi\)
\(728\) −3.58907 −0.133020
\(729\) 0 0
\(730\) −65.0874 −2.40899
\(731\) −21.0894 −0.780021
\(732\) 0 0
\(733\) 11.6114 0.428876 0.214438 0.976738i \(-0.431208\pi\)
0.214438 + 0.976738i \(0.431208\pi\)
\(734\) −36.4568 −1.34564
\(735\) 0 0
\(736\) 1.61860 0.0596623
\(737\) 2.11183 0.0777901
\(738\) 0 0
\(739\) −36.1839 −1.33105 −0.665524 0.746377i \(-0.731792\pi\)
−0.665524 + 0.746377i \(0.731792\pi\)
\(740\) −1.71898 −0.0631909
\(741\) 0 0
\(742\) 22.8362 0.838343
\(743\) 50.5839 1.85574 0.927871 0.372902i \(-0.121637\pi\)
0.927871 + 0.372902i \(0.121637\pi\)
\(744\) 0 0
\(745\) −2.41327 −0.0884152
\(746\) 40.9130 1.49793
\(747\) 0 0
\(748\) 0.0343243 0.00125502
\(749\) −41.9806 −1.53394
\(750\) 0 0
\(751\) 40.3590 1.47272 0.736360 0.676590i \(-0.236543\pi\)
0.736360 + 0.676590i \(0.236543\pi\)
\(752\) 16.6267 0.606313
\(753\) 0 0
\(754\) −3.42594 −0.124766
\(755\) −6.77169 −0.246447
\(756\) 0 0
\(757\) −46.4998 −1.69006 −0.845032 0.534715i \(-0.820419\pi\)
−0.845032 + 0.534715i \(0.820419\pi\)
\(758\) 15.8826 0.576881
\(759\) 0 0
\(760\) 14.4856 0.525447
\(761\) 6.72968 0.243951 0.121975 0.992533i \(-0.461077\pi\)
0.121975 + 0.992533i \(0.461077\pi\)
\(762\) 0 0
\(763\) 35.7790 1.29529
\(764\) −0.000394072 0 −1.42570e−5 0
\(765\) 0 0
\(766\) −39.7057 −1.43462
\(767\) −1.76854 −0.0638582
\(768\) 0 0
\(769\) 26.1965 0.944671 0.472336 0.881419i \(-0.343411\pi\)
0.472336 + 0.881419i \(0.343411\pi\)
\(770\) 3.21976 0.116032
\(771\) 0 0
\(772\) 1.98376 0.0713970
\(773\) 16.5410 0.594938 0.297469 0.954731i \(-0.403857\pi\)
0.297469 + 0.954731i \(0.403857\pi\)
\(774\) 0 0
\(775\) −9.77875 −0.351263
\(776\) −12.1483 −0.436098
\(777\) 0 0
\(778\) −15.8128 −0.566917
\(779\) 8.77194 0.314287
\(780\) 0 0
\(781\) −0.262587 −0.00939612
\(782\) 9.34684 0.334242
\(783\) 0 0
\(784\) −21.4482 −0.766009
\(785\) −36.8308 −1.31455
\(786\) 0 0
\(787\) −13.4634 −0.479918 −0.239959 0.970783i \(-0.577134\pi\)
−0.239959 + 0.970783i \(0.577134\pi\)
\(788\) 0.919876 0.0327692
\(789\) 0 0
\(790\) −40.2002 −1.43026
\(791\) 13.8745 0.493319
\(792\) 0 0
\(793\) −3.22199 −0.114416
\(794\) −15.1041 −0.536024
\(795\) 0 0
\(796\) 2.28005 0.0808142
\(797\) 0.496045 0.0175708 0.00878540 0.999961i \(-0.497203\pi\)
0.00878540 + 0.999961i \(0.497203\pi\)
\(798\) 0 0
\(799\) −9.77345 −0.345760
\(800\) −6.03750 −0.213458
\(801\) 0 0
\(802\) 0.479778 0.0169416
\(803\) 1.89758 0.0669643
\(804\) 0 0
\(805\) −43.4921 −1.53290
\(806\) 0.417024 0.0146891
\(807\) 0 0
\(808\) 4.84363 0.170398
\(809\) −20.5900 −0.723906 −0.361953 0.932196i \(-0.617890\pi\)
−0.361953 + 0.932196i \(0.617890\pi\)
\(810\) 0 0
\(811\) 27.9946 0.983022 0.491511 0.870871i \(-0.336445\pi\)
0.491511 + 0.870871i \(0.336445\pi\)
\(812\) 2.38892 0.0838346
\(813\) 0 0
\(814\) −1.01030 −0.0354110
\(815\) 88.3203 3.09372
\(816\) 0 0
\(817\) 11.7097 0.409671
\(818\) −36.7205 −1.28390
\(819\) 0 0
\(820\) −2.69770 −0.0942079
\(821\) −44.3263 −1.54700 −0.773499 0.633797i \(-0.781495\pi\)
−0.773499 + 0.633797i \(0.781495\pi\)
\(822\) 0 0
\(823\) −13.9321 −0.485642 −0.242821 0.970071i \(-0.578073\pi\)
−0.242821 + 0.970071i \(0.578073\pi\)
\(824\) 9.70967 0.338253
\(825\) 0 0
\(826\) −24.8606 −0.865011
\(827\) 11.3432 0.394443 0.197222 0.980359i \(-0.436808\pi\)
0.197222 + 0.980359i \(0.436808\pi\)
\(828\) 0 0
\(829\) 37.7431 1.31087 0.655436 0.755251i \(-0.272485\pi\)
0.655436 + 0.755251i \(0.272485\pi\)
\(830\) 12.8076 0.444558
\(831\) 0 0
\(832\) 2.91236 0.100968
\(833\) 12.6076 0.436829
\(834\) 0 0
\(835\) −21.0305 −0.727789
\(836\) −0.0190583 −0.000659143 0
\(837\) 0 0
\(838\) 17.6569 0.609948
\(839\) −28.4991 −0.983899 −0.491949 0.870624i \(-0.663716\pi\)
−0.491949 + 0.870624i \(0.663716\pi\)
\(840\) 0 0
\(841\) 21.5308 0.742441
\(842\) 15.0115 0.517332
\(843\) 0 0
\(844\) −1.42231 −0.0489579
\(845\) 51.9950 1.78868
\(846\) 0 0
\(847\) 39.0162 1.34061
\(848\) −17.6905 −0.607496
\(849\) 0 0
\(850\) −34.8645 −1.19584
\(851\) 13.6470 0.467814
\(852\) 0 0
\(853\) −28.4465 −0.973991 −0.486995 0.873405i \(-0.661907\pi\)
−0.486995 + 0.873405i \(0.661907\pi\)
\(854\) −45.2920 −1.54986
\(855\) 0 0
\(856\) 34.1381 1.16682
\(857\) −16.2767 −0.556003 −0.278002 0.960581i \(-0.589672\pi\)
−0.278002 + 0.960581i \(0.589672\pi\)
\(858\) 0 0
\(859\) 56.7736 1.93709 0.968545 0.248840i \(-0.0800493\pi\)
0.968545 + 0.248840i \(0.0800493\pi\)
\(860\) −3.60118 −0.122799
\(861\) 0 0
\(862\) −3.39492 −0.115631
\(863\) 7.15351 0.243508 0.121754 0.992560i \(-0.461148\pi\)
0.121754 + 0.992560i \(0.461148\pi\)
\(864\) 0 0
\(865\) 84.2234 2.86368
\(866\) 17.7887 0.604485
\(867\) 0 0
\(868\) −0.290792 −0.00987013
\(869\) 1.17201 0.0397578
\(870\) 0 0
\(871\) −4.53777 −0.153756
\(872\) −29.0951 −0.985285
\(873\) 0 0
\(874\) −5.18975 −0.175546
\(875\) 90.4539 3.05790
\(876\) 0 0
\(877\) 18.5366 0.625935 0.312968 0.949764i \(-0.398677\pi\)
0.312968 + 0.949764i \(0.398677\pi\)
\(878\) 38.0524 1.28421
\(879\) 0 0
\(880\) −2.49425 −0.0840812
\(881\) 46.8249 1.57757 0.788785 0.614669i \(-0.210711\pi\)
0.788785 + 0.614669i \(0.210711\pi\)
\(882\) 0 0
\(883\) −46.0472 −1.54961 −0.774806 0.632199i \(-0.782152\pi\)
−0.774806 + 0.632199i \(0.782152\pi\)
\(884\) −0.0737540 −0.00248061
\(885\) 0 0
\(886\) 7.91464 0.265897
\(887\) −3.67441 −0.123375 −0.0616873 0.998096i \(-0.519648\pi\)
−0.0616873 + 0.998096i \(0.519648\pi\)
\(888\) 0 0
\(889\) −30.3379 −1.01750
\(890\) −64.9569 −2.17736
\(891\) 0 0
\(892\) −0.900341 −0.0301456
\(893\) 5.42662 0.181595
\(894\) 0 0
\(895\) −16.4853 −0.551043
\(896\) 37.1405 1.24078
\(897\) 0 0
\(898\) 47.5270 1.58600
\(899\) −6.15088 −0.205143
\(900\) 0 0
\(901\) 10.3988 0.346434
\(902\) −1.58553 −0.0527924
\(903\) 0 0
\(904\) −11.2826 −0.375252
\(905\) −66.3852 −2.20672
\(906\) 0 0
\(907\) 13.6026 0.451668 0.225834 0.974166i \(-0.427489\pi\)
0.225834 + 0.974166i \(0.427489\pi\)
\(908\) 1.15787 0.0384251
\(909\) 0 0
\(910\) −6.91843 −0.229344
\(911\) 4.53153 0.150136 0.0750682 0.997178i \(-0.476083\pi\)
0.0750682 + 0.997178i \(0.476083\pi\)
\(912\) 0 0
\(913\) −0.373398 −0.0123577
\(914\) 10.4732 0.346424
\(915\) 0 0
\(916\) −0.352902 −0.0116602
\(917\) −57.5066 −1.89903
\(918\) 0 0
\(919\) −24.8263 −0.818944 −0.409472 0.912323i \(-0.634287\pi\)
−0.409472 + 0.912323i \(0.634287\pi\)
\(920\) 35.3673 1.16603
\(921\) 0 0
\(922\) −2.54154 −0.0837012
\(923\) 0.564232 0.0185719
\(924\) 0 0
\(925\) −50.9045 −1.67373
\(926\) 31.0637 1.02082
\(927\) 0 0
\(928\) −3.79762 −0.124663
\(929\) −12.9296 −0.424206 −0.212103 0.977247i \(-0.568031\pi\)
−0.212103 + 0.977247i \(0.568031\pi\)
\(930\) 0 0
\(931\) −7.00029 −0.229425
\(932\) 1.93799 0.0634811
\(933\) 0 0
\(934\) 54.4184 1.78062
\(935\) 1.46616 0.0479487
\(936\) 0 0
\(937\) −57.5836 −1.88117 −0.940587 0.339552i \(-0.889724\pi\)
−0.940587 + 0.339552i \(0.889724\pi\)
\(938\) −63.7881 −2.08275
\(939\) 0 0
\(940\) −1.66889 −0.0544333
\(941\) 16.5032 0.537987 0.268994 0.963142i \(-0.413309\pi\)
0.268994 + 0.963142i \(0.413309\pi\)
\(942\) 0 0
\(943\) 21.4172 0.697439
\(944\) 19.2588 0.626820
\(945\) 0 0
\(946\) −2.11654 −0.0688145
\(947\) −18.1425 −0.589553 −0.294776 0.955566i \(-0.595245\pi\)
−0.294776 + 0.955566i \(0.595245\pi\)
\(948\) 0 0
\(949\) −4.07742 −0.132359
\(950\) 19.3582 0.628063
\(951\) 0 0
\(952\) −22.9741 −0.744596
\(953\) 25.1595 0.814998 0.407499 0.913206i \(-0.366401\pi\)
0.407499 + 0.913206i \(0.366401\pi\)
\(954\) 0 0
\(955\) −0.0168328 −0.000544698 0
\(956\) −1.22424 −0.0395948
\(957\) 0 0
\(958\) −3.64325 −0.117708
\(959\) −12.1548 −0.392498
\(960\) 0 0
\(961\) −30.2513 −0.975848
\(962\) 2.17087 0.0699918
\(963\) 0 0
\(964\) −1.14617 −0.0369158
\(965\) 84.7364 2.72776
\(966\) 0 0
\(967\) −47.2478 −1.51939 −0.759693 0.650281i \(-0.774651\pi\)
−0.759693 + 0.650281i \(0.774651\pi\)
\(968\) −31.7275 −1.01976
\(969\) 0 0
\(970\) −23.4175 −0.751889
\(971\) −40.3149 −1.29377 −0.646883 0.762589i \(-0.723928\pi\)
−0.646883 + 0.762589i \(0.723928\pi\)
\(972\) 0 0
\(973\) 40.0942 1.28536
\(974\) 34.5153 1.10594
\(975\) 0 0
\(976\) 35.0864 1.12309
\(977\) 2.76461 0.0884476 0.0442238 0.999022i \(-0.485919\pi\)
0.0442238 + 0.999022i \(0.485919\pi\)
\(978\) 0 0
\(979\) 1.89378 0.0605254
\(980\) 2.15285 0.0687704
\(981\) 0 0
\(982\) 41.5589 1.32620
\(983\) −1.68060 −0.0536029 −0.0268015 0.999641i \(-0.508532\pi\)
−0.0268015 + 0.999641i \(0.508532\pi\)
\(984\) 0 0
\(985\) 39.2926 1.25197
\(986\) −21.9299 −0.698391
\(987\) 0 0
\(988\) 0.0409513 0.00130283
\(989\) 28.5899 0.909108
\(990\) 0 0
\(991\) −7.34449 −0.233305 −0.116653 0.993173i \(-0.537216\pi\)
−0.116653 + 0.993173i \(0.537216\pi\)
\(992\) 0.462267 0.0146770
\(993\) 0 0
\(994\) 7.93150 0.251572
\(995\) 97.3925 3.08755
\(996\) 0 0
\(997\) −19.2605 −0.609987 −0.304993 0.952354i \(-0.598654\pi\)
−0.304993 + 0.952354i \(0.598654\pi\)
\(998\) 7.78241 0.246348
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.d.1.19 72
3.2 odd 2 6561.2.a.c.1.54 72
81.4 even 27 729.2.g.a.136.3 144
81.7 even 27 243.2.g.a.37.6 144
81.20 odd 54 729.2.g.d.595.6 144
81.23 odd 54 81.2.g.a.43.3 144
81.31 even 27 729.2.g.b.622.6 144
81.34 even 27 729.2.g.b.109.6 144
81.47 odd 54 729.2.g.c.109.3 144
81.50 odd 54 729.2.g.c.622.3 144
81.58 even 27 243.2.g.a.46.6 144
81.61 even 27 729.2.g.a.595.3 144
81.74 odd 54 81.2.g.a.49.3 yes 144
81.77 odd 54 729.2.g.d.136.6 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.43.3 144 81.23 odd 54
81.2.g.a.49.3 yes 144 81.74 odd 54
243.2.g.a.37.6 144 81.7 even 27
243.2.g.a.46.6 144 81.58 even 27
729.2.g.a.136.3 144 81.4 even 27
729.2.g.a.595.3 144 81.61 even 27
729.2.g.b.109.6 144 81.34 even 27
729.2.g.b.622.6 144 81.31 even 27
729.2.g.c.109.3 144 81.47 odd 54
729.2.g.c.622.3 144 81.50 odd 54
729.2.g.d.136.6 144 81.77 odd 54
729.2.g.d.595.6 144 81.20 odd 54
6561.2.a.c.1.54 72 3.2 odd 2
6561.2.a.d.1.19 72 1.1 even 1 trivial