Properties

Label 243.3.d.h
Level $243$
Weight $3$
Character orbit 243.d
Analytic conductor $6.621$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,3,Mod(80,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.80");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 5 \beta_{2} q^{4} + (2 \beta_{3} - 2 \beta_1) q^{5} + (11 \beta_{2} - 11) q^{7} + \beta_{3} q^{8} - 18 q^{10} + 4 \beta_1 q^{11} - 5 \beta_{2} q^{13} + (11 \beta_{3} - 11 \beta_1) q^{14}+ \cdots - 72 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{4} - 22 q^{7} - 72 q^{10} - 10 q^{13} + 22 q^{16} - 76 q^{19} + 72 q^{22} + 22 q^{25} - 220 q^{28} + 26 q^{31} - 108 q^{34} + 68 q^{37} - 36 q^{40} - 58 q^{43} + 360 q^{46} - 144 q^{49} + 50 q^{52}+ \cdots - 166 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 3\zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\zeta_{12}^{3} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
80.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−2.59808 1.50000i 0 2.50000 + 4.33013i 5.19615 3.00000i 0 −5.50000 + 9.52628i 3.00000i 0 −18.0000
80.2 2.59808 + 1.50000i 0 2.50000 + 4.33013i −5.19615 + 3.00000i 0 −5.50000 + 9.52628i 3.00000i 0 −18.0000
161.1 −2.59808 + 1.50000i 0 2.50000 4.33013i 5.19615 + 3.00000i 0 −5.50000 9.52628i 3.00000i 0 −18.0000
161.2 2.59808 1.50000i 0 2.50000 4.33013i −5.19615 3.00000i 0 −5.50000 9.52628i 3.00000i 0 −18.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 243.3.d.h 4
3.b odd 2 1 inner 243.3.d.h 4
9.c even 3 1 243.3.b.d 2
9.c even 3 1 inner 243.3.d.h 4
9.d odd 6 1 243.3.b.d 2
9.d odd 6 1 inner 243.3.d.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.3.b.d 2 9.c even 3 1
243.3.b.d 2 9.d odd 6 1
243.3.d.h 4 1.a even 1 1 trivial
243.3.d.h 4 3.b odd 2 1 inner
243.3.d.h 4 9.c even 3 1 inner
243.3.d.h 4 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(243, [\chi])\):

\( T_{2}^{4} - 9T_{2}^{2} + 81 \) Copy content Toggle raw display
\( T_{5}^{4} - 36T_{5}^{2} + 1296 \) Copy content Toggle raw display
\( T_{7}^{2} + 11T_{7} + 121 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$7$ \( (T^{2} + 11 T + 121)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$13$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 324)^{2} \) Copy content Toggle raw display
$19$ \( (T + 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 900 T^{2} + 810000 \) Copy content Toggle raw display
$29$ \( T^{4} - 2304 T^{2} + 5308416 \) Copy content Toggle raw display
$31$ \( (T^{2} - 13 T + 169)^{2} \) Copy content Toggle raw display
$37$ \( (T - 17)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 900 T^{2} + 810000 \) Copy content Toggle raw display
$43$ \( (T^{2} + 29 T + 841)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 576 T^{2} + 331776 \) Copy content Toggle raw display
$53$ \( (T^{2} + 1296)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$61$ \( (T^{2} - 22 T + 484)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 98 T + 9604)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T - 38)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 47 T + 2209)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 4356 T^{2} + 18974736 \) Copy content Toggle raw display
$89$ \( (T^{2} + 324)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 83 T + 6889)^{2} \) Copy content Toggle raw display
show more
show less