Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2448,2,Mod(577,2448)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2448.577");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2448.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(19.5473784148\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 102) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 577.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2448.577 |
Dual form | 2448.2.c.a.577.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).
\(n\) | \(613\) | \(1361\) | \(1873\) | \(2143\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 2.00000i | 0.894427i | 0.894427 | + | 0.447214i | \(0.147584\pi\) | ||||
−0.894427 | + | 0.447214i | \(0.852416\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − | 2.00000i | − | 0.755929i | −0.925820 | − | 0.377964i | \(-0.876624\pi\) | ||
0.925820 | − | 0.377964i | \(-0.123376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −6.00000 | −1.66410 | −0.832050 | − | 0.554700i | \(-0.812833\pi\) | ||||
−0.832050 | + | 0.554700i | \(0.812833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 1.00000 | + | 4.00000i | 0.242536 | + | 0.970143i | ||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − | 6.00000i | − | 1.25109i | −0.780189 | − | 0.625543i | \(-0.784877\pi\) | ||
0.780189 | − | 0.625543i | \(-0.215123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − | 6.00000i | − | 1.11417i | −0.830455 | − | 0.557086i | \(-0.811919\pi\) | ||
0.830455 | − | 0.557086i | \(-0.188081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − | 10.0000i | − | 1.79605i | −0.439941 | − | 0.898027i | \(-0.645001\pi\) | ||
0.439941 | − | 0.898027i | \(-0.354999\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 4.00000 | 0.676123 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.00000 | 1.16692 | 0.583460 | − | 0.812142i | \(-0.301699\pi\) | ||||
0.583460 | + | 0.812142i | \(0.301699\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000 | 0.824163 | 0.412082 | − | 0.911147i | \(-0.364802\pi\) | ||||
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | − | 10.0000i | − | 1.28037i | −0.768221 | − | 0.640184i | \(-0.778858\pi\) | ||
0.768221 | − | 0.640184i | \(-0.221142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | − | 12.0000i | − | 1.48842i | ||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −8.00000 | −0.977356 | −0.488678 | − | 0.872464i | \(-0.662521\pi\) | ||||
−0.488678 | + | 0.872464i | \(0.662521\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 10.0000i | 1.18678i | 0.804914 | + | 0.593391i | \(0.202211\pi\) | ||||
−0.804914 | + | 0.593391i | \(0.797789\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − | 16.0000i | − | 1.87266i | −0.351123 | − | 0.936329i | \(-0.614200\pi\) | ||
0.351123 | − | 0.936329i | \(-0.385800\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − | 6.00000i | − | 0.675053i | −0.941316 | − | 0.337526i | \(-0.890410\pi\) | ||
0.941316 | − | 0.337526i | \(-0.109590\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −16.0000 | −1.75623 | −0.878114 | − | 0.478451i | \(-0.841198\pi\) | ||||
−0.878114 | + | 0.478451i | \(0.841198\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −8.00000 | + | 2.00000i | −0.867722 | + | 0.216930i | ||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −10.0000 | −1.06000 | −0.529999 | − | 0.847998i | \(-0.677808\pi\) | ||||
−0.529999 | + | 0.847998i | \(0.677808\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 12.0000i | 1.25794i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 12.0000i | 1.21842i | 0.793011 | + | 0.609208i | \(0.208512\pi\) | ||||
−0.793011 | + | 0.609208i | \(0.791488\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 16.0000 | 1.57653 | 0.788263 | − | 0.615338i | \(-0.210980\pi\) | ||||
0.788263 | + | 0.615338i | \(0.210980\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − | 8.00000i | − | 0.773389i | −0.922208 | − | 0.386695i | \(-0.873617\pi\) | ||
0.922208 | − | 0.386695i | \(-0.126383\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − | 14.0000i | − | 1.34096i | −0.741929 | − | 0.670478i | \(-0.766089\pi\) | ||
0.741929 | − | 0.670478i | \(-0.233911\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − | 4.00000i | − | 0.376288i | −0.982141 | − | 0.188144i | \(-0.939753\pi\) | ||
0.982141 | − | 0.188144i | \(-0.0602472\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 12.0000 | 1.11901 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 8.00000 | − | 2.00000i | 0.733359 | − | 0.183340i | ||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 12.0000i | 1.07331i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −8.00000 | −0.709885 | −0.354943 | − | 0.934888i | \(-0.615500\pi\) | ||||
−0.354943 | + | 0.934888i | \(0.615500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 2.00000 | 0.170872 | 0.0854358 | − | 0.996344i | \(-0.472772\pi\) | ||||
0.0854358 | + | 0.996344i | \(0.472772\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 16.0000i | − | 1.35710i | −0.734553 | − | 0.678551i | \(-0.762608\pi\) | ||
0.734553 | − | 0.678551i | \(-0.237392\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 12.0000 | 0.996546 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −10.0000 | −0.819232 | −0.409616 | − | 0.912258i | \(-0.634337\pi\) | ||||
−0.409616 | + | 0.912258i | \(0.634337\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 20.0000 | 1.60644 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −12.0000 | −0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − | 4.00000i | − | 0.313304i | −0.987654 | − | 0.156652i | \(-0.949930\pi\) | ||
0.987654 | − | 0.156652i | \(-0.0500701\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − | 18.0000i | − | 1.39288i | −0.717614 | − | 0.696441i | \(-0.754766\pi\) | ||
0.717614 | − | 0.696441i | \(-0.245234\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 23.0000 | 1.76923 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − | 14.0000i | − | 1.06440i | −0.846619 | − | 0.532200i | \(-0.821365\pi\) | ||
0.846619 | − | 0.532200i | \(-0.178635\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | − | 2.00000i | − | 0.151186i | ||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −20.0000 | −1.49487 | −0.747435 | − | 0.664335i | \(-0.768715\pi\) | ||||
−0.747435 | + | 0.664335i | \(0.768715\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − | 10.0000i | − | 0.743294i | −0.928374 | − | 0.371647i | \(-0.878793\pi\) | ||
0.928374 | − | 0.371647i | \(-0.121207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −4.00000 | −0.294086 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −8.00000 | −0.578860 | −0.289430 | − | 0.957199i | \(-0.593466\pi\) | ||||
−0.289430 | + | 0.957199i | \(0.593466\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 4.00000i | 0.287926i | 0.989583 | + | 0.143963i | \(0.0459847\pi\) | ||||
−0.989583 | + | 0.143963i | \(0.954015\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 18.0000i | 1.28245i | 0.767354 | + | 0.641223i | \(0.221573\pi\) | ||||
−0.767354 | + | 0.641223i | \(0.778427\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 6.00000i | − | 0.425329i | −0.977125 | − | 0.212664i | \(-0.931786\pi\) | ||
0.977125 | − | 0.212664i | \(-0.0682141\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −12.0000 | −0.842235 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | − | 8.00000i | − | 0.545595i | ||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −20.0000 | −1.35769 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −6.00000 | − | 24.0000i | −0.403604 | − | 1.61441i | ||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.0000 | 1.07144 | 0.535720 | − | 0.844396i | \(-0.320040\pi\) | ||||
0.535720 | + | 0.844396i | \(0.320040\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000i | 0.796468i | 0.917284 | + | 0.398234i | \(0.130377\pi\) | ||||
−0.917284 | + | 0.398234i | \(0.869623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 10.0000 | 0.660819 | 0.330409 | − | 0.943838i | \(-0.392813\pi\) | ||||
0.330409 | + | 0.943838i | \(0.392813\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − | 4.00000i | − | 0.262049i | −0.991379 | − | 0.131024i | \(-0.958173\pi\) | ||
0.991379 | − | 0.131024i | \(-0.0418266\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 16.0000i | 1.04372i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | − | 20.0000i | − | 1.28831i | −0.764894 | − | 0.644157i | \(-0.777208\pi\) | ||
0.764894 | − | 0.644157i | \(-0.222792\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 6.00000i | 0.383326i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 2.00000 | 0.124757 | 0.0623783 | − | 0.998053i | \(-0.480131\pi\) | ||||
0.0623783 | + | 0.998053i | \(0.480131\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 4.00000 | 0.248548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −16.0000 | −0.986602 | −0.493301 | − | 0.869859i | \(-0.664210\pi\) | ||||
−0.493301 | + | 0.869859i | \(0.664210\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 12.0000i | 0.737154i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − | 6.00000i | − | 0.365826i | −0.983129 | − | 0.182913i | \(-0.941447\pi\) | ||
0.983129 | − | 0.182913i | \(-0.0585527\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −32.0000 | −1.94386 | −0.971931 | − | 0.235267i | \(-0.924404\pi\) | ||||
−0.971931 | + | 0.235267i | \(0.924404\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 22.0000i | 1.32185i | 0.750451 | + | 0.660926i | \(0.229836\pi\) | ||||
−0.750451 | + | 0.660926i | \(0.770164\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −22.0000 | −1.31241 | −0.656205 | − | 0.754583i | \(-0.727839\pi\) | ||||
−0.656205 | + | 0.754583i | \(0.727839\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 16.0000i | 0.951101i | 0.879688 | + | 0.475551i | \(0.157751\pi\) | ||||
−0.879688 | + | 0.475551i | \(0.842249\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −15.0000 | + | 8.00000i | −0.882353 | + | 0.470588i | ||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 6.00000 | 0.350524 | 0.175262 | − | 0.984522i | \(-0.443923\pi\) | ||||
0.175262 | + | 0.984522i | \(0.443923\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 36.0000i | 2.08193i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000i | 0.461112i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 20.0000 | 1.14520 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000 | 0.684876 | 0.342438 | − | 0.939540i | \(-0.388747\pi\) | ||||
0.342438 | + | 0.939540i | \(0.388747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | − | 10.0000i | − | 0.567048i | −0.958965 | − | 0.283524i | \(-0.908496\pi\) | ||
0.958965 | − | 0.283524i | \(-0.0915036\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 4.00000i | 0.226093i | 0.993590 | + | 0.113047i | \(0.0360610\pi\) | ||||
−0.993590 | + | 0.113047i | \(0.963939\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 18.0000i | 1.01098i | 0.862832 | + | 0.505490i | \(0.168688\pi\) | ||||
−0.862832 | + | 0.505490i | \(0.831312\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −6.00000 | −0.332820 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | − | 16.0000i | − | 0.882109i | ||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −12.0000 | −0.659580 | −0.329790 | − | 0.944054i | \(-0.606978\pi\) | ||||
−0.329790 | + | 0.944054i | \(0.606978\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | − | 16.0000i | − | 0.874173i | ||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − | 8.00000i | − | 0.435788i | −0.975972 | − | 0.217894i | \(-0.930081\pi\) | ||
0.975972 | − | 0.217894i | \(-0.0699187\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − | 20.0000i | − | 1.07990i | ||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 12.0000i | 0.644194i | 0.946707 | + | 0.322097i | \(0.104388\pi\) | ||||
−0.946707 | + | 0.322097i | \(0.895612\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10.0000 | −0.535288 | −0.267644 | − | 0.963518i | \(-0.586245\pi\) | ||||
−0.267644 | + | 0.963518i | \(0.586245\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −14.0000 | −0.745145 | −0.372572 | − | 0.928003i | \(-0.621524\pi\) | ||||
−0.372572 | + | 0.928003i | \(0.621524\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −20.0000 | −1.06149 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 32.0000 | 1.67496 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − | 22.0000i | − | 1.14839i | −0.818718 | − | 0.574195i | \(-0.805315\pi\) | ||
0.818718 | − | 0.574195i | \(-0.194685\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − | 12.0000i | − | 0.623009i | ||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −6.00000 | −0.310668 | −0.155334 | − | 0.987862i | \(-0.549645\pi\) | ||||
−0.155334 | + | 0.987862i | \(0.549645\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 36.0000i | 1.85409i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 4.00000i | 0.205466i | 0.994709 | + | 0.102733i | \(0.0327588\pi\) | ||||
−0.994709 | + | 0.102733i | \(0.967241\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 24.0000 | 1.22634 | 0.613171 | − | 0.789950i | \(-0.289894\pi\) | ||||
0.613171 | + | 0.789950i | \(0.289894\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 10.0000 | 0.507020 | 0.253510 | − | 0.967333i | \(-0.418415\pi\) | ||||
0.253510 | + | 0.967333i | \(0.418415\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 24.0000 | − | 6.00000i | 1.21373 | − | 0.303433i | ||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 12.0000 | 0.603786 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 22.0000i | 1.10415i | 0.833795 | + | 0.552074i | \(0.186163\pi\) | ||||
−0.833795 | + | 0.552074i | \(0.813837\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 60.0000i | 2.98881i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10.0000 | −0.494468 | −0.247234 | − | 0.968956i | \(-0.579522\pi\) | ||||
−0.247234 | + | 0.968956i | \(0.579522\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | − | 32.0000i | − | 1.57082i | ||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 4.00000i | − | 0.195413i | −0.995215 | − | 0.0977064i | \(-0.968849\pi\) | ||
0.995215 | − | 0.0977064i | \(-0.0311506\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 2.00000 | 0.0974740 | 0.0487370 | − | 0.998812i | \(-0.484480\pi\) | ||||
0.0487370 | + | 0.998812i | \(0.484480\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 1.00000 | + | 4.00000i | 0.0485071 | + | 0.194029i | ||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −20.0000 | −0.967868 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 10.0000i | 0.481683i | 0.970564 | + | 0.240842i | \(0.0774234\pi\) | ||||
−0.970564 | + | 0.240842i | \(0.922577\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 34.0000 | 1.63394 | 0.816968 | − | 0.576683i | \(-0.195653\pi\) | ||||
0.816968 | + | 0.576683i | \(0.195653\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − | 6.00000i | − | 0.286364i | −0.989696 | − | 0.143182i | \(-0.954267\pi\) | ||
0.989696 | − | 0.143182i | \(-0.0457335\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 4.00000 | 0.190046 | 0.0950229 | − | 0.995475i | \(-0.469708\pi\) | ||||
0.0950229 | + | 0.995475i | \(0.469708\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | − | 20.0000i | − | 0.948091i | ||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 24.0000i | 1.13263i | 0.824189 | + | 0.566315i | \(0.191631\pi\) | ||||
−0.824189 | + | 0.566315i | \(0.808369\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −24.0000 | −1.12514 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −22.0000 | −1.02912 | −0.514558 | − | 0.857455i | \(-0.672044\pi\) | ||||
−0.514558 | + | 0.857455i | \(0.672044\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −2.00000 | −0.0931493 | −0.0465746 | − | 0.998915i | \(-0.514831\pi\) | ||||
−0.0465746 | + | 0.998915i | \(0.514831\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −24.0000 | −1.11537 | −0.557687 | − | 0.830051i | \(-0.688311\pi\) | ||||
−0.557687 | + | 0.830051i | \(0.688311\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 28.0000 | 1.29569 | 0.647843 | − | 0.761774i | \(-0.275671\pi\) | ||||
0.647843 | + | 0.761774i | \(0.275671\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 16.0000i | 0.738811i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − | 14.0000i | − | 0.639676i | −0.947472 | − | 0.319838i | \(-0.896371\pi\) | ||
0.947472 | − | 0.319838i | \(-0.103629\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | − | 12.0000i | − | 0.547153i | ||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −24.0000 | −1.08978 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 18.0000i | 0.815658i | 0.913058 | + | 0.407829i | \(0.133714\pi\) | ||||
−0.913058 | + | 0.407829i | \(0.866286\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 24.0000 | − | 6.00000i | 1.08091 | − | 0.270226i | ||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 20.0000 | 0.897123 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 24.0000i | 1.07439i | 0.843459 | + | 0.537194i | \(0.180516\pi\) | ||||
−0.843459 | + | 0.537194i | \(0.819484\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 34.0000i | 1.51599i | 0.652263 | + | 0.757993i | \(0.273820\pi\) | ||||
−0.652263 | + | 0.757993i | \(0.726180\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 36.0000i | 1.60198i | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −10.0000 | −0.443242 | −0.221621 | − | 0.975133i | \(-0.571135\pi\) | ||||
−0.221621 | + | 0.975133i | \(0.571135\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −32.0000 | −1.41560 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 32.0000i | 1.41009i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 16.0000 | 0.699631 | 0.349816 | − | 0.936819i | \(-0.386244\pi\) | ||||
0.349816 | + | 0.936819i | \(0.386244\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 40.0000 | − | 10.0000i | 1.74243 | − | 0.435607i | ||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 16.0000 | 0.691740 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 10.0000i | 0.429934i | 0.976621 | + | 0.214967i | \(0.0689643\pi\) | ||||
−0.976621 | + | 0.214967i | \(0.931036\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 28.0000 | 1.19939 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −12.0000 | −0.510292 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −38.0000 | −1.61011 | −0.805056 | − | 0.593199i | \(-0.797865\pi\) | ||||
−0.805056 | + | 0.593199i | \(0.797865\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 24.0000 | 1.01509 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 24.0000 | 1.01148 | 0.505740 | − | 0.862686i | \(-0.331220\pi\) | ||||
0.505740 | + | 0.862686i | \(0.331220\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 8.00000 | 0.336563 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 30.0000 | 1.25767 | 0.628833 | − | 0.777541i | \(-0.283533\pi\) | ||||
0.628833 | + | 0.777541i | \(0.283533\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 20.0000i | 0.836974i | 0.908223 | + | 0.418487i | \(0.137439\pi\) | ||||
−0.908223 | + | 0.418487i | \(0.862561\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | − | 6.00000i | − | 0.250217i | ||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −2.00000 | −0.0832611 | −0.0416305 | − | 0.999133i | \(-0.513255\pi\) | ||||
−0.0416305 | + | 0.999133i | \(0.513255\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 32.0000i | 1.32758i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −12.0000 | −0.495293 | −0.247647 | − | 0.968850i | \(-0.579657\pi\) | ||||
−0.247647 | + | 0.968850i | \(0.579657\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 46.0000 | 1.88899 | 0.944497 | − | 0.328521i | \(-0.106550\pi\) | ||||
0.944497 | + | 0.328521i | \(0.106550\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 4.00000 | + | 16.0000i | 0.163984 | + | 0.655936i | ||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −40.0000 | −1.63436 | −0.817178 | − | 0.576386i | \(-0.804463\pi\) | ||||
−0.817178 | + | 0.576386i | \(0.804463\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 40.0000i | 1.63163i | 0.578310 | + | 0.815817i | \(0.303712\pi\) | ||||
−0.578310 | + | 0.815817i | \(0.696288\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 22.0000i | 0.894427i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 38.0000i | 1.54237i | 0.636610 | + | 0.771186i | \(0.280336\pi\) | ||||
−0.636610 | + | 0.771186i | \(0.719664\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −48.0000 | −1.94187 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 14.0000 | 0.565455 | 0.282727 | − | 0.959200i | \(-0.408761\pi\) | ||||
0.282727 | + | 0.959200i | \(0.408761\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − | 12.0000i | − | 0.483102i | −0.970388 | − | 0.241551i | \(-0.922344\pi\) | ||
0.970388 | − | 0.241551i | \(-0.0776561\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 4.00000i | 0.160774i | 0.996764 | + | 0.0803868i | \(0.0256155\pi\) | ||||
−0.996764 | + | 0.0803868i | \(0.974384\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 20.0000i | 0.801283i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −8.00000 | + | 2.00000i | −0.318981 | + | 0.0797452i | ||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 8.00000 | 0.318475 | 0.159237 | − | 0.987240i | \(-0.449096\pi\) | ||||
0.159237 | + | 0.987240i | \(0.449096\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − | 16.0000i | − | 0.634941i | ||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −18.0000 | −0.713186 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | − | 40.0000i | − | 1.57991i | −0.613168 | − | 0.789953i | \(-0.710105\pi\) | ||
0.613168 | − | 0.789953i | \(-0.289895\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 36.0000i | 1.41970i | 0.704352 | + | 0.709851i | \(0.251238\pi\) | ||||
−0.704352 | + | 0.709851i | \(0.748762\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −32.0000 | −1.25805 | −0.629025 | − | 0.777385i | \(-0.716546\pi\) | ||||
−0.629025 | + | 0.777385i | \(0.716546\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − | 34.0000i | − | 1.33052i | −0.746611 | − | 0.665261i | \(-0.768320\pi\) | ||
0.746611 | − | 0.665261i | \(-0.231680\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −40.0000 | −1.55818 | −0.779089 | − | 0.626913i | \(-0.784318\pi\) | ||||
−0.779089 | + | 0.626913i | \(0.784318\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.0000 | 0.855701 | 0.427850 | − | 0.903850i | \(-0.359271\pi\) | ||||
0.427850 | + | 0.903850i | \(0.359271\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −36.0000 | −1.39393 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − | 36.0000i | − | 1.38770i | −0.720121 | − | 0.693849i | \(-0.755914\pi\) | ||
0.720121 | − | 0.693849i | \(-0.244086\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − | 42.0000i | − | 1.61419i | −0.590421 | − | 0.807096i | \(-0.701038\pi\) | ||
0.590421 | − | 0.807096i | \(-0.298962\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 24.0000 | 0.921035 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 44.0000i | 1.68361i | 0.539779 | + | 0.841807i | \(0.318508\pi\) | ||||
−0.539779 | + | 0.841807i | \(0.681492\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 4.00000i | 0.152832i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −36.0000 | −1.37149 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − | 40.0000i | − | 1.52167i | −0.648944 | − | 0.760836i | \(-0.724789\pi\) | ||
0.648944 | − | 0.760836i | \(-0.275211\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 32.0000 | 1.21383 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −22.0000 | −0.830929 | −0.415464 | − | 0.909610i | \(-0.636381\pi\) | ||||
−0.415464 | + | 0.909610i | \(0.636381\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − | 36.0000i | − | 1.35392i | ||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 6.00000i | 0.225335i | 0.993633 | + | 0.112667i | \(0.0359394\pi\) | ||||
−0.993633 | + | 0.112667i | \(0.964061\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −60.0000 | −2.24702 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 26.0000i | 0.969636i | 0.874615 | + | 0.484818i | \(0.161114\pi\) | ||||
−0.874615 | + | 0.484818i | \(0.838886\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | − | 32.0000i | − | 1.19174i | ||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − | 6.00000i | − | 0.222834i | ||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −48.0000 | −1.78022 | −0.890111 | − | 0.455744i | \(-0.849373\pi\) | ||||
−0.890111 | + | 0.455744i | \(0.849373\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −4.00000 | − | 16.0000i | −0.147945 | − | 0.591781i | ||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 14.0000 | 0.517102 | 0.258551 | − | 0.965998i | \(-0.416755\pi\) | ||||
0.258551 | + | 0.965998i | \(0.416755\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 40.0000 | 1.47142 | 0.735712 | − | 0.677295i | \(-0.236848\pi\) | ||||
0.735712 | + | 0.677295i | \(0.236848\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − | 26.0000i | − | 0.953847i | −0.878945 | − | 0.476924i | \(-0.841752\pi\) | ||
0.878945 | − | 0.476924i | \(-0.158248\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | − | 20.0000i | − | 0.732743i | ||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −16.0000 | −0.584627 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 10.0000i | 0.364905i | 0.983215 | + | 0.182453i | \(0.0584036\pi\) | ||||
−0.983215 | + | 0.182453i | \(0.941596\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 16.0000i | 0.582300i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −22.0000 | −0.799604 | −0.399802 | − | 0.916602i | \(-0.630921\pi\) | ||||
−0.399802 | + | 0.916602i | \(0.630921\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 18.0000 | 0.652499 | 0.326250 | − | 0.945284i | \(-0.394215\pi\) | ||||
0.326250 | + | 0.945284i | \(0.394215\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −28.0000 | −1.01367 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 30.0000 | 1.08183 | 0.540914 | − | 0.841078i | \(-0.318079\pi\) | ||||
0.540914 | + | 0.841078i | \(0.318079\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −14.0000 | −0.503545 | −0.251773 | − | 0.967786i | \(-0.581013\pi\) | ||||
−0.251773 | + | 0.967786i | \(0.581013\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − | 10.0000i | − | 0.359211i | ||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − | 4.00000i | − | 0.142766i | ||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − | 32.0000i | − | 1.14068i | −0.821410 | − | 0.570338i | \(-0.806812\pi\) | ||
0.821410 | − | 0.570338i | \(-0.193188\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −8.00000 | −0.284447 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 60.0000i | 2.13066i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −18.0000 | −0.637593 | −0.318796 | − | 0.947823i | \(-0.603279\pi\) | ||||
−0.318796 | + | 0.947823i | \(0.603279\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 8.00000 | + | 32.0000i | 0.283020 | + | 1.13208i | ||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | − | 24.0000i | − | 0.845889i | ||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 24.0000i | 0.843795i | 0.906644 | + | 0.421898i | \(0.138636\pi\) | ||||
−0.906644 | + | 0.421898i | \(0.861364\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − | 20.0000i | − | 0.702295i | −0.936320 | − | 0.351147i | \(-0.885792\pi\) | ||
0.936320 | − | 0.351147i | \(-0.114208\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8.00000 | 0.280228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − | 10.0000i | − | 0.349002i | −0.984657 | − | 0.174501i | \(-0.944169\pi\) | ||
0.984657 | − | 0.174501i | \(-0.0558313\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − | 14.0000i | − | 0.488009i | −0.969774 | − | 0.244005i | \(-0.921539\pi\) | ||
0.969774 | − | 0.244005i | \(-0.0784612\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 32.0000i | 1.11275i | 0.830932 | + | 0.556375i | \(0.187808\pi\) | ||||
−0.830932 | + | 0.556375i | \(0.812192\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 30.0000 | 1.04194 | 0.520972 | − | 0.853574i | \(-0.325570\pi\) | ||||
0.520972 | + | 0.853574i | \(0.325570\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 3.00000 | + | 12.0000i | 0.103944 | + | 0.415775i | ||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 36.0000 | 1.24583 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − | 34.0000i | − | 1.17381i | −0.809656 | − | 0.586905i | \(-0.800346\pi\) | ||
0.809656 | − | 0.586905i | \(-0.199654\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −7.00000 | −0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 46.0000i | 1.58245i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − | 22.0000i | − | 0.755929i | ||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 12.0000 | 0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 14.0000i | 0.479351i | 0.970853 | + | 0.239675i | \(0.0770410\pi\) | ||||
−0.970853 | + | 0.239675i | \(0.922959\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 48.0000i | 1.63965i | 0.572615 | + | 0.819824i | \(0.305929\pi\) | ||||
−0.572615 | + | 0.819824i | \(0.694071\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −20.0000 | −0.682391 | −0.341196 | − | 0.939992i | \(-0.610832\pi\) | ||||
−0.341196 | + | 0.939992i | \(0.610832\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −16.0000 | −0.544646 | −0.272323 | − | 0.962206i | \(-0.587792\pi\) | ||||
−0.272323 | + | 0.962206i | \(0.587792\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 28.0000 | 0.952029 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 48.0000 | 1.62642 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 24.0000 | 0.811348 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − | 38.0000i | − | 1.28317i | −0.767052 | − | 0.641584i | \(-0.778277\pi\) | ||
0.767052 | − | 0.641584i | \(-0.221723\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 20.0000i | 0.673817i | 0.941537 | + | 0.336909i | \(0.109381\pi\) | ||||
−0.941537 | + | 0.336909i | \(0.890619\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 16.0000 | 0.538443 | 0.269221 | − | 0.963078i | \(-0.413234\pi\) | ||||
0.269221 | + | 0.963078i | \(0.413234\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 42.0000i | 1.41022i | 0.709097 | + | 0.705111i | \(0.249103\pi\) | ||||
−0.709097 | + | 0.705111i | \(0.750897\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000i | 0.536623i | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | − | 40.0000i | − | 1.33705i | ||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −60.0000 | −2.00111 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 6.00000 | + | 24.0000i | 0.199889 | + | 0.799556i | ||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 20.0000 | 0.664822 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 8.00000i | 0.265636i | 0.991140 | + | 0.132818i | \(0.0424025\pi\) | ||||
−0.991140 | + | 0.132818i | \(0.957597\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | − | 50.0000i | − | 1.65657i | −0.560304 | − | 0.828287i | \(-0.689316\pi\) | ||
0.560304 | − | 0.828287i | \(-0.310684\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − | 60.0000i | − | 1.97492i | ||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.00000i | 0.0657596i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − | 16.0000i | − | 0.524943i | −0.964940 | − | 0.262471i | \(-0.915462\pi\) | ||
0.964940 | − | 0.262471i | \(-0.0845376\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −2.00000 | −0.0653372 | −0.0326686 | − | 0.999466i | \(-0.510401\pi\) | ||||
−0.0326686 | + | 0.999466i | \(0.510401\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − | 30.0000i | − | 0.977972i | −0.872292 | − | 0.488986i | \(-0.837367\pi\) | ||
0.872292 | − | 0.488986i | \(-0.162633\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − | 8.00000i | − | 0.259965i | −0.991516 | − | 0.129983i | \(-0.958508\pi\) | ||
0.991516 | − | 0.129983i | \(-0.0414921\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 96.0000i | 3.11629i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000 | 0.194359 | 0.0971795 | − | 0.995267i | \(-0.469018\pi\) | ||||
0.0971795 | + | 0.995267i | \(0.469018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − | 16.0000i | − | 0.517748i | ||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | − | 4.00000i | − | 0.129167i | ||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −69.0000 | −2.22581 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −8.00000 | −0.257529 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −8.00000 | −0.257263 | −0.128631 | − | 0.991692i | \(-0.541058\pi\) | ||||
−0.128631 | + | 0.991692i | \(0.541058\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 32.0000 | 1.02693 | 0.513464 | − | 0.858111i | \(-0.328362\pi\) | ||||
0.513464 | + | 0.858111i | \(0.328362\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −32.0000 | −1.02587 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 22.0000 | 0.703842 | 0.351921 | − | 0.936030i | \(-0.385529\pi\) | ||||
0.351921 | + | 0.936030i | \(0.385529\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − | 46.0000i | − | 1.46717i | −0.679597 | − | 0.733586i | \(-0.737845\pi\) | ||
0.679597 | − | 0.733586i | \(-0.262155\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −36.0000 | −1.14706 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 24.0000i | 0.763156i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 10.0000i | 0.317660i | 0.987306 | + | 0.158830i | \(0.0507723\pi\) | ||||
−0.987306 | + | 0.158830i | \(0.949228\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 12.0000 | 0.380426 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − | 18.0000i | − | 0.570066i | −0.958518 | − | 0.285033i | \(-0.907995\pi\) | ||
0.958518 | − | 0.285033i | \(-0.0920045\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2448.2.c.a.577.2 | 2 | ||
3.2 | odd | 2 | 816.2.c.a.577.1 | 2 | |||
4.3 | odd | 2 | 306.2.b.a.271.2 | 2 | |||
12.11 | even | 2 | 102.2.b.a.67.2 | yes | 2 | ||
17.16 | even | 2 | inner | 2448.2.c.a.577.1 | 2 | ||
24.5 | odd | 2 | 3264.2.c.i.577.2 | 2 | |||
24.11 | even | 2 | 3264.2.c.j.577.1 | 2 | |||
51.50 | odd | 2 | 816.2.c.a.577.2 | 2 | |||
60.23 | odd | 4 | 2550.2.f.e.1699.1 | 2 | |||
60.47 | odd | 4 | 2550.2.f.j.1699.2 | 2 | |||
60.59 | even | 2 | 2550.2.c.f.1801.1 | 2 | |||
68.47 | odd | 4 | 5202.2.a.h.1.1 | 1 | |||
68.55 | odd | 4 | 5202.2.a.n.1.1 | 1 | |||
68.67 | odd | 2 | 306.2.b.a.271.1 | 2 | |||
204.47 | even | 4 | 1734.2.a.d.1.1 | 1 | |||
204.59 | even | 8 | 1734.2.f.h.1483.2 | 4 | |||
204.83 | even | 8 | 1734.2.f.h.829.1 | 4 | |||
204.155 | even | 8 | 1734.2.f.h.829.2 | 4 | |||
204.179 | even | 8 | 1734.2.f.h.1483.1 | 4 | |||
204.191 | even | 4 | 1734.2.a.e.1.1 | 1 | |||
204.203 | even | 2 | 102.2.b.a.67.1 | ✓ | 2 | ||
408.101 | odd | 2 | 3264.2.c.i.577.1 | 2 | |||
408.203 | even | 2 | 3264.2.c.j.577.2 | 2 | |||
1020.203 | odd | 4 | 2550.2.f.j.1699.1 | 2 | |||
1020.407 | odd | 4 | 2550.2.f.e.1699.2 | 2 | |||
1020.1019 | even | 2 | 2550.2.c.f.1801.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
102.2.b.a.67.1 | ✓ | 2 | 204.203 | even | 2 | ||
102.2.b.a.67.2 | yes | 2 | 12.11 | even | 2 | ||
306.2.b.a.271.1 | 2 | 68.67 | odd | 2 | |||
306.2.b.a.271.2 | 2 | 4.3 | odd | 2 | |||
816.2.c.a.577.1 | 2 | 3.2 | odd | 2 | |||
816.2.c.a.577.2 | 2 | 51.50 | odd | 2 | |||
1734.2.a.d.1.1 | 1 | 204.47 | even | 4 | |||
1734.2.a.e.1.1 | 1 | 204.191 | even | 4 | |||
1734.2.f.h.829.1 | 4 | 204.83 | even | 8 | |||
1734.2.f.h.829.2 | 4 | 204.155 | even | 8 | |||
1734.2.f.h.1483.1 | 4 | 204.179 | even | 8 | |||
1734.2.f.h.1483.2 | 4 | 204.59 | even | 8 | |||
2448.2.c.a.577.1 | 2 | 17.16 | even | 2 | inner | ||
2448.2.c.a.577.2 | 2 | 1.1 | even | 1 | trivial | ||
2550.2.c.f.1801.1 | 2 | 60.59 | even | 2 | |||
2550.2.c.f.1801.2 | 2 | 1020.1019 | even | 2 | |||
2550.2.f.e.1699.1 | 2 | 60.23 | odd | 4 | |||
2550.2.f.e.1699.2 | 2 | 1020.407 | odd | 4 | |||
2550.2.f.j.1699.1 | 2 | 1020.203 | odd | 4 | |||
2550.2.f.j.1699.2 | 2 | 60.47 | odd | 4 | |||
3264.2.c.i.577.1 | 2 | 408.101 | odd | 2 | |||
3264.2.c.i.577.2 | 2 | 24.5 | odd | 2 | |||
3264.2.c.j.577.1 | 2 | 24.11 | even | 2 | |||
3264.2.c.j.577.2 | 2 | 408.203 | even | 2 | |||
5202.2.a.h.1.1 | 1 | 68.47 | odd | 4 | |||
5202.2.a.n.1.1 | 1 | 68.55 | odd | 4 |