Properties

Label 3264.2.c.i.577.1
Level $3264$
Weight $2$
Character 3264.577
Analytic conductor $26.063$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(577,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0631712197\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3264.577
Dual form 3264.2.c.i.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -2.00000i q^{5} +2.00000i q^{7} -1.00000 q^{9} +6.00000 q^{13} -2.00000 q^{15} +(-1.00000 + 4.00000i) q^{17} +2.00000 q^{21} -6.00000i q^{23} +1.00000 q^{25} +1.00000i q^{27} +6.00000i q^{29} +10.0000i q^{31} +4.00000 q^{35} +2.00000i q^{37} -6.00000i q^{39} +4.00000 q^{43} +2.00000i q^{45} -8.00000 q^{47} +3.00000 q^{49} +(4.00000 + 1.00000i) q^{51} +6.00000 q^{53} -10.0000i q^{61} -2.00000i q^{63} -12.0000i q^{65} +8.00000 q^{67} -6.00000 q^{69} +10.0000i q^{71} +16.0000i q^{73} -1.00000i q^{75} +6.00000i q^{79} +1.00000 q^{81} -16.0000 q^{83} +(8.00000 + 2.00000i) q^{85} +6.00000 q^{87} +10.0000 q^{89} +12.0000i q^{91} +10.0000 q^{93} -12.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} + 12 q^{13} - 4 q^{15} - 2 q^{17} + 4 q^{21} + 2 q^{25} + 8 q^{35} + 8 q^{43} - 16 q^{47} + 6 q^{49} + 8 q^{51} + 12 q^{53} + 16 q^{67} - 12 q^{69} + 2 q^{81} - 32 q^{83} + 16 q^{85} + 12 q^{87}+ \cdots + 20 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(2177\) \(2245\) \(2689\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −1.00000 + 4.00000i −0.242536 + 0.970143i
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 6.00000i 0.960769i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 2.00000i 0.298142i
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 4.00000 + 1.00000i 0.560112 + 0.140028i
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 12.0000i 1.48842i
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 10.0000i 1.18678i 0.804914 + 0.593391i \(0.202211\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(72\) 0 0
\(73\) 16.0000i 1.87266i 0.351123 + 0.936329i \(0.385800\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.00000i 0.675053i 0.941316 + 0.337526i \(0.109590\pi\)
−0.941316 + 0.337526i \(0.890410\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 8.00000 + 2.00000i 0.867722 + 0.216930i
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 12.0000i 1.25794i
\(92\) 0 0
\(93\) 10.0000 1.03695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000i 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 4.00000i 0.390360i
\(106\) 0 0
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 14.0000i 1.34096i −0.741929 0.670478i \(-0.766089\pi\)
0.741929 0.670478i \(-0.233911\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 4.00000i 0.376288i −0.982141 0.188144i \(-0.939753\pi\)
0.982141 0.188144i \(-0.0602472\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) 0 0
\(117\) −6.00000 −0.554700
\(118\) 0 0
\(119\) −8.00000 2.00000i −0.733359 0.183340i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 4.00000i 0.352180i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 16.0000i 1.35710i −0.734553 0.678551i \(-0.762608\pi\)
0.734553 0.678551i \(-0.237392\pi\)
\(140\) 0 0
\(141\) 8.00000i 0.673722i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) 3.00000i 0.247436i
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 1.00000 4.00000i 0.0808452 0.323381i
\(154\) 0 0
\(155\) 20.0000 1.60644
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 6.00000i 0.475831i
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000i 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) 0 0
\(175\) 2.00000i 0.151186i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 0 0
\(195\) −12.0000 −0.859338
\(196\) 0 0
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) 6.00000i 0.425329i 0.977125 + 0.212664i \(0.0682141\pi\)
−0.977125 + 0.212664i \(0.931786\pi\)
\(200\) 0 0
\(201\) 8.00000i 0.564276i
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 10.0000 0.685189
\(214\) 0 0
\(215\) 8.00000i 0.545595i
\(216\) 0 0
\(217\) −20.0000 −1.35769
\(218\) 0 0
\(219\) 16.0000 1.08118
\(220\) 0 0
\(221\) −6.00000 + 24.0000i −0.403604 + 1.61441i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.00000i 0.262049i −0.991379 0.131024i \(-0.958173\pi\)
0.991379 0.131024i \(-0.0418266\pi\)
\(234\) 0 0
\(235\) 16.0000i 1.04372i
\(236\) 0 0
\(237\) 6.00000 0.389742
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 20.0000i 1.28831i 0.764894 + 0.644157i \(0.222792\pi\)
−0.764894 + 0.644157i \(0.777208\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 6.00000i 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.0000i 1.01396i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 2.00000 8.00000i 0.125245 0.500979i
\(256\) 0 0
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 6.00000i 0.371391i
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 12.0000i 0.737154i
\(266\) 0 0
\(267\) 10.0000i 0.611990i
\(268\) 0 0
\(269\) 6.00000i 0.365826i 0.983129 + 0.182913i \(0.0585527\pi\)
−0.983129 + 0.182913i \(0.941447\pi\)
\(270\) 0 0
\(271\) −32.0000 −1.94386 −0.971931 0.235267i \(-0.924404\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 0 0
\(273\) 12.0000 0.726273
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 0 0
\(279\) 10.0000i 0.598684i
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 8.00000i −0.882353 0.470588i
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 36.0000i 2.08193i
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) 0 0
\(303\) 18.0000i 1.03407i
\(304\) 0 0
\(305\) −20.0000 −1.14520
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 16.0000i 0.910208i
\(310\) 0 0
\(311\) 10.0000i 0.567048i −0.958965 0.283524i \(-0.908496\pi\)
0.958965 0.283524i \(-0.0915036\pi\)
\(312\) 0 0
\(313\) 4.00000i 0.226093i −0.993590 0.113047i \(-0.963939\pi\)
0.993590 0.113047i \(-0.0360610\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) 18.0000i 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 0 0
\(327\) −14.0000 −0.774202
\(328\) 0 0
\(329\) 16.0000i 0.882109i
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) 16.0000i 0.874173i
\(336\) 0 0
\(337\) 8.00000i 0.435788i 0.975972 + 0.217894i \(0.0699187\pi\)
−0.975972 + 0.217894i \(0.930081\pi\)
\(338\) 0 0
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 12.0000i 0.646058i
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 6.00000i 0.320256i
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 20.0000 1.06149
\(356\) 0 0
\(357\) −2.00000 + 8.00000i −0.105851 + 0.423405i
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 11.0000i 0.577350i
\(364\) 0 0
\(365\) 32.0000 1.67496
\(366\) 0 0
\(367\) 22.0000i 1.14839i 0.818718 + 0.574195i \(0.194685\pi\)
−0.818718 + 0.574195i \(0.805315\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000i 0.623009i
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) 36.0000i 1.85409i
\(378\) 0 0
\(379\) 4.00000i 0.205466i 0.994709 + 0.102733i \(0.0327588\pi\)
−0.994709 + 0.102733i \(0.967241\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 24.0000 + 6.00000i 1.21373 + 0.303433i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 60.0000i 2.98881i
\(404\) 0 0
\(405\) 2.00000i 0.0993808i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 2.00000i 0.0986527i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 32.0000i 1.57082i
\(416\) 0 0
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 4.00000i 0.195413i 0.995215 + 0.0977064i \(0.0311506\pi\)
−0.995215 + 0.0977064i \(0.968849\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) −1.00000 + 4.00000i −0.0485071 + 0.194029i
\(426\) 0 0
\(427\) 20.0000 0.967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.0000i 0.481683i 0.970564 + 0.240842i \(0.0774234\pi\)
−0.970564 + 0.240842i \(0.922577\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 12.0000i 0.575356i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 6.00000i 0.286364i 0.989696 + 0.143182i \(0.0457335\pi\)
−0.989696 + 0.143182i \(0.954267\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 20.0000i 0.948091i
\(446\) 0 0
\(447\) 10.0000i 0.472984i
\(448\) 0 0
\(449\) 24.0000i 1.13263i 0.824189 + 0.566315i \(0.191631\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 8.00000i 0.375873i
\(454\) 0 0
\(455\) 24.0000 1.12514
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) −4.00000 1.00000i −0.186704 0.0466760i
\(460\) 0 0
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 20.0000i 0.927478i
\(466\) 0 0
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 2.00000i 0.0921551i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 14.0000i 0.639676i −0.947472 0.319838i \(-0.896371\pi\)
0.947472 0.319838i \(-0.103629\pi\)
\(480\) 0 0
\(481\) 12.0000i 0.547153i
\(482\) 0 0
\(483\) 12.0000i 0.546019i
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 18.0000i 0.815658i −0.913058 0.407829i \(-0.866286\pi\)
0.913058 0.407829i \(-0.133714\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −24.0000 6.00000i −1.08091 0.270226i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20.0000 −0.897123
\(498\) 0 0
\(499\) 24.0000i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.804181
\(502\) 0 0
\(503\) 34.0000i 1.51599i 0.652263 + 0.757993i \(0.273820\pi\)
−0.652263 + 0.757993i \(0.726180\pi\)
\(504\) 0 0
\(505\) 36.0000i 1.60198i
\(506\) 0 0
\(507\) 23.0000i 1.02147i
\(508\) 0 0
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) −32.0000 −1.41560
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 32.0000i 1.41009i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) −40.0000 10.0000i −1.74243 0.435607i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 16.0000 0.691740
\(536\) 0 0
\(537\) 20.0000i 0.863064i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000i 0.429934i 0.976621 + 0.214967i \(0.0689643\pi\)
−0.976621 + 0.214967i \(0.931036\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −28.0000 −1.19939
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) 10.0000i 0.426790i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −12.0000 −0.510292
\(554\) 0 0
\(555\) 4.00000i 0.169791i
\(556\) 0 0
\(557\) −38.0000 −1.61011 −0.805056 0.593199i \(-0.797865\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) −8.00000 −0.336563
\(566\) 0 0
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) 0 0
\(573\) 8.00000i 0.334205i
\(574\) 0 0
\(575\) 6.00000i 0.250217i
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) 32.0000i 1.32758i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 12.0000i 0.496139i
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) −4.00000 + 16.0000i −0.163984 + 0.655936i
\(596\) 0 0
\(597\) 6.00000 0.245564
\(598\) 0 0
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) 40.0000i 1.63163i −0.578310 0.815817i \(-0.696288\pi\)
0.578310 0.815817i \(-0.303712\pi\)
\(602\) 0 0
\(603\) −8.00000 −0.325785
\(604\) 0 0
\(605\) 22.0000i 0.894427i
\(606\) 0 0
\(607\) 38.0000i 1.54237i −0.636610 0.771186i \(-0.719664\pi\)
0.636610 0.771186i \(-0.280336\pi\)
\(608\) 0 0
\(609\) 12.0000i 0.486265i
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000i 0.483102i −0.970388 0.241551i \(-0.922344\pi\)
0.970388 0.241551i \(-0.0776561\pi\)
\(618\) 0 0
\(619\) 4.00000i 0.160774i 0.996764 + 0.0803868i \(0.0256155\pi\)
−0.996764 + 0.0803868i \(0.974384\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) 20.0000i 0.801283i
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.00000 2.00000i −0.318981 0.0797452i
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) 10.0000i 0.395594i
\(640\) 0 0
\(641\) 40.0000i 1.57991i −0.613168 0.789953i \(-0.710105\pi\)
0.613168 0.789953i \(-0.289895\pi\)
\(642\) 0 0
\(643\) 36.0000i 1.41970i 0.704352 + 0.709851i \(0.251238\pi\)
−0.704352 + 0.709851i \(0.748762\pi\)
\(644\) 0 0
\(645\) −8.00000 −0.315000
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 20.0000i 0.783862i
\(652\) 0 0
\(653\) 34.0000i 1.33052i 0.746611 + 0.665261i \(0.231680\pi\)
−0.746611 + 0.665261i \(0.768320\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 16.0000i 0.624219i
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 24.0000 + 6.00000i 0.932083 + 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 16.0000i 0.618596i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.0000i 1.38770i 0.720121 + 0.693849i \(0.244086\pi\)
−0.720121 + 0.693849i \(0.755914\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 42.0000i 1.61419i 0.590421 + 0.807096i \(0.298962\pi\)
−0.590421 + 0.807096i \(0.701038\pi\)
\(678\) 0 0
\(679\) 24.0000 0.921035
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 44.0000i 1.68361i −0.539779 0.841807i \(-0.681492\pi\)
0.539779 0.841807i \(-0.318508\pi\)
\(684\) 0 0
\(685\) 4.00000i 0.152832i
\(686\) 0 0
\(687\) 10.0000i 0.381524i
\(688\) 0 0
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) 40.0000i 1.52167i −0.648944 0.760836i \(-0.724789\pi\)
0.648944 0.760836i \(-0.275211\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −32.0000 −1.21383
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −4.00000 −0.151294
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) 0 0
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) 6.00000i 0.225335i 0.993633 + 0.112667i \(0.0359394\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(710\) 0 0
\(711\) 6.00000i 0.225018i
\(712\) 0 0
\(713\) 60.0000 2.24702
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26.0000i 0.969636i 0.874615 + 0.484818i \(0.161114\pi\)
−0.874615 + 0.484818i \(0.838886\pi\)
\(720\) 0 0
\(721\) 32.0000i 1.19174i
\(722\) 0 0
\(723\) 20.0000 0.743808
\(724\) 0 0
\(725\) 6.00000i 0.222834i
\(726\) 0 0
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −4.00000 + 16.0000i −0.147945 + 0.591781i
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) −6.00000 −0.221313
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.0000i 0.953847i −0.878945 0.476924i \(-0.841752\pi\)
0.878945 0.476924i \(-0.158248\pi\)
\(744\) 0 0
\(745\) 20.0000i 0.732743i
\(746\) 0 0
\(747\) 16.0000 0.585409
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) 10.0000i 0.364905i −0.983215 0.182453i \(-0.941596\pi\)
0.983215 0.182453i \(-0.0584036\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 16.0000i 0.582300i
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 28.0000 1.01367
\(764\) 0 0
\(765\) −8.00000 2.00000i −0.289241 0.0723102i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 2.00000i 0.0720282i
\(772\) 0 0
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) 10.0000i 0.359211i
\(776\) 0 0
\(777\) 4.00000i 0.143499i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 4.00000i 0.142766i
\(786\) 0 0
\(787\) 32.0000i 1.14068i −0.821410 0.570338i \(-0.806812\pi\)
0.821410 0.570338i \(-0.193188\pi\)
\(788\) 0 0
\(789\) 16.0000i 0.569615i
\(790\) 0 0
\(791\) 8.00000 0.284447
\(792\) 0 0
\(793\) 60.0000i 2.13066i
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 8.00000 32.0000i 0.283020 1.13208i
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 24.0000i 0.845889i
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 24.0000i 0.843795i 0.906644 + 0.421898i \(0.138636\pi\)
−0.906644 + 0.421898i \(0.861364\pi\)
\(810\) 0 0
\(811\) 20.0000i 0.702295i −0.936320 0.351147i \(-0.885792\pi\)
0.936320 0.351147i \(-0.114208\pi\)
\(812\) 0 0
\(813\) 32.0000i 1.12229i
\(814\) 0 0
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 12.0000i 0.419314i
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) 14.0000i 0.488009i 0.969774 + 0.244005i \(0.0784612\pi\)
−0.969774 + 0.244005i \(0.921539\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0000i 1.11275i −0.830932 0.556375i \(-0.812192\pi\)
0.830932 0.556375i \(-0.187808\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) 0 0
\(833\) −3.00000 + 12.0000i −0.103944 + 0.415775i
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 0 0
\(837\) −10.0000 −0.345651
\(838\) 0 0
\(839\) 34.0000i 1.17381i −0.809656 0.586905i \(-0.800346\pi\)
0.809656 0.586905i \(-0.199654\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 22.0000i 0.757720i
\(844\) 0 0
\(845\) 46.0000i 1.58245i
\(846\) 0 0
\(847\) 22.0000i 0.755929i
\(848\) 0 0
\(849\) 16.0000 0.549119
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 48.0000i 1.63965i 0.572615 + 0.819824i \(0.305929\pi\)
−0.572615 + 0.819824i \(0.694071\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 0 0
\(865\) 28.0000 0.952029
\(866\) 0 0
\(867\) −8.00000 + 15.0000i −0.271694 + 0.509427i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) 12.0000i 0.406138i
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 38.0000i 1.28317i −0.767052 0.641584i \(-0.778277\pi\)
0.767052 0.641584i \(-0.221723\pi\)
\(878\) 0 0
\(879\) 6.00000i 0.202375i
\(880\) 0 0
\(881\) 20.0000i 0.673817i 0.941537 + 0.336909i \(0.109381\pi\)
−0.941537 + 0.336909i \(0.890619\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.0000i 1.41022i 0.709097 + 0.705111i \(0.249103\pi\)
−0.709097 + 0.705111i \(0.750897\pi\)
\(888\) 0 0
\(889\) 16.0000i 0.536623i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 40.0000i 1.33705i
\(896\) 0 0
\(897\) −36.0000 −1.20201
\(898\) 0 0
\(899\) −60.0000 −2.00111
\(900\) 0 0
\(901\) −6.00000 + 24.0000i −0.199889 + 0.799556i
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) 0 0
\(907\) 8.00000i 0.265636i 0.991140 + 0.132818i \(0.0424025\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 50.0000i 1.65657i −0.560304 0.828287i \(-0.689316\pi\)
0.560304 0.828287i \(-0.310684\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 20.0000i 0.661180i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 12.0000i 0.395413i
\(922\) 0 0
\(923\) 60.0000i 1.97492i
\(924\) 0 0
\(925\) 2.00000i 0.0657596i
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 16.0000i 0.524943i −0.964940 0.262471i \(-0.915462\pi\)
0.964940 0.262471i \(-0.0845376\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −10.0000 −0.327385
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) −4.00000 −0.130535
\(940\) 0 0
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.00000i 0.130120i
\(946\) 0 0
\(947\) 8.00000i 0.259965i 0.991516 + 0.129983i \(0.0414921\pi\)
−0.991516 + 0.129983i \(0.958508\pi\)
\(948\) 0 0
\(949\) 96.0000i 3.11629i
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 16.0000i 0.517748i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.00000i 0.129167i
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 0 0
\(963\) 8.00000i 0.257796i
\(964\) 0 0
\(965\) −8.00000 −0.257529
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 32.0000 1.02693 0.513464 0.858111i \(-0.328362\pi\)
0.513464 + 0.858111i \(0.328362\pi\)
\(972\) 0 0
\(973\) 32.0000 1.02587
\(974\) 0 0
\(975\) 6.00000i 0.192154i
\(976\) 0 0
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 14.0000i 0.446986i
\(982\) 0 0
\(983\) 46.0000i 1.46717i −0.679597 0.733586i \(-0.737845\pi\)
0.679597 0.733586i \(-0.262155\pi\)
\(984\) 0 0
\(985\) −36.0000 −1.14706
\(986\) 0 0
\(987\) −16.0000 −0.509286
\(988\) 0 0
\(989\) 24.0000i 0.763156i
\(990\) 0 0
\(991\) 10.0000i 0.317660i −0.987306 0.158830i \(-0.949228\pi\)
0.987306 0.158830i \(-0.0507723\pi\)
\(992\) 0 0
\(993\) 12.0000i 0.380808i
\(994\) 0 0
\(995\) 12.0000 0.380426
\(996\) 0 0
\(997\) 18.0000i 0.570066i −0.958518 0.285033i \(-0.907995\pi\)
0.958518 0.285033i \(-0.0920045\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3264.2.c.i.577.1 2
4.3 odd 2 3264.2.c.j.577.2 2
8.3 odd 2 102.2.b.a.67.1 2
8.5 even 2 816.2.c.a.577.2 2
17.16 even 2 inner 3264.2.c.i.577.2 2
24.5 odd 2 2448.2.c.a.577.1 2
24.11 even 2 306.2.b.a.271.1 2
40.3 even 4 2550.2.f.j.1699.1 2
40.19 odd 2 2550.2.c.f.1801.2 2
40.27 even 4 2550.2.f.e.1699.2 2
68.67 odd 2 3264.2.c.j.577.1 2
136.19 odd 8 1734.2.f.h.829.1 4
136.43 odd 8 1734.2.f.h.1483.2 4
136.59 odd 8 1734.2.f.h.1483.1 4
136.67 odd 2 102.2.b.a.67.2 yes 2
136.83 odd 8 1734.2.f.h.829.2 4
136.101 even 2 816.2.c.a.577.1 2
136.115 odd 4 1734.2.a.e.1.1 1
136.123 odd 4 1734.2.a.d.1.1 1
408.101 odd 2 2448.2.c.a.577.2 2
408.203 even 2 306.2.b.a.271.2 2
408.251 even 4 5202.2.a.n.1.1 1
408.395 even 4 5202.2.a.h.1.1 1
680.67 even 4 2550.2.f.j.1699.2 2
680.203 even 4 2550.2.f.e.1699.1 2
680.339 odd 2 2550.2.c.f.1801.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.b.a.67.1 2 8.3 odd 2
102.2.b.a.67.2 yes 2 136.67 odd 2
306.2.b.a.271.1 2 24.11 even 2
306.2.b.a.271.2 2 408.203 even 2
816.2.c.a.577.1 2 136.101 even 2
816.2.c.a.577.2 2 8.5 even 2
1734.2.a.d.1.1 1 136.123 odd 4
1734.2.a.e.1.1 1 136.115 odd 4
1734.2.f.h.829.1 4 136.19 odd 8
1734.2.f.h.829.2 4 136.83 odd 8
1734.2.f.h.1483.1 4 136.59 odd 8
1734.2.f.h.1483.2 4 136.43 odd 8
2448.2.c.a.577.1 2 24.5 odd 2
2448.2.c.a.577.2 2 408.101 odd 2
2550.2.c.f.1801.1 2 680.339 odd 2
2550.2.c.f.1801.2 2 40.19 odd 2
2550.2.f.e.1699.1 2 680.203 even 4
2550.2.f.e.1699.2 2 40.27 even 4
2550.2.f.j.1699.1 2 40.3 even 4
2550.2.f.j.1699.2 2 680.67 even 4
3264.2.c.i.577.1 2 1.1 even 1 trivial
3264.2.c.i.577.2 2 17.16 even 2 inner
3264.2.c.j.577.1 2 68.67 odd 2
3264.2.c.j.577.2 2 4.3 odd 2
5202.2.a.h.1.1 1 408.395 even 4
5202.2.a.n.1.1 1 408.251 even 4