Properties

Label 245.10.a.m.1.13
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-45.0506\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+45.0506 q^{2} +165.739 q^{3} +1517.55 q^{4} +625.000 q^{5} +7466.64 q^{6} +45300.8 q^{8} +7786.42 q^{9} +28156.6 q^{10} +20286.8 q^{11} +251518. q^{12} -22464.9 q^{13} +103587. q^{15} +1.26384e6 q^{16} +396961. q^{17} +350783. q^{18} -439499. q^{19} +948471. q^{20} +913934. q^{22} -1.20400e6 q^{23} +7.50811e6 q^{24} +390625. q^{25} -1.01206e6 q^{26} -1.97173e6 q^{27} +148802. q^{29} +4.66665e6 q^{30} -6.69581e6 q^{31} +3.37427e7 q^{32} +3.36232e6 q^{33} +1.78833e7 q^{34} +1.18163e7 q^{36} +9.49510e6 q^{37} -1.97997e7 q^{38} -3.72332e6 q^{39} +2.83130e7 q^{40} -7.55290e6 q^{41} -3.35061e7 q^{43} +3.07864e7 q^{44} +4.86651e6 q^{45} -5.42410e7 q^{46} +2.49724e7 q^{47} +2.09467e8 q^{48} +1.75979e7 q^{50} +6.57920e7 q^{51} -3.40918e7 q^{52} +6.69659e7 q^{53} -8.88275e7 q^{54} +1.26793e7 q^{55} -7.28422e7 q^{57} +6.70361e6 q^{58} -1.13339e8 q^{59} +1.57199e8 q^{60} -2.61045e7 q^{61} -3.01650e8 q^{62} +8.73041e8 q^{64} -1.40406e7 q^{65} +1.51474e8 q^{66} -4.31792e7 q^{67} +6.02410e8 q^{68} -1.99550e8 q^{69} +3.69341e8 q^{71} +3.52731e8 q^{72} -2.93142e8 q^{73} +4.27760e8 q^{74} +6.47418e7 q^{75} -6.66964e8 q^{76} -1.67738e8 q^{78} +4.61623e8 q^{79} +7.89899e8 q^{80} -4.80052e8 q^{81} -3.40263e8 q^{82} +7.40278e7 q^{83} +2.48101e8 q^{85} -1.50947e9 q^{86} +2.46623e7 q^{87} +9.19010e8 q^{88} -2.43277e8 q^{89} +2.19239e8 q^{90} -1.82714e9 q^{92} -1.10976e9 q^{93} +1.12502e9 q^{94} -2.74687e8 q^{95} +5.59247e9 q^{96} -8.76163e8 q^{97} +1.57962e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - q^{2} + 268 q^{3} + 3563 q^{4} + 8125 q^{5} + 3040 q^{6} - 4695 q^{8} + 82107 q^{9} - 625 q^{10} + 129087 q^{11} + 356068 q^{12} + 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} + 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 45.0506 1.99097 0.995486 0.0949041i \(-0.0302545\pi\)
0.995486 + 0.0949041i \(0.0302545\pi\)
\(3\) 165.739 1.18135 0.590676 0.806909i \(-0.298861\pi\)
0.590676 + 0.806909i \(0.298861\pi\)
\(4\) 1517.55 2.96397
\(5\) 625.000 0.447214
\(6\) 7466.64 2.35204
\(7\) 0 0
\(8\) 45300.8 3.91022
\(9\) 7786.42 0.395591
\(10\) 28156.6 0.890390
\(11\) 20286.8 0.417780 0.208890 0.977939i \(-0.433015\pi\)
0.208890 + 0.977939i \(0.433015\pi\)
\(12\) 251518. 3.50149
\(13\) −22464.9 −0.218153 −0.109076 0.994033i \(-0.534789\pi\)
−0.109076 + 0.994033i \(0.534789\pi\)
\(14\) 0 0
\(15\) 103587. 0.528316
\(16\) 1.26384e6 4.82116
\(17\) 396961. 1.15273 0.576366 0.817192i \(-0.304470\pi\)
0.576366 + 0.817192i \(0.304470\pi\)
\(18\) 350783. 0.787611
\(19\) −439499. −0.773690 −0.386845 0.922145i \(-0.626435\pi\)
−0.386845 + 0.922145i \(0.626435\pi\)
\(20\) 948471. 1.32553
\(21\) 0 0
\(22\) 913934. 0.831788
\(23\) −1.20400e6 −0.897123 −0.448561 0.893752i \(-0.648063\pi\)
−0.448561 + 0.893752i \(0.648063\pi\)
\(24\) 7.50811e6 4.61934
\(25\) 390625. 0.200000
\(26\) −1.01206e6 −0.434336
\(27\) −1.97173e6 −0.714019
\(28\) 0 0
\(29\) 148802. 0.0390677 0.0195338 0.999809i \(-0.493782\pi\)
0.0195338 + 0.999809i \(0.493782\pi\)
\(30\) 4.66665e6 1.05186
\(31\) −6.69581e6 −1.30219 −0.651097 0.758995i \(-0.725691\pi\)
−0.651097 + 0.758995i \(0.725691\pi\)
\(32\) 3.37427e7 5.68859
\(33\) 3.36232e6 0.493545
\(34\) 1.78833e7 2.29506
\(35\) 0 0
\(36\) 1.18163e7 1.17252
\(37\) 9.49510e6 0.832898 0.416449 0.909159i \(-0.363275\pi\)
0.416449 + 0.909159i \(0.363275\pi\)
\(38\) −1.97997e7 −1.54040
\(39\) −3.72332e6 −0.257715
\(40\) 2.83130e7 1.74870
\(41\) −7.55290e6 −0.417433 −0.208716 0.977976i \(-0.566929\pi\)
−0.208716 + 0.977976i \(0.566929\pi\)
\(42\) 0 0
\(43\) −3.35061e7 −1.49457 −0.747284 0.664505i \(-0.768643\pi\)
−0.747284 + 0.664505i \(0.768643\pi\)
\(44\) 3.07864e7 1.23829
\(45\) 4.86651e6 0.176914
\(46\) −5.42410e7 −1.78615
\(47\) 2.49724e7 0.746482 0.373241 0.927734i \(-0.378246\pi\)
0.373241 + 0.927734i \(0.378246\pi\)
\(48\) 2.09467e8 5.69549
\(49\) 0 0
\(50\) 1.75979e7 0.398195
\(51\) 6.57920e7 1.36178
\(52\) −3.40918e7 −0.646598
\(53\) 6.69659e7 1.16577 0.582884 0.812555i \(-0.301924\pi\)
0.582884 + 0.812555i \(0.301924\pi\)
\(54\) −8.88275e7 −1.42159
\(55\) 1.26793e7 0.186837
\(56\) 0 0
\(57\) −7.28422e7 −0.913999
\(58\) 6.70361e6 0.0777827
\(59\) −1.13339e8 −1.21772 −0.608858 0.793279i \(-0.708372\pi\)
−0.608858 + 0.793279i \(0.708372\pi\)
\(60\) 1.57199e8 1.56592
\(61\) −2.61045e7 −0.241397 −0.120699 0.992689i \(-0.538513\pi\)
−0.120699 + 0.992689i \(0.538513\pi\)
\(62\) −3.01650e8 −2.59263
\(63\) 0 0
\(64\) 8.73041e8 6.50466
\(65\) −1.40406e7 −0.0975608
\(66\) 1.51474e8 0.982634
\(67\) −4.31792e7 −0.261781 −0.130891 0.991397i \(-0.541784\pi\)
−0.130891 + 0.991397i \(0.541784\pi\)
\(68\) 6.02410e8 3.41666
\(69\) −1.99550e8 −1.05982
\(70\) 0 0
\(71\) 3.69341e8 1.72491 0.862453 0.506138i \(-0.168927\pi\)
0.862453 + 0.506138i \(0.168927\pi\)
\(72\) 3.52731e8 1.54685
\(73\) −2.93142e8 −1.20816 −0.604082 0.796922i \(-0.706460\pi\)
−0.604082 + 0.796922i \(0.706460\pi\)
\(74\) 4.27760e8 1.65828
\(75\) 6.47418e7 0.236270
\(76\) −6.66964e8 −2.29320
\(77\) 0 0
\(78\) −1.67738e8 −0.513103
\(79\) 4.61623e8 1.33342 0.666708 0.745319i \(-0.267703\pi\)
0.666708 + 0.745319i \(0.267703\pi\)
\(80\) 7.89899e8 2.15609
\(81\) −4.80052e8 −1.23910
\(82\) −3.40263e8 −0.831098
\(83\) 7.40278e7 0.171216 0.0856078 0.996329i \(-0.472717\pi\)
0.0856078 + 0.996329i \(0.472717\pi\)
\(84\) 0 0
\(85\) 2.48101e8 0.515517
\(86\) −1.50947e9 −2.97564
\(87\) 2.46623e7 0.0461527
\(88\) 9.19010e8 1.63361
\(89\) −2.43277e8 −0.411004 −0.205502 0.978657i \(-0.565883\pi\)
−0.205502 + 0.978657i \(0.565883\pi\)
\(90\) 2.19239e8 0.352230
\(91\) 0 0
\(92\) −1.82714e9 −2.65905
\(93\) −1.10976e9 −1.53835
\(94\) 1.12502e9 1.48623
\(95\) −2.74687e8 −0.346005
\(96\) 5.59247e9 6.72022
\(97\) −8.76163e8 −1.00488 −0.502438 0.864613i \(-0.667563\pi\)
−0.502438 + 0.864613i \(0.667563\pi\)
\(98\) 0 0
\(99\) 1.57962e8 0.165270
\(100\) 5.92795e8 0.592795
\(101\) −5.66571e8 −0.541762 −0.270881 0.962613i \(-0.587315\pi\)
−0.270881 + 0.962613i \(0.587315\pi\)
\(102\) 2.96397e9 2.71127
\(103\) −1.07819e8 −0.0943900 −0.0471950 0.998886i \(-0.515028\pi\)
−0.0471950 + 0.998886i \(0.515028\pi\)
\(104\) −1.01768e9 −0.853024
\(105\) 0 0
\(106\) 3.01685e9 2.32101
\(107\) −1.01951e9 −0.751905 −0.375952 0.926639i \(-0.622684\pi\)
−0.375952 + 0.926639i \(0.622684\pi\)
\(108\) −2.99220e9 −2.11633
\(109\) 1.13937e9 0.773120 0.386560 0.922264i \(-0.373663\pi\)
0.386560 + 0.922264i \(0.373663\pi\)
\(110\) 5.71209e8 0.371987
\(111\) 1.57371e9 0.983945
\(112\) 0 0
\(113\) −8.79575e8 −0.507481 −0.253740 0.967272i \(-0.581661\pi\)
−0.253740 + 0.967272i \(0.581661\pi\)
\(114\) −3.28158e9 −1.81975
\(115\) −7.52501e8 −0.401205
\(116\) 2.25815e8 0.115796
\(117\) −1.74921e8 −0.0862992
\(118\) −5.10599e9 −2.42444
\(119\) 0 0
\(120\) 4.69257e9 2.06583
\(121\) −1.94639e9 −0.825460
\(122\) −1.17602e9 −0.480615
\(123\) −1.25181e9 −0.493135
\(124\) −1.01613e10 −3.85967
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 1.96913e9 0.671673 0.335837 0.941920i \(-0.390981\pi\)
0.335837 + 0.941920i \(0.390981\pi\)
\(128\) 2.20547e10 7.26201
\(129\) −5.55327e9 −1.76561
\(130\) −6.32537e8 −0.194241
\(131\) 4.37181e9 1.29700 0.648500 0.761214i \(-0.275397\pi\)
0.648500 + 0.761214i \(0.275397\pi\)
\(132\) 5.10250e9 1.46285
\(133\) 0 0
\(134\) −1.94525e9 −0.521199
\(135\) −1.23233e9 −0.319319
\(136\) 1.79827e10 4.50743
\(137\) 2.15436e9 0.522488 0.261244 0.965273i \(-0.415867\pi\)
0.261244 + 0.965273i \(0.415867\pi\)
\(138\) −8.98984e9 −2.11007
\(139\) −2.17041e9 −0.493147 −0.246573 0.969124i \(-0.579305\pi\)
−0.246573 + 0.969124i \(0.579305\pi\)
\(140\) 0 0
\(141\) 4.13890e9 0.881858
\(142\) 1.66390e10 3.43424
\(143\) −4.55743e8 −0.0911397
\(144\) 9.84077e9 1.90721
\(145\) 9.30012e7 0.0174716
\(146\) −1.32062e10 −2.40542
\(147\) 0 0
\(148\) 1.44093e10 2.46869
\(149\) −8.79035e8 −0.146106 −0.0730530 0.997328i \(-0.523274\pi\)
−0.0730530 + 0.997328i \(0.523274\pi\)
\(150\) 2.91666e9 0.470408
\(151\) −1.35164e9 −0.211575 −0.105787 0.994389i \(-0.533736\pi\)
−0.105787 + 0.994389i \(0.533736\pi\)
\(152\) −1.99097e10 −3.02529
\(153\) 3.09091e9 0.456010
\(154\) 0 0
\(155\) −4.18488e9 −0.582359
\(156\) −5.65034e9 −0.763860
\(157\) −4.72740e9 −0.620975 −0.310487 0.950577i \(-0.600492\pi\)
−0.310487 + 0.950577i \(0.600492\pi\)
\(158\) 2.07964e10 2.65480
\(159\) 1.10989e10 1.37718
\(160\) 2.10892e10 2.54401
\(161\) 0 0
\(162\) −2.16266e10 −2.46701
\(163\) −4.66247e9 −0.517335 −0.258667 0.965966i \(-0.583283\pi\)
−0.258667 + 0.965966i \(0.583283\pi\)
\(164\) −1.14619e10 −1.23726
\(165\) 2.10145e9 0.220720
\(166\) 3.33499e9 0.340886
\(167\) 5.99996e9 0.596932 0.298466 0.954420i \(-0.403525\pi\)
0.298466 + 0.954420i \(0.403525\pi\)
\(168\) 0 0
\(169\) −1.00998e10 −0.952409
\(170\) 1.11771e10 1.02638
\(171\) −3.42212e9 −0.306065
\(172\) −5.08473e10 −4.42986
\(173\) 3.11408e9 0.264315 0.132158 0.991229i \(-0.457809\pi\)
0.132158 + 0.991229i \(0.457809\pi\)
\(174\) 1.11105e9 0.0918887
\(175\) 0 0
\(176\) 2.56393e10 2.01418
\(177\) −1.87847e10 −1.43855
\(178\) −1.09598e10 −0.818299
\(179\) −2.78648e9 −0.202870 −0.101435 0.994842i \(-0.532343\pi\)
−0.101435 + 0.994842i \(0.532343\pi\)
\(180\) 7.38519e9 0.524367
\(181\) −1.26160e10 −0.873714 −0.436857 0.899531i \(-0.643908\pi\)
−0.436857 + 0.899531i \(0.643908\pi\)
\(182\) 0 0
\(183\) −4.32654e9 −0.285175
\(184\) −5.45422e10 −3.50794
\(185\) 5.93444e9 0.372483
\(186\) −4.99952e10 −3.06281
\(187\) 8.05309e9 0.481588
\(188\) 3.78969e10 2.21255
\(189\) 0 0
\(190\) −1.23748e10 −0.688886
\(191\) 1.40201e10 0.762256 0.381128 0.924522i \(-0.375536\pi\)
0.381128 + 0.924522i \(0.375536\pi\)
\(192\) 1.44697e11 7.68429
\(193\) 1.48730e10 0.771598 0.385799 0.922583i \(-0.373926\pi\)
0.385799 + 0.922583i \(0.373926\pi\)
\(194\) −3.94717e10 −2.00068
\(195\) −2.32707e9 −0.115254
\(196\) 0 0
\(197\) 2.76254e9 0.130680 0.0653401 0.997863i \(-0.479187\pi\)
0.0653401 + 0.997863i \(0.479187\pi\)
\(198\) 7.11627e9 0.329048
\(199\) −9.38188e9 −0.424083 −0.212042 0.977261i \(-0.568011\pi\)
−0.212042 + 0.977261i \(0.568011\pi\)
\(200\) 1.76956e10 0.782043
\(201\) −7.15648e9 −0.309255
\(202\) −2.55243e10 −1.07863
\(203\) 0 0
\(204\) 9.98429e10 4.03628
\(205\) −4.72057e9 −0.186682
\(206\) −4.85729e9 −0.187928
\(207\) −9.37486e9 −0.354894
\(208\) −2.83921e10 −1.05175
\(209\) −8.91605e9 −0.323232
\(210\) 0 0
\(211\) −4.23543e10 −1.47105 −0.735523 0.677500i \(-0.763063\pi\)
−0.735523 + 0.677500i \(0.763063\pi\)
\(212\) 1.01624e11 3.45531
\(213\) 6.12142e10 2.03772
\(214\) −4.59293e10 −1.49702
\(215\) −2.09413e10 −0.668391
\(216\) −8.93208e10 −2.79197
\(217\) 0 0
\(218\) 5.13294e10 1.53926
\(219\) −4.85851e10 −1.42727
\(220\) 1.92415e10 0.553779
\(221\) −8.91772e9 −0.251471
\(222\) 7.08964e10 1.95901
\(223\) −1.86261e10 −0.504372 −0.252186 0.967679i \(-0.581149\pi\)
−0.252186 + 0.967679i \(0.581149\pi\)
\(224\) 0 0
\(225\) 3.04157e9 0.0791182
\(226\) −3.96253e10 −1.01038
\(227\) 4.92185e10 1.23030 0.615152 0.788409i \(-0.289095\pi\)
0.615152 + 0.788409i \(0.289095\pi\)
\(228\) −1.10542e11 −2.70907
\(229\) −1.26986e9 −0.0305139 −0.0152570 0.999884i \(-0.504857\pi\)
−0.0152570 + 0.999884i \(0.504857\pi\)
\(230\) −3.39006e10 −0.798789
\(231\) 0 0
\(232\) 6.74085e9 0.152763
\(233\) −4.60301e10 −1.02315 −0.511576 0.859238i \(-0.670938\pi\)
−0.511576 + 0.859238i \(0.670938\pi\)
\(234\) −7.88031e9 −0.171819
\(235\) 1.56077e10 0.333837
\(236\) −1.71998e11 −3.60928
\(237\) 7.65090e10 1.57523
\(238\) 0 0
\(239\) −3.22863e9 −0.0640071 −0.0320035 0.999488i \(-0.510189\pi\)
−0.0320035 + 0.999488i \(0.510189\pi\)
\(240\) 1.30917e11 2.54710
\(241\) −6.81778e10 −1.30187 −0.650933 0.759135i \(-0.725622\pi\)
−0.650933 + 0.759135i \(0.725622\pi\)
\(242\) −8.76861e10 −1.64347
\(243\) −4.07539e10 −0.749791
\(244\) −3.96151e10 −0.715494
\(245\) 0 0
\(246\) −5.63948e10 −0.981818
\(247\) 9.87332e9 0.168782
\(248\) −3.03326e11 −5.09186
\(249\) 1.22693e10 0.202266
\(250\) 1.09987e10 0.178078
\(251\) 1.07251e11 1.70557 0.852787 0.522259i \(-0.174910\pi\)
0.852787 + 0.522259i \(0.174910\pi\)
\(252\) 0 0
\(253\) −2.44254e10 −0.374800
\(254\) 8.87105e10 1.33728
\(255\) 4.11200e10 0.609007
\(256\) 5.46582e11 7.95381
\(257\) 1.29031e11 1.84499 0.922494 0.386010i \(-0.126147\pi\)
0.922494 + 0.386010i \(0.126147\pi\)
\(258\) −2.50178e11 −3.51528
\(259\) 0 0
\(260\) −2.13074e10 −0.289168
\(261\) 1.15863e9 0.0154548
\(262\) 1.96952e11 2.58229
\(263\) 6.04752e10 0.779429 0.389714 0.920936i \(-0.372574\pi\)
0.389714 + 0.920936i \(0.372574\pi\)
\(264\) 1.52316e11 1.92987
\(265\) 4.18537e10 0.521347
\(266\) 0 0
\(267\) −4.03205e10 −0.485541
\(268\) −6.55268e10 −0.775912
\(269\) 4.88251e10 0.568536 0.284268 0.958745i \(-0.408250\pi\)
0.284268 + 0.958745i \(0.408250\pi\)
\(270\) −5.55172e10 −0.635756
\(271\) 1.36973e11 1.54267 0.771335 0.636429i \(-0.219589\pi\)
0.771335 + 0.636429i \(0.219589\pi\)
\(272\) 5.01695e11 5.55750
\(273\) 0 0
\(274\) 9.70553e10 1.04026
\(275\) 7.92455e9 0.0835559
\(276\) −3.02828e11 −3.14127
\(277\) −4.92371e10 −0.502497 −0.251248 0.967923i \(-0.580841\pi\)
−0.251248 + 0.967923i \(0.580841\pi\)
\(278\) −9.77784e10 −0.981842
\(279\) −5.21364e10 −0.515136
\(280\) 0 0
\(281\) 4.52296e10 0.432757 0.216378 0.976310i \(-0.430576\pi\)
0.216378 + 0.976310i \(0.430576\pi\)
\(282\) 1.86460e11 1.75575
\(283\) 1.07440e11 0.995697 0.497848 0.867264i \(-0.334124\pi\)
0.497848 + 0.867264i \(0.334124\pi\)
\(284\) 5.60495e11 5.11257
\(285\) −4.55263e10 −0.408753
\(286\) −2.05315e10 −0.181457
\(287\) 0 0
\(288\) 2.62734e11 2.25035
\(289\) 3.89904e10 0.328789
\(290\) 4.18976e9 0.0347855
\(291\) −1.45214e11 −1.18711
\(292\) −4.44859e11 −3.58096
\(293\) −4.03110e10 −0.319535 −0.159768 0.987155i \(-0.551074\pi\)
−0.159768 + 0.987155i \(0.551074\pi\)
\(294\) 0 0
\(295\) −7.08370e10 −0.544579
\(296\) 4.30135e11 3.25681
\(297\) −4.00001e10 −0.298303
\(298\) −3.96010e10 −0.290893
\(299\) 2.70478e10 0.195710
\(300\) 9.82492e10 0.700299
\(301\) 0 0
\(302\) −6.08920e10 −0.421239
\(303\) −9.39029e10 −0.640011
\(304\) −5.55456e11 −3.73008
\(305\) −1.63153e10 −0.107956
\(306\) 1.39247e11 0.907904
\(307\) −2.24789e11 −1.44428 −0.722142 0.691745i \(-0.756842\pi\)
−0.722142 + 0.691745i \(0.756842\pi\)
\(308\) 0 0
\(309\) −1.78697e10 −0.111508
\(310\) −1.88531e11 −1.15946
\(311\) 1.03200e11 0.625544 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(312\) −1.68669e11 −1.00772
\(313\) 1.41481e11 0.833196 0.416598 0.909091i \(-0.363222\pi\)
0.416598 + 0.909091i \(0.363222\pi\)
\(314\) −2.12972e11 −1.23634
\(315\) 0 0
\(316\) 7.00539e11 3.95221
\(317\) −9.69129e10 −0.539032 −0.269516 0.962996i \(-0.586864\pi\)
−0.269516 + 0.962996i \(0.586864\pi\)
\(318\) 5.00010e11 2.74193
\(319\) 3.01872e9 0.0163217
\(320\) 5.45650e11 2.90897
\(321\) −1.68972e11 −0.888264
\(322\) 0 0
\(323\) −1.74464e11 −0.891856
\(324\) −7.28505e11 −3.67266
\(325\) −8.77537e9 −0.0436305
\(326\) −2.10047e11 −1.03000
\(327\) 1.88839e11 0.913326
\(328\) −3.42153e11 −1.63225
\(329\) 0 0
\(330\) 9.46716e10 0.439447
\(331\) 5.83011e10 0.266963 0.133481 0.991051i \(-0.457384\pi\)
0.133481 + 0.991051i \(0.457384\pi\)
\(332\) 1.12341e11 0.507478
\(333\) 7.39328e10 0.329487
\(334\) 2.70302e11 1.18847
\(335\) −2.69870e10 −0.117072
\(336\) 0 0
\(337\) 4.50513e10 0.190271 0.0951356 0.995464i \(-0.469672\pi\)
0.0951356 + 0.995464i \(0.469672\pi\)
\(338\) −4.55003e11 −1.89622
\(339\) −1.45780e11 −0.599513
\(340\) 3.76506e11 1.52798
\(341\) −1.35837e11 −0.544030
\(342\) −1.54169e11 −0.609366
\(343\) 0 0
\(344\) −1.51785e12 −5.84409
\(345\) −1.24719e11 −0.473965
\(346\) 1.40291e11 0.526245
\(347\) −1.58277e11 −0.586050 −0.293025 0.956105i \(-0.594662\pi\)
−0.293025 + 0.956105i \(0.594662\pi\)
\(348\) 3.74264e10 0.136795
\(349\) 1.97806e11 0.713715 0.356858 0.934159i \(-0.383848\pi\)
0.356858 + 0.934159i \(0.383848\pi\)
\(350\) 0 0
\(351\) 4.42948e10 0.155765
\(352\) 6.84532e11 2.37658
\(353\) 3.16675e10 0.108550 0.0542748 0.998526i \(-0.482715\pi\)
0.0542748 + 0.998526i \(0.482715\pi\)
\(354\) −8.46262e11 −2.86411
\(355\) 2.30838e11 0.771401
\(356\) −3.69186e11 −1.21821
\(357\) 0 0
\(358\) −1.25532e11 −0.403908
\(359\) −2.51531e11 −0.799220 −0.399610 0.916685i \(-0.630855\pi\)
−0.399610 + 0.916685i \(0.630855\pi\)
\(360\) 2.20457e11 0.691771
\(361\) −1.29528e11 −0.401404
\(362\) −5.68360e11 −1.73954
\(363\) −3.22593e11 −0.975158
\(364\) 0 0
\(365\) −1.83214e11 −0.540307
\(366\) −1.94913e11 −0.567775
\(367\) −6.72529e11 −1.93514 −0.967572 0.252594i \(-0.918716\pi\)
−0.967572 + 0.252594i \(0.918716\pi\)
\(368\) −1.52166e12 −4.32517
\(369\) −5.88101e10 −0.165133
\(370\) 2.67350e11 0.741604
\(371\) 0 0
\(372\) −1.68412e12 −4.55962
\(373\) −5.99806e11 −1.60443 −0.802216 0.597034i \(-0.796346\pi\)
−0.802216 + 0.597034i \(0.796346\pi\)
\(374\) 3.62796e11 0.958828
\(375\) 4.04636e10 0.105663
\(376\) 1.13127e12 2.91891
\(377\) −3.34283e9 −0.00852271
\(378\) 0 0
\(379\) 6.38588e11 1.58981 0.794904 0.606735i \(-0.207521\pi\)
0.794904 + 0.606735i \(0.207521\pi\)
\(380\) −4.16852e11 −1.02555
\(381\) 3.26362e11 0.793482
\(382\) 6.31613e11 1.51763
\(383\) −5.10218e11 −1.21161 −0.605803 0.795615i \(-0.707148\pi\)
−0.605803 + 0.795615i \(0.707148\pi\)
\(384\) 3.65533e12 8.57899
\(385\) 0 0
\(386\) 6.70038e11 1.53623
\(387\) −2.60892e11 −0.591238
\(388\) −1.32963e12 −2.97842
\(389\) 1.18918e11 0.263315 0.131658 0.991295i \(-0.457970\pi\)
0.131658 + 0.991295i \(0.457970\pi\)
\(390\) −1.04836e11 −0.229467
\(391\) −4.77942e11 −1.03414
\(392\) 0 0
\(393\) 7.24579e11 1.53221
\(394\) 1.24454e11 0.260181
\(395\) 2.88515e11 0.596322
\(396\) 2.39716e11 0.489855
\(397\) −2.80888e11 −0.567513 −0.283756 0.958896i \(-0.591581\pi\)
−0.283756 + 0.958896i \(0.591581\pi\)
\(398\) −4.22659e11 −0.844338
\(399\) 0 0
\(400\) 4.93687e11 0.964232
\(401\) −8.32505e11 −1.60782 −0.803910 0.594752i \(-0.797250\pi\)
−0.803910 + 0.594752i \(0.797250\pi\)
\(402\) −3.22404e11 −0.615719
\(403\) 1.50421e11 0.284077
\(404\) −8.59802e11 −1.60577
\(405\) −3.00033e11 −0.554142
\(406\) 0 0
\(407\) 1.92626e11 0.347968
\(408\) 2.98043e12 5.32486
\(409\) 4.62186e11 0.816698 0.408349 0.912826i \(-0.366105\pi\)
0.408349 + 0.912826i \(0.366105\pi\)
\(410\) −2.12664e11 −0.371678
\(411\) 3.57062e11 0.617242
\(412\) −1.63621e11 −0.279770
\(413\) 0 0
\(414\) −4.22343e11 −0.706583
\(415\) 4.62674e10 0.0765699
\(416\) −7.58027e11 −1.24098
\(417\) −3.59722e11 −0.582579
\(418\) −4.01673e11 −0.643546
\(419\) −8.42911e11 −1.33604 −0.668019 0.744144i \(-0.732858\pi\)
−0.668019 + 0.744144i \(0.732858\pi\)
\(420\) 0 0
\(421\) −5.73267e11 −0.889380 −0.444690 0.895684i \(-0.646686\pi\)
−0.444690 + 0.895684i \(0.646686\pi\)
\(422\) −1.90808e12 −2.92881
\(423\) 1.94445e11 0.295302
\(424\) 3.03361e12 4.55841
\(425\) 1.55063e11 0.230546
\(426\) 2.75774e12 4.05704
\(427\) 0 0
\(428\) −1.54716e12 −2.22863
\(429\) −7.55344e10 −0.107668
\(430\) −9.43418e11 −1.33075
\(431\) −4.81918e9 −0.00672707 −0.00336353 0.999994i \(-0.501071\pi\)
−0.00336353 + 0.999994i \(0.501071\pi\)
\(432\) −2.49195e12 −3.44240
\(433\) −1.62755e11 −0.222505 −0.111252 0.993792i \(-0.535486\pi\)
−0.111252 + 0.993792i \(0.535486\pi\)
\(434\) 0 0
\(435\) 1.54139e10 0.0206401
\(436\) 1.72906e12 2.29151
\(437\) 5.29158e11 0.694095
\(438\) −2.18879e12 −2.84165
\(439\) 2.96307e11 0.380760 0.190380 0.981710i \(-0.439028\pi\)
0.190380 + 0.981710i \(0.439028\pi\)
\(440\) 5.74381e11 0.730572
\(441\) 0 0
\(442\) −4.01748e11 −0.500672
\(443\) 1.18123e12 1.45720 0.728600 0.684940i \(-0.240172\pi\)
0.728600 + 0.684940i \(0.240172\pi\)
\(444\) 2.38819e12 2.91639
\(445\) −1.52048e11 −0.183807
\(446\) −8.39118e11 −1.00419
\(447\) −1.45690e11 −0.172602
\(448\) 0 0
\(449\) 4.11866e11 0.478242 0.239121 0.970990i \(-0.423141\pi\)
0.239121 + 0.970990i \(0.423141\pi\)
\(450\) 1.37024e11 0.157522
\(451\) −1.53225e11 −0.174395
\(452\) −1.33480e12 −1.50416
\(453\) −2.24019e11 −0.249944
\(454\) 2.21732e12 2.44950
\(455\) 0 0
\(456\) −3.29981e12 −3.57394
\(457\) −8.72606e11 −0.935826 −0.467913 0.883774i \(-0.654994\pi\)
−0.467913 + 0.883774i \(0.654994\pi\)
\(458\) −5.72081e10 −0.0607524
\(459\) −7.82700e11 −0.823073
\(460\) −1.14196e12 −1.18916
\(461\) −1.60405e12 −1.65411 −0.827055 0.562121i \(-0.809985\pi\)
−0.827055 + 0.562121i \(0.809985\pi\)
\(462\) 0 0
\(463\) −3.46408e10 −0.0350327 −0.0175163 0.999847i \(-0.505576\pi\)
−0.0175163 + 0.999847i \(0.505576\pi\)
\(464\) 1.88062e11 0.188352
\(465\) −6.93598e11 −0.687970
\(466\) −2.07368e12 −2.03707
\(467\) 1.62367e12 1.57969 0.789847 0.613304i \(-0.210160\pi\)
0.789847 + 0.613304i \(0.210160\pi\)
\(468\) −2.65453e11 −0.255788
\(469\) 0 0
\(470\) 7.03137e11 0.664660
\(471\) −7.83515e11 −0.733589
\(472\) −5.13435e12 −4.76153
\(473\) −6.79733e11 −0.624400
\(474\) 3.44677e12 3.13625
\(475\) −1.71679e11 −0.154738
\(476\) 0 0
\(477\) 5.21424e11 0.461167
\(478\) −1.45452e11 −0.127436
\(479\) 1.35039e12 1.17206 0.586030 0.810289i \(-0.300690\pi\)
0.586030 + 0.810289i \(0.300690\pi\)
\(480\) 3.49530e12 3.00537
\(481\) −2.13307e11 −0.181699
\(482\) −3.07145e12 −2.59198
\(483\) 0 0
\(484\) −2.95375e12 −2.44664
\(485\) −5.47602e11 −0.449394
\(486\) −1.83598e12 −1.49281
\(487\) 4.90765e11 0.395361 0.197680 0.980267i \(-0.436659\pi\)
0.197680 + 0.980267i \(0.436659\pi\)
\(488\) −1.18256e12 −0.943915
\(489\) −7.72753e11 −0.611154
\(490\) 0 0
\(491\) −9.73443e11 −0.755865 −0.377932 0.925833i \(-0.623365\pi\)
−0.377932 + 0.925833i \(0.623365\pi\)
\(492\) −1.89969e12 −1.46164
\(493\) 5.90686e10 0.0450345
\(494\) 4.44799e11 0.336041
\(495\) 9.87261e10 0.0739109
\(496\) −8.46243e12 −6.27809
\(497\) 0 0
\(498\) 5.52739e11 0.402706
\(499\) 1.54629e12 1.11645 0.558223 0.829691i \(-0.311484\pi\)
0.558223 + 0.829691i \(0.311484\pi\)
\(500\) 3.70497e11 0.265106
\(501\) 9.94428e11 0.705186
\(502\) 4.83173e12 3.39575
\(503\) −8.19908e11 −0.571096 −0.285548 0.958364i \(-0.592176\pi\)
−0.285548 + 0.958364i \(0.592176\pi\)
\(504\) 0 0
\(505\) −3.54107e11 −0.242283
\(506\) −1.10038e12 −0.746216
\(507\) −1.67393e12 −1.12513
\(508\) 2.98826e12 1.99082
\(509\) −1.49021e12 −0.984048 −0.492024 0.870582i \(-0.663743\pi\)
−0.492024 + 0.870582i \(0.663743\pi\)
\(510\) 1.85248e12 1.21252
\(511\) 0 0
\(512\) 1.33318e13 8.57381
\(513\) 8.66573e11 0.552430
\(514\) 5.81290e12 3.67332
\(515\) −6.73866e10 −0.0422125
\(516\) −8.42738e12 −5.23322
\(517\) 5.06611e11 0.311865
\(518\) 0 0
\(519\) 5.16125e11 0.312249
\(520\) −6.36050e11 −0.381484
\(521\) 2.71301e12 1.61318 0.806588 0.591114i \(-0.201312\pi\)
0.806588 + 0.591114i \(0.201312\pi\)
\(522\) 5.21971e10 0.0307701
\(523\) 2.77389e12 1.62118 0.810590 0.585613i \(-0.199146\pi\)
0.810590 + 0.585613i \(0.199146\pi\)
\(524\) 6.63445e12 3.84427
\(525\) 0 0
\(526\) 2.72444e12 1.55182
\(527\) −2.65798e12 −1.50108
\(528\) 4.24943e12 2.37946
\(529\) −3.51533e11 −0.195171
\(530\) 1.88553e12 1.03799
\(531\) −8.82506e11 −0.481717
\(532\) 0 0
\(533\) 1.69676e11 0.0910640
\(534\) −1.81646e12 −0.966698
\(535\) −6.37191e11 −0.336262
\(536\) −1.95605e12 −1.02362
\(537\) −4.61828e11 −0.239660
\(538\) 2.19960e12 1.13194
\(539\) 0 0
\(540\) −1.87013e12 −0.946453
\(541\) 1.38439e12 0.694816 0.347408 0.937714i \(-0.387062\pi\)
0.347408 + 0.937714i \(0.387062\pi\)
\(542\) 6.17071e12 3.07141
\(543\) −2.09097e12 −1.03216
\(544\) 1.33945e13 6.55741
\(545\) 7.12108e11 0.345750
\(546\) 0 0
\(547\) −3.12767e12 −1.49375 −0.746876 0.664964i \(-0.768447\pi\)
−0.746876 + 0.664964i \(0.768447\pi\)
\(548\) 3.26936e12 1.54864
\(549\) −2.03261e11 −0.0954945
\(550\) 3.57005e11 0.166358
\(551\) −6.53983e10 −0.0302263
\(552\) −9.03977e12 −4.14411
\(553\) 0 0
\(554\) −2.21816e12 −1.00046
\(555\) 9.83567e11 0.440033
\(556\) −3.29372e12 −1.46167
\(557\) −6.70472e11 −0.295143 −0.147571 0.989051i \(-0.547146\pi\)
−0.147571 + 0.989051i \(0.547146\pi\)
\(558\) −2.34877e12 −1.02562
\(559\) 7.52713e11 0.326044
\(560\) 0 0
\(561\) 1.33471e12 0.568924
\(562\) 2.03762e12 0.861607
\(563\) 8.15317e11 0.342010 0.171005 0.985270i \(-0.445299\pi\)
0.171005 + 0.985270i \(0.445299\pi\)
\(564\) 6.28100e12 2.61380
\(565\) −5.49734e11 −0.226952
\(566\) 4.84023e12 1.98240
\(567\) 0 0
\(568\) 1.67314e13 6.74475
\(569\) 2.60733e11 0.104278 0.0521388 0.998640i \(-0.483396\pi\)
0.0521388 + 0.998640i \(0.483396\pi\)
\(570\) −2.05099e12 −0.813816
\(571\) 1.20991e12 0.476312 0.238156 0.971227i \(-0.423457\pi\)
0.238156 + 0.971227i \(0.423457\pi\)
\(572\) −6.91614e11 −0.270136
\(573\) 2.32368e12 0.900492
\(574\) 0 0
\(575\) −4.70313e11 −0.179425
\(576\) 6.79786e12 2.57318
\(577\) −1.46209e12 −0.549139 −0.274570 0.961567i \(-0.588535\pi\)
−0.274570 + 0.961567i \(0.588535\pi\)
\(578\) 1.75654e12 0.654611
\(579\) 2.46504e12 0.911529
\(580\) 1.41134e11 0.0517853
\(581\) 0 0
\(582\) −6.54199e12 −2.36351
\(583\) 1.35853e12 0.487034
\(584\) −1.32796e13 −4.72418
\(585\) −1.09326e11 −0.0385942
\(586\) −1.81603e12 −0.636186
\(587\) 5.40641e12 1.87948 0.939740 0.341889i \(-0.111067\pi\)
0.939740 + 0.341889i \(0.111067\pi\)
\(588\) 0 0
\(589\) 2.94280e12 1.00749
\(590\) −3.19125e12 −1.08424
\(591\) 4.57860e11 0.154379
\(592\) 1.20003e13 4.01553
\(593\) 1.61738e11 0.0537114 0.0268557 0.999639i \(-0.491451\pi\)
0.0268557 + 0.999639i \(0.491451\pi\)
\(594\) −1.80203e12 −0.593913
\(595\) 0 0
\(596\) −1.33398e12 −0.433054
\(597\) −1.55494e12 −0.500991
\(598\) 1.21852e12 0.389652
\(599\) 4.70677e12 1.49383 0.746917 0.664917i \(-0.231533\pi\)
0.746917 + 0.664917i \(0.231533\pi\)
\(600\) 2.93285e12 0.923868
\(601\) −4.13046e12 −1.29141 −0.645704 0.763588i \(-0.723436\pi\)
−0.645704 + 0.763588i \(0.723436\pi\)
\(602\) 0 0
\(603\) −3.36211e11 −0.103558
\(604\) −2.05118e12 −0.627101
\(605\) −1.21649e12 −0.369157
\(606\) −4.23038e12 −1.27424
\(607\) −3.69599e12 −1.10505 −0.552524 0.833497i \(-0.686335\pi\)
−0.552524 + 0.833497i \(0.686335\pi\)
\(608\) −1.48299e13 −4.40120
\(609\) 0 0
\(610\) −7.35015e11 −0.214938
\(611\) −5.61003e11 −0.162847
\(612\) 4.69062e12 1.35160
\(613\) −3.11060e12 −0.889758 −0.444879 0.895591i \(-0.646753\pi\)
−0.444879 + 0.895591i \(0.646753\pi\)
\(614\) −1.01269e13 −2.87553
\(615\) −7.82382e11 −0.220537
\(616\) 0 0
\(617\) 2.55933e11 0.0710956 0.0355478 0.999368i \(-0.488682\pi\)
0.0355478 + 0.999368i \(0.488682\pi\)
\(618\) −8.05042e11 −0.222009
\(619\) 8.95234e11 0.245092 0.122546 0.992463i \(-0.460894\pi\)
0.122546 + 0.992463i \(0.460894\pi\)
\(620\) −6.35079e12 −1.72610
\(621\) 2.37396e12 0.640563
\(622\) 4.64921e12 1.24544
\(623\) 0 0
\(624\) −4.70567e12 −1.24248
\(625\) 1.52588e11 0.0400000
\(626\) 6.37378e12 1.65887
\(627\) −1.47774e12 −0.381850
\(628\) −7.17409e12 −1.84055
\(629\) 3.76919e12 0.960107
\(630\) 0 0
\(631\) 7.24421e11 0.181911 0.0909554 0.995855i \(-0.471008\pi\)
0.0909554 + 0.995855i \(0.471008\pi\)
\(632\) 2.09119e13 5.21395
\(633\) −7.01975e12 −1.73782
\(634\) −4.36598e12 −1.07320
\(635\) 1.23071e12 0.300381
\(636\) 1.68431e13 4.08193
\(637\) 0 0
\(638\) 1.35995e11 0.0324960
\(639\) 2.87584e12 0.682357
\(640\) 1.37842e13 3.24767
\(641\) 8.35278e12 1.95420 0.977102 0.212771i \(-0.0682487\pi\)
0.977102 + 0.212771i \(0.0682487\pi\)
\(642\) −7.61228e12 −1.76851
\(643\) −6.96916e12 −1.60780 −0.803898 0.594768i \(-0.797244\pi\)
−0.803898 + 0.594768i \(0.797244\pi\)
\(644\) 0 0
\(645\) −3.47079e12 −0.789605
\(646\) −7.85971e12 −1.77566
\(647\) −6.66337e12 −1.49494 −0.747472 0.664294i \(-0.768732\pi\)
−0.747472 + 0.664294i \(0.768732\pi\)
\(648\) −2.17467e13 −4.84514
\(649\) −2.29929e12 −0.508737
\(650\) −3.95335e11 −0.0868672
\(651\) 0 0
\(652\) −7.07555e12 −1.53337
\(653\) 5.38394e12 1.15875 0.579377 0.815060i \(-0.303296\pi\)
0.579377 + 0.815060i \(0.303296\pi\)
\(654\) 8.50728e12 1.81841
\(655\) 2.73238e12 0.580036
\(656\) −9.54565e12 −2.01251
\(657\) −2.28253e12 −0.477938
\(658\) 0 0
\(659\) 7.46401e12 1.54166 0.770829 0.637043i \(-0.219842\pi\)
0.770829 + 0.637043i \(0.219842\pi\)
\(660\) 3.18906e12 0.654208
\(661\) 3.41567e12 0.695937 0.347968 0.937506i \(-0.386872\pi\)
0.347968 + 0.937506i \(0.386872\pi\)
\(662\) 2.62650e12 0.531515
\(663\) −1.47801e12 −0.297076
\(664\) 3.35352e12 0.669490
\(665\) 0 0
\(666\) 3.33071e12 0.655999
\(667\) −1.79158e11 −0.0350485
\(668\) 9.10527e12 1.76929
\(669\) −3.08708e12 −0.595840
\(670\) −1.21578e12 −0.233087
\(671\) −5.29579e11 −0.100851
\(672\) 0 0
\(673\) 4.37280e12 0.821659 0.410830 0.911712i \(-0.365239\pi\)
0.410830 + 0.911712i \(0.365239\pi\)
\(674\) 2.02959e12 0.378825
\(675\) −7.70206e11 −0.142804
\(676\) −1.53270e13 −2.82292
\(677\) 9.39052e12 1.71807 0.859035 0.511917i \(-0.171065\pi\)
0.859035 + 0.511917i \(0.171065\pi\)
\(678\) −6.56746e12 −1.19361
\(679\) 0 0
\(680\) 1.12392e13 2.01578
\(681\) 8.15743e12 1.45342
\(682\) −6.11953e12 −1.08315
\(683\) 7.07488e12 1.24402 0.622008 0.783011i \(-0.286317\pi\)
0.622008 + 0.783011i \(0.286317\pi\)
\(684\) −5.19326e12 −0.907167
\(685\) 1.34648e12 0.233664
\(686\) 0 0
\(687\) −2.10466e11 −0.0360476
\(688\) −4.23463e13 −7.20556
\(689\) −1.50439e12 −0.254315
\(690\) −5.61865e12 −0.943651
\(691\) 1.06781e13 1.78174 0.890869 0.454261i \(-0.150097\pi\)
0.890869 + 0.454261i \(0.150097\pi\)
\(692\) 4.72579e12 0.783424
\(693\) 0 0
\(694\) −7.13046e12 −1.16681
\(695\) −1.35651e12 −0.220542
\(696\) 1.11722e12 0.180467
\(697\) −2.99821e12 −0.481188
\(698\) 8.91128e12 1.42099
\(699\) −7.62899e12 −1.20870
\(700\) 0 0
\(701\) 7.11262e11 0.111250 0.0556248 0.998452i \(-0.482285\pi\)
0.0556248 + 0.998452i \(0.482285\pi\)
\(702\) 1.99550e12 0.310124
\(703\) −4.17309e12 −0.644404
\(704\) 1.77112e13 2.71751
\(705\) 2.58681e12 0.394379
\(706\) 1.42664e12 0.216119
\(707\) 0 0
\(708\) −2.85068e13 −4.26382
\(709\) 8.03357e12 1.19399 0.596994 0.802245i \(-0.296361\pi\)
0.596994 + 0.802245i \(0.296361\pi\)
\(710\) 1.03994e13 1.53584
\(711\) 3.59439e12 0.527488
\(712\) −1.10207e13 −1.60712
\(713\) 8.06177e12 1.16823
\(714\) 0 0
\(715\) −2.84839e11 −0.0407589
\(716\) −4.22863e12 −0.601300
\(717\) −5.35110e11 −0.0756149
\(718\) −1.13316e13 −1.59123
\(719\) −1.03105e13 −1.43879 −0.719396 0.694600i \(-0.755581\pi\)
−0.719396 + 0.694600i \(0.755581\pi\)
\(720\) 6.15048e12 0.852929
\(721\) 0 0
\(722\) −5.83532e12 −0.799185
\(723\) −1.12997e13 −1.53796
\(724\) −1.91455e13 −2.58967
\(725\) 5.81258e10 0.00781354
\(726\) −1.45330e13 −1.94151
\(727\) 8.01194e12 1.06373 0.531867 0.846828i \(-0.321491\pi\)
0.531867 + 0.846828i \(0.321491\pi\)
\(728\) 0 0
\(729\) 2.69436e12 0.353332
\(730\) −8.25389e12 −1.07574
\(731\) −1.33006e13 −1.72284
\(732\) −6.56576e12 −0.845250
\(733\) −8.34520e12 −1.06775 −0.533874 0.845564i \(-0.679264\pi\)
−0.533874 + 0.845564i \(0.679264\pi\)
\(734\) −3.02978e13 −3.85282
\(735\) 0 0
\(736\) −4.06262e13 −5.10336
\(737\) −8.75970e11 −0.109367
\(738\) −2.64943e12 −0.328775
\(739\) 1.29964e13 1.60296 0.801479 0.598022i \(-0.204047\pi\)
0.801479 + 0.598022i \(0.204047\pi\)
\(740\) 9.00583e12 1.10403
\(741\) 1.63639e12 0.199391
\(742\) 0 0
\(743\) −2.04689e12 −0.246403 −0.123201 0.992382i \(-0.539316\pi\)
−0.123201 + 0.992382i \(0.539316\pi\)
\(744\) −5.02729e13 −6.01527
\(745\) −5.49397e11 −0.0653406
\(746\) −2.70216e13 −3.19438
\(747\) 5.76411e11 0.0677313
\(748\) 1.22210e13 1.42741
\(749\) 0 0
\(750\) 1.82291e12 0.210373
\(751\) −9.14165e12 −1.04868 −0.524342 0.851508i \(-0.675689\pi\)
−0.524342 + 0.851508i \(0.675689\pi\)
\(752\) 3.15610e13 3.59891
\(753\) 1.77757e13 2.01488
\(754\) −1.50596e11 −0.0169685
\(755\) −8.44772e11 −0.0946190
\(756\) 0 0
\(757\) −1.60644e13 −1.77801 −0.889005 0.457897i \(-0.848603\pi\)
−0.889005 + 0.457897i \(0.848603\pi\)
\(758\) 2.87688e13 3.16526
\(759\) −4.04824e12 −0.442770
\(760\) −1.24435e13 −1.35295
\(761\) −3.42399e11 −0.0370085 −0.0185043 0.999829i \(-0.505890\pi\)
−0.0185043 + 0.999829i \(0.505890\pi\)
\(762\) 1.47028e13 1.57980
\(763\) 0 0
\(764\) 2.12762e13 2.25930
\(765\) 1.93182e12 0.203934
\(766\) −2.29856e13 −2.41227
\(767\) 2.54616e12 0.265648
\(768\) 9.05899e13 9.39624
\(769\) 5.75725e12 0.593671 0.296836 0.954929i \(-0.404069\pi\)
0.296836 + 0.954929i \(0.404069\pi\)
\(770\) 0 0
\(771\) 2.13854e13 2.17958
\(772\) 2.25706e13 2.28700
\(773\) 1.73573e13 1.74853 0.874267 0.485445i \(-0.161342\pi\)
0.874267 + 0.485445i \(0.161342\pi\)
\(774\) −1.17534e13 −1.17714
\(775\) −2.61555e12 −0.260439
\(776\) −3.96909e13 −3.92928
\(777\) 0 0
\(778\) 5.35734e12 0.524253
\(779\) 3.31950e12 0.322964
\(780\) −3.53146e12 −0.341608
\(781\) 7.49277e12 0.720630
\(782\) −2.15316e13 −2.05895
\(783\) −2.93397e11 −0.0278951
\(784\) 0 0
\(785\) −2.95463e12 −0.277708
\(786\) 3.26427e13 3.05060
\(787\) −5.96110e12 −0.553911 −0.276956 0.960883i \(-0.589326\pi\)
−0.276956 + 0.960883i \(0.589326\pi\)
\(788\) 4.19230e12 0.387333
\(789\) 1.00231e13 0.920779
\(790\) 1.29978e13 1.18726
\(791\) 0 0
\(792\) 7.15579e12 0.646241
\(793\) 5.86437e11 0.0526614
\(794\) −1.26542e13 −1.12990
\(795\) 6.93679e12 0.615894
\(796\) −1.42375e13 −1.25697
\(797\) 8.87849e11 0.0779430 0.0389715 0.999240i \(-0.487592\pi\)
0.0389715 + 0.999240i \(0.487592\pi\)
\(798\) 0 0
\(799\) 9.91307e12 0.860493
\(800\) 1.31807e13 1.13772
\(801\) −1.89426e12 −0.162590
\(802\) −3.75048e13 −3.20112
\(803\) −5.94693e12 −0.504746
\(804\) −1.08603e13 −0.916625
\(805\) 0 0
\(806\) 6.77655e12 0.565589
\(807\) 8.09222e12 0.671640
\(808\) −2.56661e13 −2.11840
\(809\) 1.23901e13 1.01696 0.508481 0.861073i \(-0.330207\pi\)
0.508481 + 0.861073i \(0.330207\pi\)
\(810\) −1.35166e13 −1.10328
\(811\) 2.04283e13 1.65820 0.829102 0.559097i \(-0.188852\pi\)
0.829102 + 0.559097i \(0.188852\pi\)
\(812\) 0 0
\(813\) 2.27018e13 1.82244
\(814\) 8.67789e12 0.692794
\(815\) −2.91404e12 −0.231359
\(816\) 8.31504e13 6.56537
\(817\) 1.47259e13 1.15633
\(818\) 2.08217e13 1.62602
\(819\) 0 0
\(820\) −7.16371e12 −0.553319
\(821\) 1.06298e13 0.816548 0.408274 0.912859i \(-0.366131\pi\)
0.408274 + 0.912859i \(0.366131\pi\)
\(822\) 1.60858e13 1.22891
\(823\) 2.52356e13 1.91741 0.958703 0.284410i \(-0.0917978\pi\)
0.958703 + 0.284410i \(0.0917978\pi\)
\(824\) −4.88427e12 −0.369085
\(825\) 1.31341e12 0.0987089
\(826\) 0 0
\(827\) 9.72410e12 0.722894 0.361447 0.932393i \(-0.382283\pi\)
0.361447 + 0.932393i \(0.382283\pi\)
\(828\) −1.42269e13 −1.05189
\(829\) 1.93523e13 1.42310 0.711552 0.702633i \(-0.247993\pi\)
0.711552 + 0.702633i \(0.247993\pi\)
\(830\) 2.08437e12 0.152449
\(831\) −8.16050e12 −0.593625
\(832\) −1.96128e13 −1.41901
\(833\) 0 0
\(834\) −1.62057e13 −1.15990
\(835\) 3.74998e12 0.266956
\(836\) −1.35306e13 −0.958051
\(837\) 1.32023e13 0.929792
\(838\) −3.79736e13 −2.66002
\(839\) 1.81349e13 1.26353 0.631767 0.775158i \(-0.282330\pi\)
0.631767 + 0.775158i \(0.282330\pi\)
\(840\) 0 0
\(841\) −1.44850e13 −0.998474
\(842\) −2.58260e13 −1.77073
\(843\) 7.49630e12 0.511238
\(844\) −6.42749e13 −4.36014
\(845\) −6.31239e12 −0.425930
\(846\) 8.75987e12 0.587937
\(847\) 0 0
\(848\) 8.46341e13 5.62036
\(849\) 1.78070e13 1.17627
\(850\) 6.98568e12 0.459011
\(851\) −1.14321e13 −0.747211
\(852\) 9.28959e13 6.03974
\(853\) −2.30395e13 −1.49005 −0.745027 0.667035i \(-0.767563\pi\)
−0.745027 + 0.667035i \(0.767563\pi\)
\(854\) 0 0
\(855\) −2.13883e12 −0.136876
\(856\) −4.61844e13 −2.94011
\(857\) 2.28436e12 0.144660 0.0723302 0.997381i \(-0.476956\pi\)
0.0723302 + 0.997381i \(0.476956\pi\)
\(858\) −3.40287e12 −0.214364
\(859\) −5.10406e12 −0.319850 −0.159925 0.987129i \(-0.551125\pi\)
−0.159925 + 0.987129i \(0.551125\pi\)
\(860\) −3.17796e13 −1.98109
\(861\) 0 0
\(862\) −2.17107e11 −0.0133934
\(863\) 1.02192e13 0.627144 0.313572 0.949564i \(-0.398474\pi\)
0.313572 + 0.949564i \(0.398474\pi\)
\(864\) −6.65313e13 −4.06176
\(865\) 1.94630e12 0.118205
\(866\) −7.33222e12 −0.443001
\(867\) 6.46224e12 0.388416
\(868\) 0 0
\(869\) 9.36488e12 0.557075
\(870\) 6.94406e11 0.0410939
\(871\) 9.70019e11 0.0571082
\(872\) 5.16145e13 3.02306
\(873\) −6.82217e12 −0.397520
\(874\) 2.38389e13 1.38192
\(875\) 0 0
\(876\) −7.37305e13 −4.23038
\(877\) 1.62906e13 0.929908 0.464954 0.885335i \(-0.346071\pi\)
0.464954 + 0.885335i \(0.346071\pi\)
\(878\) 1.33488e13 0.758083
\(879\) −6.68110e12 −0.377483
\(880\) 1.60246e13 0.900770
\(881\) −1.93634e12 −0.108291 −0.0541453 0.998533i \(-0.517243\pi\)
−0.0541453 + 0.998533i \(0.517243\pi\)
\(882\) 0 0
\(883\) −2.44524e13 −1.35362 −0.676811 0.736157i \(-0.736639\pi\)
−0.676811 + 0.736157i \(0.736639\pi\)
\(884\) −1.35331e13 −0.745354
\(885\) −1.17404e13 −0.643339
\(886\) 5.32152e13 2.90124
\(887\) 2.00412e13 1.08709 0.543547 0.839379i \(-0.317081\pi\)
0.543547 + 0.839379i \(0.317081\pi\)
\(888\) 7.12902e13 3.84744
\(889\) 0 0
\(890\) −6.84986e12 −0.365954
\(891\) −9.73874e12 −0.517670
\(892\) −2.82662e13 −1.49494
\(893\) −1.09753e13 −0.577546
\(894\) −6.56343e12 −0.343647
\(895\) −1.74155e12 −0.0907260
\(896\) 0 0
\(897\) 4.48288e12 0.231202
\(898\) 1.85548e13 0.952166
\(899\) −9.96350e11 −0.0508737
\(900\) 4.61575e12 0.234504
\(901\) 2.65829e13 1.34382
\(902\) −6.90286e12 −0.347216
\(903\) 0 0
\(904\) −3.98454e13 −1.98436
\(905\) −7.88502e12 −0.390737
\(906\) −1.00922e13 −0.497631
\(907\) 1.67489e13 0.821777 0.410889 0.911686i \(-0.365219\pi\)
0.410889 + 0.911686i \(0.365219\pi\)
\(908\) 7.46918e13 3.64659
\(909\) −4.41156e12 −0.214316
\(910\) 0 0
\(911\) 9.01719e12 0.433749 0.216875 0.976199i \(-0.430414\pi\)
0.216875 + 0.976199i \(0.430414\pi\)
\(912\) −9.20607e13 −4.40654
\(913\) 1.50179e12 0.0715304
\(914\) −3.93114e13 −1.86320
\(915\) −2.70409e12 −0.127534
\(916\) −1.92709e12 −0.0904424
\(917\) 0 0
\(918\) −3.52611e13 −1.63872
\(919\) −4.86323e12 −0.224908 −0.112454 0.993657i \(-0.535871\pi\)
−0.112454 + 0.993657i \(0.535871\pi\)
\(920\) −3.40889e13 −1.56880
\(921\) −3.72563e13 −1.70621
\(922\) −7.22635e13 −3.29329
\(923\) −8.29723e12 −0.376292
\(924\) 0 0
\(925\) 3.70902e12 0.166580
\(926\) −1.56059e12 −0.0697491
\(927\) −8.39520e11 −0.0373398
\(928\) 5.02097e12 0.222240
\(929\) 3.42631e13 1.50923 0.754617 0.656166i \(-0.227823\pi\)
0.754617 + 0.656166i \(0.227823\pi\)
\(930\) −3.12470e13 −1.36973
\(931\) 0 0
\(932\) −6.98532e13 −3.03260
\(933\) 1.71042e13 0.738987
\(934\) 7.31474e13 3.14513
\(935\) 5.03318e12 0.215373
\(936\) −7.92408e12 −0.337448
\(937\) 1.80465e13 0.764828 0.382414 0.923991i \(-0.375093\pi\)
0.382414 + 0.923991i \(0.375093\pi\)
\(938\) 0 0
\(939\) 2.34488e13 0.984297
\(940\) 2.36856e13 0.989484
\(941\) 8.08587e12 0.336181 0.168091 0.985772i \(-0.446240\pi\)
0.168091 + 0.985772i \(0.446240\pi\)
\(942\) −3.52978e13 −1.46056
\(943\) 9.09371e12 0.374488
\(944\) −1.43242e14 −5.87081
\(945\) 0 0
\(946\) −3.06224e13 −1.24316
\(947\) 7.17527e12 0.289910 0.144955 0.989438i \(-0.453696\pi\)
0.144955 + 0.989438i \(0.453696\pi\)
\(948\) 1.16107e14 4.66895
\(949\) 6.58543e12 0.263564
\(950\) −7.73425e12 −0.308079
\(951\) −1.60622e13 −0.636786
\(952\) 0 0
\(953\) −1.63556e13 −0.642316 −0.321158 0.947026i \(-0.604072\pi\)
−0.321158 + 0.947026i \(0.604072\pi\)
\(954\) 2.34905e13 0.918172
\(955\) 8.76256e12 0.340891
\(956\) −4.89962e12 −0.189715
\(957\) 5.00320e11 0.0192816
\(958\) 6.08359e13 2.33354
\(959\) 0 0
\(960\) 9.04355e13 3.43652
\(961\) 1.83943e13 0.695708
\(962\) −9.60959e12 −0.361757
\(963\) −7.93830e12 −0.297447
\(964\) −1.03463e14 −3.85869
\(965\) 9.29564e12 0.345069
\(966\) 0 0
\(967\) 1.76906e13 0.650614 0.325307 0.945609i \(-0.394532\pi\)
0.325307 + 0.945609i \(0.394532\pi\)
\(968\) −8.81731e13 −3.22773
\(969\) −2.89155e13 −1.05360
\(970\) −2.46698e13 −0.894731
\(971\) 1.71469e13 0.619013 0.309507 0.950897i \(-0.399836\pi\)
0.309507 + 0.950897i \(0.399836\pi\)
\(972\) −6.18462e13 −2.22236
\(973\) 0 0
\(974\) 2.21092e13 0.787152
\(975\) −1.45442e12 −0.0515430
\(976\) −3.29919e13 −1.16381
\(977\) −4.65378e13 −1.63411 −0.817054 0.576561i \(-0.804394\pi\)
−0.817054 + 0.576561i \(0.804394\pi\)
\(978\) −3.48130e13 −1.21679
\(979\) −4.93533e12 −0.171709
\(980\) 0 0
\(981\) 8.87163e12 0.305839
\(982\) −4.38542e13 −1.50491
\(983\) −3.89989e13 −1.33218 −0.666088 0.745873i \(-0.732033\pi\)
−0.666088 + 0.745873i \(0.732033\pi\)
\(984\) −5.67080e13 −1.92826
\(985\) 1.72658e12 0.0584420
\(986\) 2.66108e12 0.0896625
\(987\) 0 0
\(988\) 1.49833e13 0.500266
\(989\) 4.03414e13 1.34081
\(990\) 4.44767e12 0.147155
\(991\) −1.44456e13 −0.475779 −0.237889 0.971292i \(-0.576456\pi\)
−0.237889 + 0.971292i \(0.576456\pi\)
\(992\) −2.25934e14 −7.40764
\(993\) 9.66276e12 0.315377
\(994\) 0 0
\(995\) −5.86367e12 −0.189656
\(996\) 1.86193e13 0.599510
\(997\) 3.12265e13 1.00091 0.500455 0.865763i \(-0.333166\pi\)
0.500455 + 0.865763i \(0.333166\pi\)
\(998\) 6.96611e13 2.22281
\(999\) −1.87217e13 −0.594705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.m.1.13 13
7.2 even 3 35.10.e.b.11.1 26
7.4 even 3 35.10.e.b.16.1 yes 26
7.6 odd 2 245.10.a.l.1.13 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.e.b.11.1 26 7.2 even 3
35.10.e.b.16.1 yes 26 7.4 even 3
245.10.a.l.1.13 13 7.6 odd 2
245.10.a.m.1.13 13 1.1 even 1 trivial