Properties

Label 245.10.a.m.1.6
Level 245245
Weight 1010
Character 245.1
Self dual yes
Analytic conductor 126.184126.184
Analytic rank 00
Dimension 1313
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 126.183779860126.183779860
Analytic rank: 00
Dimension: 1313
Coefficient field: Q[x]/(x13)\mathbb{Q}[x]/(x^{13} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x13x125109x11+3203x10+9635922x9+242128x88405086048x7+96 ⁣ ⁣52 x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 214335377 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7}
Twist minimal: no (minimal twist has level 35)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 9.520289.52028 of defining polynomial
Character χ\chi == 245.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9.52028q2175.497q3421.364q4+625.000q5+1670.78q6+8885.89q8+11116.2q95950.18q1026269.4q11+73948.1q1243764.6q13109686.q15+131142.q16+313832.q17105829.q18+232987.q19263353.q20+250093.q22+1.23092e6q231.55945e6q24+390625.q25+416651.q26+1.50345e6q27+1.65095e6q29+1.04424e6q30+1.09098e6q315.79809e6q32+4.61021e6q332.98777e6q344.68396e6q365.56473e6q372.21810e6q38+7.68055e6q39+5.55368e6q40+7.29660e6q414.17651e7q43+1.10690e7q44+6.94762e6q451.17187e7q466.13817e7q472.30151e7q483.71886e6q505.50765e7q51+1.84408e7q522.19202e7q531.43133e7q541.64184e7q554.08886e7q571.57175e7q58+1.65061e7q59+4.62176e7q601.22052e8q611.03864e7q621.19454e7q642.73529e7q654.38905e7q66+1.45742e8q671.32237e8q682.16023e8q695.74040e7q71+9.87773e7q723.90283e8q73+5.29778e7q746.85535e7q759.81725e7q767.31210e7q78+4.47245e8q79+8.19639e7q804.82651e8q816.94657e7q82+5.77741e8q83+1.96145e8q85+3.97615e8q862.89737e8q872.33427e8q887.75704e8q896.61433e7q905.18667e8q921.91463e8q93+5.84372e8q94+1.45617e8q95+1.01755e9q96+7.65402e8q972.92016e8q99+O(q100)q-9.52028 q^{2} -175.497 q^{3} -421.364 q^{4} +625.000 q^{5} +1670.78 q^{6} +8885.89 q^{8} +11116.2 q^{9} -5950.18 q^{10} -26269.4 q^{11} +73948.1 q^{12} -43764.6 q^{13} -109686. q^{15} +131142. q^{16} +313832. q^{17} -105829. q^{18} +232987. q^{19} -263353. q^{20} +250093. q^{22} +1.23092e6 q^{23} -1.55945e6 q^{24} +390625. q^{25} +416651. q^{26} +1.50345e6 q^{27} +1.65095e6 q^{29} +1.04424e6 q^{30} +1.09098e6 q^{31} -5.79809e6 q^{32} +4.61021e6 q^{33} -2.98777e6 q^{34} -4.68396e6 q^{36} -5.56473e6 q^{37} -2.21810e6 q^{38} +7.68055e6 q^{39} +5.55368e6 q^{40} +7.29660e6 q^{41} -4.17651e7 q^{43} +1.10690e7 q^{44} +6.94762e6 q^{45} -1.17187e7 q^{46} -6.13817e7 q^{47} -2.30151e7 q^{48} -3.71886e6 q^{50} -5.50765e7 q^{51} +1.84408e7 q^{52} -2.19202e7 q^{53} -1.43133e7 q^{54} -1.64184e7 q^{55} -4.08886e7 q^{57} -1.57175e7 q^{58} +1.65061e7 q^{59} +4.62176e7 q^{60} -1.22052e8 q^{61} -1.03864e7 q^{62} -1.19454e7 q^{64} -2.73529e7 q^{65} -4.38905e7 q^{66} +1.45742e8 q^{67} -1.32237e8 q^{68} -2.16023e8 q^{69} -5.74040e7 q^{71} +9.87773e7 q^{72} -3.90283e8 q^{73} +5.29778e7 q^{74} -6.85535e7 q^{75} -9.81725e7 q^{76} -7.31210e7 q^{78} +4.47245e8 q^{79} +8.19639e7 q^{80} -4.82651e8 q^{81} -6.94657e7 q^{82} +5.77741e8 q^{83} +1.96145e8 q^{85} +3.97615e8 q^{86} -2.89737e8 q^{87} -2.33427e8 q^{88} -7.75704e8 q^{89} -6.61433e7 q^{90} -5.18667e8 q^{92} -1.91463e8 q^{93} +5.84372e8 q^{94} +1.45617e8 q^{95} +1.01755e9 q^{96} +7.65402e8 q^{97} -2.92016e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 13qq2+268q3+3563q4+8125q5+3040q64695q8+82107q9625q10+129087q11+356068q12+35889q13+167500q15+1379187q16+251650q17+391089q18++5266142099q99+O(q100) 13 q - q^{2} + 268 q^{3} + 3563 q^{4} + 8125 q^{5} + 3040 q^{6} - 4695 q^{8} + 82107 q^{9} - 625 q^{10} + 129087 q^{11} + 356068 q^{12} + 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} + 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −9.52028 −0.420741 −0.210371 0.977622i 0.567467π-0.567467\pi
−0.210371 + 0.977622i 0.567467π0.567467\pi
33 −175.497 −1.25090 −0.625452 0.780263i 0.715085π-0.715085\pi
−0.625452 + 0.780263i 0.715085π0.715085\pi
44 −421.364 −0.822977
55 625.000 0.447214
66 1670.78 0.526307
77 0 0
88 8885.89 0.767001
99 11116.2 0.564761
1010 −5950.18 −0.188161
1111 −26269.4 −0.540983 −0.270492 0.962722i 0.587186π-0.587186\pi
−0.270492 + 0.962722i 0.587186π0.587186\pi
1212 73948.1 1.02947
1313 −43764.6 −0.424989 −0.212494 0.977162i 0.568159π-0.568159\pi
−0.212494 + 0.977162i 0.568159π0.568159\pi
1414 0 0
1515 −109686. −0.559421
1616 131142. 0.500268
1717 313832. 0.911332 0.455666 0.890151i 0.349401π-0.349401\pi
0.455666 + 0.890151i 0.349401π0.349401\pi
1818 −105829. −0.237618
1919 232987. 0.410148 0.205074 0.978746i 0.434256π-0.434256\pi
0.205074 + 0.978746i 0.434256π0.434256\pi
2020 −263353. −0.368046
2121 0 0
2222 250093. 0.227614
2323 1.23092e6 0.917182 0.458591 0.888647i 0.348354π-0.348354\pi
0.458591 + 0.888647i 0.348354π0.348354\pi
2424 −1.55945e6 −0.959445
2525 390625. 0.200000
2626 416651. 0.178810
2727 1.50345e6 0.544442
2828 0 0
2929 1.65095e6 0.433454 0.216727 0.976232i 0.430462π-0.430462\pi
0.216727 + 0.976232i 0.430462π0.430462\pi
3030 1.04424e6 0.235372
3131 1.09098e6 0.212172 0.106086 0.994357i 0.466168π-0.466168\pi
0.106086 + 0.994357i 0.466168π0.466168\pi
3232 −5.79809e6 −0.977485
3333 4.61021e6 0.676718
3434 −2.98777e6 −0.383435
3535 0 0
3636 −4.68396e6 −0.464785
3737 −5.56473e6 −0.488131 −0.244065 0.969759i 0.578481π-0.578481\pi
−0.244065 + 0.969759i 0.578481π0.578481\pi
3838 −2.21810e6 −0.172566
3939 7.68055e6 0.531620
4040 5.55368e6 0.343013
4141 7.29660e6 0.403268 0.201634 0.979461i 0.435375π-0.435375\pi
0.201634 + 0.979461i 0.435375π0.435375\pi
4242 0 0
4343 −4.17651e7 −1.86297 −0.931483 0.363784i 0.881485π-0.881485\pi
−0.931483 + 0.363784i 0.881485π0.881485\pi
4444 1.10690e7 0.445217
4545 6.94762e6 0.252569
4646 −1.17187e7 −0.385896
4747 −6.13817e7 −1.83484 −0.917421 0.397917i 0.869733π-0.869733\pi
−0.917421 + 0.397917i 0.869733π0.869733\pi
4848 −2.30151e7 −0.625787
4949 0 0
5050 −3.71886e6 −0.0841482
5151 −5.50765e7 −1.13999
5252 1.84408e7 0.349756
5353 −2.19202e7 −0.381595 −0.190797 0.981629i 0.561107π-0.561107\pi
−0.190797 + 0.981629i 0.561107π0.561107\pi
5454 −1.43133e7 −0.229069
5555 −1.64184e7 −0.241935
5656 0 0
5757 −4.08886e7 −0.513056
5858 −1.57175e7 −0.182372
5959 1.65061e7 0.177341 0.0886705 0.996061i 0.471738π-0.471738\pi
0.0886705 + 0.996061i 0.471738π0.471738\pi
6060 4.62176e7 0.460391
6161 −1.22052e8 −1.12865 −0.564326 0.825552i 0.690864π-0.690864\pi
−0.564326 + 0.825552i 0.690864π0.690864\pi
6262 −1.03864e7 −0.0892694
6363 0 0
6464 −1.19454e7 −0.0890000
6565 −2.73529e7 −0.190061
6666 −4.38905e7 −0.284723
6767 1.45742e8 0.883584 0.441792 0.897118i 0.354343π-0.354343\pi
0.441792 + 0.897118i 0.354343π0.354343\pi
6868 −1.32237e8 −0.750005
6969 −2.16023e8 −1.14731
7070 0 0
7171 −5.74040e7 −0.268089 −0.134045 0.990975i 0.542797π-0.542797\pi
−0.134045 + 0.990975i 0.542797π0.542797\pi
7272 9.87773e7 0.433172
7373 −3.90283e8 −1.60852 −0.804260 0.594278i 0.797438π-0.797438\pi
−0.804260 + 0.594278i 0.797438π0.797438\pi
7474 5.29778e7 0.205377
7575 −6.85535e7 −0.250181
7676 −9.81725e7 −0.337543
7777 0 0
7878 −7.31210e7 −0.223675
7979 4.47245e8 1.29188 0.645942 0.763386i 0.276465π-0.276465\pi
0.645942 + 0.763386i 0.276465π0.276465\pi
8080 8.19639e7 0.223727
8181 −4.82651e8 −1.24581
8282 −6.94657e7 −0.169671
8383 5.77741e8 1.33623 0.668115 0.744058i 0.267101π-0.267101\pi
0.668115 + 0.744058i 0.267101π0.267101\pi
8484 0 0
8585 1.96145e8 0.407560
8686 3.97615e8 0.783827
8787 −2.89737e8 −0.542209
8888 −2.33427e8 −0.414935
8989 −7.75704e8 −1.31051 −0.655256 0.755407i 0.727439π-0.727439\pi
−0.655256 + 0.755407i 0.727439π0.727439\pi
9090 −6.61433e7 −0.106266
9191 0 0
9292 −5.18667e8 −0.754820
9393 −1.91463e8 −0.265407
9494 5.84372e8 0.771994
9595 1.45617e8 0.183424
9696 1.01755e9 1.22274
9797 7.65402e8 0.877843 0.438922 0.898525i 0.355361π-0.355361\pi
0.438922 + 0.898525i 0.355361π0.355361\pi
9898 0 0
9999 −2.92016e8 −0.305526
100100 −1.64595e8 −0.164595
101101 9.48735e8 0.907191 0.453596 0.891208i 0.350141π-0.350141\pi
0.453596 + 0.891208i 0.350141π0.350141\pi
102102 5.24344e8 0.479640
103103 −5.63675e8 −0.493471 −0.246735 0.969083i 0.579358π-0.579358\pi
−0.246735 + 0.969083i 0.579358π0.579358\pi
104104 −3.88887e8 −0.325967
105105 0 0
106106 2.08686e8 0.160553
107107 −4.28146e8 −0.315765 −0.157883 0.987458i 0.550467π-0.550467\pi
−0.157883 + 0.987458i 0.550467π0.550467\pi
108108 −6.33500e8 −0.448063
109109 7.20541e8 0.488922 0.244461 0.969659i 0.421389π-0.421389\pi
0.244461 + 0.969659i 0.421389π0.421389\pi
110110 1.56308e8 0.101792
111111 9.76593e8 0.610605
112112 0 0
113113 3.34613e9 1.93059 0.965295 0.261163i 0.0841059π-0.0841059\pi
0.965295 + 0.261163i 0.0841059π0.0841059\pi
114114 3.89271e8 0.215864
115115 7.69327e8 0.410176
116116 −6.95651e8 −0.356722
117117 −4.86495e8 −0.240017
118118 −1.57142e8 −0.0746147
119119 0 0
120120 −9.74655e8 −0.429077
121121 −1.66786e9 −0.707337
122122 1.16197e9 0.474870
123123 −1.28053e9 −0.504449
124124 −4.59698e8 −0.174613
125125 2.44141e8 0.0894427
126126 0 0
127127 2.86346e9 0.976728 0.488364 0.872640i 0.337594π-0.337594\pi
0.488364 + 0.872640i 0.337594π0.337594\pi
128128 3.08234e9 1.01493
129129 7.32964e9 2.33039
130130 2.60407e8 0.0799664
131131 1.80384e8 0.0535152 0.0267576 0.999642i 0.491482π-0.491482\pi
0.0267576 + 0.999642i 0.491482π0.491482\pi
132132 −1.94258e9 −0.556923
133133 0 0
134134 −1.38750e9 −0.371760
135135 9.39656e8 0.243482
136136 2.78867e9 0.698993
137137 −2.97988e9 −0.722698 −0.361349 0.932431i 0.617684π-0.617684\pi
−0.361349 + 0.932431i 0.617684π0.617684\pi
138138 2.05660e9 0.482719
139139 −7.43567e9 −1.68948 −0.844741 0.535175i 0.820246π-0.820246\pi
−0.844741 + 0.535175i 0.820246π0.820246\pi
140140 0 0
141141 1.07723e10 2.29521
142142 5.46502e8 0.112796
143143 1.14967e9 0.229912
144144 1.45780e9 0.282532
145145 1.03184e9 0.193846
146146 3.71560e9 0.676770
147147 0 0
148148 2.34478e9 0.401720
149149 −1.39313e9 −0.231555 −0.115778 0.993275i 0.536936π-0.536936\pi
−0.115778 + 0.993275i 0.536936π0.536936\pi
150150 6.52649e8 0.105261
151151 −7.46459e9 −1.16845 −0.584224 0.811592i 0.698601π-0.698601\pi
−0.584224 + 0.811592i 0.698601π0.698601\pi
152152 2.07030e9 0.314584
153153 3.48861e9 0.514685
154154 0 0
155155 6.81860e8 0.0948861
156156 −3.23631e9 −0.437511
157157 −5.46781e9 −0.718233 −0.359116 0.933293i 0.616922π-0.616922\pi
−0.359116 + 0.933293i 0.616922π0.616922\pi
158158 −4.25790e9 −0.543549
159159 3.84692e9 0.477339
160160 −3.62381e9 −0.437144
161161 0 0
162162 4.59497e9 0.524162
163163 1.17928e10 1.30849 0.654246 0.756281i 0.272986π-0.272986\pi
0.654246 + 0.756281i 0.272986π0.272986\pi
164164 −3.07453e9 −0.331880
165165 2.88138e9 0.302637
166166 −5.50025e9 −0.562207
167167 −1.23448e10 −1.22818 −0.614088 0.789238i 0.710476π-0.710476\pi
−0.614088 + 0.789238i 0.710476π0.710476\pi
168168 0 0
169169 −8.68916e9 −0.819384
170170 −1.86735e9 −0.171477
171171 2.58993e9 0.231636
172172 1.75983e10 1.53318
173173 −1.20327e10 −1.02130 −0.510652 0.859787i 0.670596π-0.670596\pi
−0.510652 + 0.859787i 0.670596π0.670596\pi
174174 2.75837e9 0.228130
175175 0 0
176176 −3.44503e9 −0.270637
177177 −2.89676e9 −0.221837
178178 7.38492e9 0.551386
179179 1.93725e10 1.41041 0.705207 0.709002i 0.250854π-0.250854\pi
0.705207 + 0.709002i 0.250854π0.250854\pi
180180 −2.92748e9 −0.207858
181181 −2.20051e10 −1.52395 −0.761974 0.647608i 0.775769π-0.775769\pi
−0.761974 + 0.647608i 0.775769π0.775769\pi
182182 0 0
183183 2.14197e10 1.41184
184184 1.09378e10 0.703480
185185 −3.47796e9 −0.218299
186186 1.82278e9 0.111667
187187 −8.24418e9 −0.493015
188188 2.58641e10 1.51003
189189 0 0
190190 −1.38632e9 −0.0771740
191191 2.70149e10 1.46877 0.734385 0.678733i 0.237471π-0.237471\pi
0.734385 + 0.678733i 0.237471π0.237471\pi
192192 2.09638e9 0.111331
193193 1.92005e10 0.996103 0.498052 0.867147i 0.334049π-0.334049\pi
0.498052 + 0.867147i 0.334049π0.334049\pi
194194 −7.28685e9 −0.369345
195195 4.80034e9 0.237748
196196 0 0
197197 3.62794e10 1.71618 0.858088 0.513503i 0.171652π-0.171652\pi
0.858088 + 0.513503i 0.171652π0.171652\pi
198198 2.78008e9 0.128547
199199 3.21330e10 1.45249 0.726243 0.687438i 0.241265π-0.241265\pi
0.726243 + 0.687438i 0.241265π0.241265\pi
200200 3.47105e9 0.153400
201201 −2.55773e10 −1.10528
202202 −9.03223e9 −0.381693
203203 0 0
204204 2.32073e10 0.938185
205205 4.56038e9 0.180347
206206 5.36635e9 0.207623
207207 1.36832e10 0.517989
208208 −5.73938e9 −0.212608
209209 −6.12044e9 −0.221883
210210 0 0
211211 −2.68209e10 −0.931542 −0.465771 0.884905i 0.654223π-0.654223\pi
−0.465771 + 0.884905i 0.654223π0.654223\pi
212212 9.23638e9 0.314044
213213 1.00742e10 0.335354
214214 4.07607e9 0.132855
215215 −2.61032e10 −0.833144
216216 1.33595e10 0.417588
217217 0 0
218218 −6.85976e9 −0.205710
219219 6.84934e10 2.01210
220220 6.91813e9 0.199107
221221 −1.37347e10 −0.387306
222222 −9.29745e9 −0.256907
223223 −3.04272e10 −0.823929 −0.411965 0.911200i 0.635157π-0.635157\pi
−0.411965 + 0.911200i 0.635157π0.635157\pi
224224 0 0
225225 4.34226e9 0.112952
226226 −3.18561e10 −0.812278
227227 −2.92758e10 −0.731801 −0.365900 0.930654i 0.619239π-0.619239\pi
−0.365900 + 0.930654i 0.619239π0.619239\pi
228228 1.72290e10 0.422233
229229 1.45201e10 0.348906 0.174453 0.984666i 0.444184π-0.444184\pi
0.174453 + 0.984666i 0.444184π0.444184\pi
230230 −7.32421e9 −0.172578
231231 0 0
232232 1.46702e10 0.332460
233233 4.74755e10 1.05528 0.527640 0.849468i 0.323077π-0.323077\pi
0.527640 + 0.849468i 0.323077π0.323077\pi
234234 4.63157e9 0.100985
235235 −3.83636e10 −0.820567
236236 −6.95506e9 −0.145948
237237 −7.84902e10 −1.61602
238238 0 0
239239 7.94829e10 1.57574 0.787868 0.615845i 0.211185π-0.211185\pi
0.787868 + 0.615845i 0.211185π0.211185\pi
240240 −1.43844e10 −0.279861
241241 4.80731e10 0.917963 0.458982 0.888446i 0.348214π-0.348214\pi
0.458982 + 0.888446i 0.348214π0.348214\pi
242242 1.58785e10 0.297606
243243 5.51114e10 1.01394
244244 5.14283e10 0.928855
245245 0 0
246246 1.21910e10 0.212243
247247 −1.01966e10 −0.174308
248248 9.69430e9 0.162736
249249 −1.01392e11 −1.67150
250250 −2.32429e9 −0.0376322
251251 6.79354e10 1.08035 0.540175 0.841553i 0.318358π-0.318358\pi
0.540175 + 0.841553i 0.318358π0.318358\pi
252252 0 0
253253 −3.23356e10 −0.496180
254254 −2.72609e10 −0.410950
255255 −3.44228e10 −0.509819
256256 −2.32288e10 −0.338023
257257 8.20972e10 1.17390 0.586948 0.809625i 0.300329π-0.300329\pi
0.586948 + 0.809625i 0.300329π0.300329\pi
258258 −6.97803e10 −0.980492
259259 0 0
260260 1.15255e10 0.156416
261261 1.83523e10 0.244798
262262 −1.71731e9 −0.0225160
263263 1.39217e10 0.179429 0.0897146 0.995968i 0.471405π-0.471405\pi
0.0897146 + 0.995968i 0.471405π0.471405\pi
264264 4.09658e10 0.519044
265265 −1.37001e10 −0.170654
266266 0 0
267267 1.36134e11 1.63932
268268 −6.14104e10 −0.727169
269269 2.61399e10 0.304382 0.152191 0.988351i 0.451367π-0.451367\pi
0.152191 + 0.988351i 0.451367π0.451367\pi
270270 −8.94579e9 −0.102443
271271 −1.45817e11 −1.64228 −0.821140 0.570727i 0.806661π-0.806661\pi
−0.821140 + 0.570727i 0.806661π0.806661\pi
272272 4.11566e10 0.455910
273273 0 0
274274 2.83693e10 0.304069
275275 −1.02615e10 −0.108197
276276 9.10244e10 0.944207
277277 1.18191e11 1.20622 0.603108 0.797660i 0.293929π-0.293929\pi
0.603108 + 0.797660i 0.293929π0.293929\pi
278278 7.07897e10 0.710835
279279 1.21275e10 0.119826
280280 0 0
281281 −1.41444e11 −1.35334 −0.676670 0.736287i 0.736577π-0.736577\pi
−0.676670 + 0.736287i 0.736577π0.736577\pi
282282 −1.02555e11 −0.965690
283283 1.80216e11 1.67015 0.835073 0.550139i 0.185425π-0.185425\pi
0.835073 + 0.550139i 0.185425π0.185425\pi
284284 2.41880e10 0.220631
285285 −2.55553e10 −0.229446
286286 −1.09452e10 −0.0967334
287287 0 0
288288 −6.44527e10 −0.552045
289289 −2.00975e10 −0.169474
290290 −9.82344e9 −0.0815591
291291 −1.34326e11 −1.09810
292292 1.64451e11 1.32377
293293 1.16123e10 0.0920482 0.0460241 0.998940i 0.485345π-0.485345\pi
0.0460241 + 0.998940i 0.485345π0.485345\pi
294294 0 0
295295 1.03163e10 0.0793093
296296 −4.94476e10 −0.374397
297297 −3.94948e10 −0.294534
298298 1.32630e10 0.0974247
299299 −5.38708e10 −0.389792
300300 2.88860e10 0.205893
301301 0 0
302302 7.10650e10 0.491614
303303 −1.66500e11 −1.13481
304304 3.05545e10 0.205184
305305 −7.62824e10 −0.504749
306306 −3.32126e10 −0.216549
307307 −7.59903e10 −0.488242 −0.244121 0.969745i 0.578499π-0.578499\pi
−0.244121 + 0.969745i 0.578499π0.578499\pi
308308 0 0
309309 9.89233e10 0.617284
310310 −6.49150e9 −0.0399225
311311 −6.05505e10 −0.367025 −0.183513 0.983017i 0.558747π-0.558747\pi
−0.183513 + 0.983017i 0.558747π0.558747\pi
312312 6.82485e10 0.407754
313313 −1.84759e11 −1.08807 −0.544033 0.839064i 0.683104π-0.683104\pi
−0.544033 + 0.839064i 0.683104π0.683104\pi
314314 5.20551e10 0.302190
315315 0 0
316316 −1.88453e11 −1.06319
317317 9.74554e10 0.542050 0.271025 0.962572i 0.412637π-0.412637\pi
0.271025 + 0.962572i 0.412637π0.412637\pi
318318 −3.66238e10 −0.200836
319319 −4.33695e10 −0.234491
320320 −7.46586e9 −0.0398020
321321 7.51383e10 0.394992
322322 0 0
323323 7.31188e10 0.373781
324324 2.03372e11 1.02527
325325 −1.70955e10 −0.0849978
326326 −1.12270e11 −0.550537
327327 −1.26453e11 −0.611595
328328 6.48368e10 0.309307
329329 0 0
330330 −2.74316e10 −0.127332
331331 2.09598e11 0.959755 0.479877 0.877336i 0.340681π-0.340681\pi
0.479877 + 0.877336i 0.340681π0.340681\pi
332332 −2.43439e11 −1.09969
333333 −6.18586e10 −0.275677
334334 1.17526e11 0.516744
335335 9.10887e10 0.395151
336336 0 0
337337 −3.91362e11 −1.65289 −0.826446 0.563016i 0.809641π-0.809641\pi
−0.826446 + 0.563016i 0.809641π0.809641\pi
338338 8.27233e10 0.344749
339339 −5.87236e11 −2.41498
340340 −8.26484e10 −0.335413
341341 −2.86593e10 −0.114781
342342 −2.46569e10 −0.0974587
343343 0 0
344344 −3.71120e11 −1.42890
345345 −1.35015e11 −0.513091
346346 1.14555e11 0.429705
347347 4.38929e11 1.62522 0.812610 0.582808i 0.198046π-0.198046\pi
0.812610 + 0.582808i 0.198046π0.198046\pi
348348 1.22085e11 0.446226
349349 −1.91496e11 −0.690948 −0.345474 0.938428i 0.612282π-0.612282\pi
−0.345474 + 0.938428i 0.612282π0.612282\pi
350350 0 0
351351 −6.57978e10 −0.231382
352352 1.52313e11 0.528803
353353 −6.04366e10 −0.207164 −0.103582 0.994621i 0.533030π-0.533030\pi
−0.103582 + 0.994621i 0.533030π0.533030\pi
354354 2.75780e10 0.0933358
355355 −3.58775e10 −0.119893
356356 3.26854e11 1.07852
357357 0 0
358358 −1.84431e11 −0.593419
359359 −2.91644e10 −0.0926676 −0.0463338 0.998926i 0.514754π-0.514754\pi
−0.0463338 + 0.998926i 0.514754π0.514754\pi
360360 6.17358e10 0.193721
361361 −2.68405e11 −0.831778
362362 2.09495e11 0.641187
363363 2.92705e11 0.884811
364364 0 0
365365 −2.43927e11 −0.719352
366366 −2.03922e11 −0.594017
367367 −4.89761e11 −1.40925 −0.704623 0.709582i 0.748884π-0.748884\pi
−0.704623 + 0.709582i 0.748884π0.748884\pi
368368 1.61426e11 0.458837
369369 8.11105e10 0.227750
370370 3.31111e10 0.0918473
371371 0 0
372372 8.06757e10 0.218424
373373 1.99118e11 0.532624 0.266312 0.963887i 0.414195π-0.414195\pi
0.266312 + 0.963887i 0.414195π0.414195\pi
374374 7.84870e10 0.207432
375375 −4.28459e10 −0.111884
376376 −5.45431e11 −1.40733
377377 −7.22531e10 −0.184213
378378 0 0
379379 −1.32403e11 −0.329626 −0.164813 0.986325i 0.552702π-0.552702\pi
−0.164813 + 0.986325i 0.552702π0.552702\pi
380380 −6.13578e10 −0.150954
381381 −5.02528e11 −1.22179
382382 −2.57190e11 −0.617972
383383 6.04046e11 1.43442 0.717209 0.696858i 0.245419π-0.245419\pi
0.717209 + 0.696858i 0.245419π0.245419\pi
384384 −5.40942e11 −1.26958
385385 0 0
386386 −1.82794e11 −0.419102
387387 −4.64268e11 −1.05213
388388 −3.22513e11 −0.722445
389389 5.00639e11 1.10854 0.554270 0.832337i 0.312998π-0.312998\pi
0.554270 + 0.832337i 0.312998π0.312998\pi
390390 −4.57006e10 −0.100030
391391 3.86303e11 0.835857
392392 0 0
393393 −3.16568e10 −0.0669424
394394 −3.45390e11 −0.722066
395395 2.79528e11 0.577748
396396 1.23045e11 0.251441
397397 −2.63517e10 −0.0532416 −0.0266208 0.999646i 0.508475π-0.508475\pi
−0.0266208 + 0.999646i 0.508475π0.508475\pi
398398 −3.05915e11 −0.611121
399399 0 0
400400 5.12274e10 0.100054
401401 −8.61548e11 −1.66391 −0.831955 0.554844i 0.812778π-0.812778\pi
−0.831955 + 0.554844i 0.812778π0.812778\pi
402402 2.43503e11 0.465036
403403 −4.77461e10 −0.0901707
404404 −3.99763e11 −0.746597
405405 −3.01657e11 −0.557141
406406 0 0
407407 1.46182e11 0.264071
408408 −4.89404e11 −0.874373
409409 3.38790e11 0.598653 0.299327 0.954151i 0.403238π-0.403238\pi
0.299327 + 0.954151i 0.403238π0.403238\pi
410410 −4.34161e10 −0.0758793
411411 5.22961e11 0.904026
412412 2.37512e11 0.406115
413413 0 0
414414 −1.30268e11 −0.217939
415415 3.61088e11 0.597580
416416 2.53751e11 0.415420
417417 1.30494e12 2.11338
418418 5.82684e10 0.0933554
419419 −3.72424e11 −0.590303 −0.295151 0.955451i 0.595370π-0.595370\pi
−0.295151 + 0.955451i 0.595370π0.595370\pi
420420 0 0
421421 −2.08072e11 −0.322808 −0.161404 0.986888i 0.551602π-0.551602\pi
−0.161404 + 0.986888i 0.551602π0.551602\pi
422422 2.55343e11 0.391938
423423 −6.82331e11 −1.03625
424424 −1.94780e11 −0.292684
425425 1.22591e11 0.182266
426426 −9.59095e10 −0.141097
427427 0 0
428428 1.80405e11 0.259868
429429 −2.01764e11 −0.287598
430430 2.48510e11 0.350538
431431 −8.40866e11 −1.17376 −0.586880 0.809674i 0.699644π-0.699644\pi
−0.586880 + 0.809674i 0.699644π0.699644\pi
432432 1.97166e11 0.272367
433433 1.06266e12 1.45278 0.726392 0.687281i 0.241196π-0.241196\pi
0.726392 + 0.687281i 0.241196π0.241196\pi
434434 0 0
435435 −1.81085e11 −0.242483
436436 −3.03610e11 −0.402372
437437 2.86789e11 0.376181
438438 −6.52077e11 −0.846575
439439 1.99978e11 0.256976 0.128488 0.991711i 0.458988π-0.458988\pi
0.128488 + 0.991711i 0.458988π0.458988\pi
440440 −1.45892e11 −0.185564
441441 0 0
442442 1.30758e11 0.162956
443443 −5.42567e11 −0.669324 −0.334662 0.942338i 0.608622π-0.608622\pi
−0.334662 + 0.942338i 0.608622π0.608622\pi
444444 −4.11501e11 −0.502514
445445 −4.84815e11 −0.586079
446446 2.89675e11 0.346661
447447 2.44491e11 0.289653
448448 0 0
449449 1.13888e11 0.132243 0.0661213 0.997812i 0.478938π-0.478938\pi
0.0661213 + 0.997812i 0.478938π0.478938\pi
450450 −4.13396e10 −0.0475236
451451 −1.91678e11 −0.218161
452452 −1.40994e12 −1.58883
453453 1.31001e12 1.46162
454454 2.78714e11 0.307899
455455 0 0
456456 −3.63331e11 −0.393515
457457 6.46996e11 0.693871 0.346936 0.937889i 0.387222π-0.387222\pi
0.346936 + 0.937889i 0.387222π0.387222\pi
458458 −1.38235e11 −0.146799
459459 4.71830e11 0.496168
460460 −3.24167e11 −0.337566
461461 −3.02404e11 −0.311841 −0.155921 0.987770i 0.549834π-0.549834\pi
−0.155921 + 0.987770i 0.549834π0.549834\pi
462462 0 0
463463 6.37663e11 0.644877 0.322439 0.946590i 0.395497π-0.395497\pi
0.322439 + 0.946590i 0.395497π0.395497\pi
464464 2.16509e11 0.216843
465465 −1.19664e11 −0.118693
466466 −4.51980e11 −0.444000
467467 1.62208e12 1.57814 0.789070 0.614304i 0.210563π-0.210563\pi
0.789070 + 0.614304i 0.210563π0.210563\pi
468468 2.04992e11 0.197529
469469 0 0
470470 3.65232e11 0.345246
471471 9.59585e11 0.898440
472472 1.46671e11 0.136021
473473 1.09714e12 1.00783
474474 7.47249e11 0.679927
475475 9.10106e10 0.0820297
476476 0 0
477477 −2.43669e11 −0.215510
478478 −7.56700e11 −0.662977
479479 7.61461e11 0.660903 0.330452 0.943823i 0.392799π-0.392799\pi
0.330452 + 0.943823i 0.392799π0.392799\pi
480480 6.35967e11 0.546826
481481 2.43538e11 0.207450
482482 −4.57669e11 −0.386225
483483 0 0
484484 7.02778e11 0.582122
485485 4.78376e11 0.392583
486486 −5.24676e11 −0.426607
487487 −1.66188e12 −1.33881 −0.669404 0.742898i 0.733451π-0.733451\pi
−0.669404 + 0.742898i 0.733451π0.733451\pi
488488 −1.08454e12 −0.865678
489489 −2.06959e12 −1.63680
490490 0 0
491491 −7.13111e11 −0.553720 −0.276860 0.960910i 0.589294π-0.589294\pi
−0.276860 + 0.960910i 0.589294π0.589294\pi
492492 5.39570e11 0.415150
493493 5.18120e11 0.395020
494494 9.70744e10 0.0733387
495495 −1.82510e11 −0.136635
496496 1.43073e11 0.106143
497497 0 0
498498 9.65278e11 0.703267
499499 3.42238e11 0.247102 0.123551 0.992338i 0.460572π-0.460572\pi
0.123551 + 0.992338i 0.460572π0.460572\pi
500500 −1.02872e11 −0.0736093
501501 2.16648e12 1.53633
502502 −6.46765e11 −0.454548
503503 1.72343e12 1.20043 0.600217 0.799837i 0.295081π-0.295081\pi
0.600217 + 0.799837i 0.295081π0.295081\pi
504504 0 0
505505 5.92959e11 0.405708
506506 3.07845e11 0.208763
507507 1.52492e12 1.02497
508508 −1.20656e12 −0.803825
509509 −1.18787e12 −0.784401 −0.392201 0.919880i 0.628286π-0.628286\pi
−0.392201 + 0.919880i 0.628286π0.628286\pi
510510 3.27715e11 0.214502
511511 0 0
512512 −1.35702e12 −0.872710
513513 3.50284e11 0.223302
514514 −7.81589e11 −0.493906
515515 −3.52297e11 −0.220687
516516 −3.08845e12 −1.91786
517517 1.61246e12 0.992619
518518 0 0
519519 2.11170e12 1.27755
520520 −2.43055e11 −0.145777
521521 −2.40085e11 −0.142757 −0.0713783 0.997449i 0.522740π-0.522740\pi
−0.0713783 + 0.997449i 0.522740π0.522740\pi
522522 −1.74719e11 −0.102996
523523 7.10285e9 0.00415121 0.00207561 0.999998i 0.499339π-0.499339\pi
0.00207561 + 0.999998i 0.499339π0.499339\pi
524524 −7.60073e10 −0.0440418
525525 0 0
526526 −1.32539e11 −0.0754932
527527 3.42383e11 0.193359
528528 6.04593e11 0.338540
529529 −2.85982e11 −0.158777
530530 1.30429e11 0.0718013
531531 1.83485e11 0.100155
532532 0 0
533533 −3.19333e11 −0.171384
534534 −1.29603e12 −0.689731
535535 −2.67591e11 −0.141215
536536 1.29505e12 0.677710
537537 −3.39981e12 −1.76429
538538 −2.48859e11 −0.128066
539539 0 0
540540 −3.95937e11 −0.200380
541541 9.97063e11 0.500420 0.250210 0.968192i 0.419500π-0.419500\pi
0.250210 + 0.968192i 0.419500π0.419500\pi
542542 1.38822e12 0.690974
543543 3.86183e12 1.90631
544544 −1.81962e12 −0.890813
545545 4.50338e11 0.218653
546546 0 0
547547 −2.39224e11 −0.114251 −0.0571256 0.998367i 0.518194π-0.518194\pi
−0.0571256 + 0.998367i 0.518194π0.518194\pi
548548 1.25562e12 0.594764
549549 −1.35675e12 −0.637419
550550 9.76924e10 0.0455228
551551 3.84650e11 0.177780
552552 −1.91956e12 −0.879986
553553 0 0
554554 −1.12521e12 −0.507505
555555 6.10371e11 0.273071
556556 3.13313e12 1.39041
557557 1.28056e12 0.563704 0.281852 0.959458i 0.409051π-0.409051\pi
0.281852 + 0.959458i 0.409051π0.409051\pi
558558 −1.15457e11 −0.0504159
559559 1.82783e12 0.791740
560560 0 0
561561 1.44683e12 0.616715
562562 1.34659e12 0.569405
563563 4.17614e12 1.75181 0.875905 0.482484i 0.160265π-0.160265\pi
0.875905 + 0.482484i 0.160265π0.160265\pi
564564 −4.53907e12 −1.88891
565565 2.09133e12 0.863386
566566 −1.71571e12 −0.702699
567567 0 0
568568 −5.10086e11 −0.205625
569569 7.47920e11 0.299123 0.149562 0.988752i 0.452214π-0.452214\pi
0.149562 + 0.988752i 0.452214π0.452214\pi
570570 2.43294e11 0.0965372
571571 3.30415e12 1.30076 0.650380 0.759609i 0.274610π-0.274610\pi
0.650380 + 0.759609i 0.274610π0.274610\pi
572572 −4.84430e11 −0.189212
573573 −4.74104e12 −1.83729
574574 0 0
575575 4.80829e11 0.183436
576576 −1.32787e11 −0.0502638
577577 4.91162e11 0.184473 0.0922367 0.995737i 0.470598π-0.470598\pi
0.0922367 + 0.995737i 0.470598π0.470598\pi
578578 1.91334e11 0.0713046
579579 −3.36963e12 −1.24603
580580 −4.34782e11 −0.159531
581581 0 0
582582 1.27882e12 0.462015
583583 5.75831e11 0.206436
584584 −3.46801e12 −1.23374
585585 −3.04060e11 −0.107339
586586 −1.10553e11 −0.0387285
587587 3.13584e12 1.09014 0.545070 0.838390i 0.316503π-0.316503\pi
0.545070 + 0.838390i 0.316503π0.316503\pi
588588 0 0
589589 2.54184e11 0.0870219
590590 −9.82140e10 −0.0333687
591591 −6.36692e12 −2.14677
592592 −7.29771e11 −0.244196
593593 2.78743e12 0.925673 0.462837 0.886444i 0.346832π-0.346832\pi
0.462837 + 0.886444i 0.346832π0.346832\pi
594594 3.76001e11 0.123923
595595 0 0
596596 5.87016e11 0.190564
597597 −5.63924e12 −1.81692
598598 5.12865e11 0.164002
599599 −4.50849e12 −1.43090 −0.715452 0.698662i 0.753779π-0.753779\pi
−0.715452 + 0.698662i 0.753779π0.753779\pi
600600 −6.09159e11 −0.191889
601601 −4.42349e12 −1.38303 −0.691513 0.722364i 0.743056π-0.743056\pi
−0.691513 + 0.722364i 0.743056π0.743056\pi
602602 0 0
603603 1.62009e12 0.499014
604604 3.14531e12 0.961606
605605 −1.04242e12 −0.316331
606606 1.58513e12 0.477461
607607 −2.66914e12 −0.798037 −0.399018 0.916943i 0.630649π-0.630649\pi
−0.399018 + 0.916943i 0.630649π0.630649\pi
608608 −1.35088e12 −0.400914
609609 0 0
610610 7.26230e11 0.212368
611611 2.68635e12 0.779788
612612 −1.46998e12 −0.423574
613613 −2.71304e12 −0.776040 −0.388020 0.921651i 0.626841π-0.626841\pi
−0.388020 + 0.921651i 0.626841π0.626841\pi
614614 7.23449e11 0.205424
615615 −8.00333e11 −0.225597
616616 0 0
617617 −4.55367e11 −0.126497 −0.0632483 0.997998i 0.520146π-0.520146\pi
−0.0632483 + 0.997998i 0.520146π0.520146\pi
618618 −9.41778e11 −0.259717
619619 3.92204e12 1.07375 0.536876 0.843661i 0.319604π-0.319604\pi
0.536876 + 0.843661i 0.319604π0.319604\pi
620620 −2.87311e11 −0.0780891
621621 1.85063e12 0.499353
622622 5.76458e11 0.154423
623623 0 0
624624 1.00724e12 0.265953
625625 1.52588e11 0.0400000
626626 1.75896e12 0.457794
627627 1.07412e12 0.277555
628628 2.30394e12 0.591089
629629 −1.74639e12 −0.444849
630630 0 0
631631 2.74330e12 0.688876 0.344438 0.938809i 0.388070π-0.388070\pi
0.344438 + 0.938809i 0.388070π0.388070\pi
632632 3.97417e12 0.990877
633633 4.70699e12 1.16527
634634 −9.27803e11 −0.228063
635635 1.78966e12 0.436806
636636 −1.62096e12 −0.392839
637637 0 0
638638 4.12890e11 0.0986601
639639 −6.38114e11 −0.151406
640640 1.92647e12 0.453891
641641 4.11504e12 0.962749 0.481374 0.876515i 0.340138π-0.340138\pi
0.481374 + 0.876515i 0.340138π0.340138\pi
642642 −7.15338e11 −0.166189
643643 3.64691e12 0.841349 0.420675 0.907212i 0.361793π-0.361793\pi
0.420675 + 0.907212i 0.361793π0.361793\pi
644644 0 0
645645 4.58103e12 1.04218
646646 −6.96112e11 −0.157265
647647 2.34539e12 0.526193 0.263097 0.964769i 0.415256π-0.415256\pi
0.263097 + 0.964769i 0.415256π0.415256\pi
648648 −4.28878e12 −0.955535
649649 −4.33605e11 −0.0959385
650650 1.62754e11 0.0357621
651651 0 0
652652 −4.96905e12 −1.07686
653653 1.73236e11 0.0372846 0.0186423 0.999826i 0.494066π-0.494066\pi
0.0186423 + 0.999826i 0.494066π0.494066\pi
654654 1.20387e12 0.257323
655655 1.12740e11 0.0239327
656656 9.56893e11 0.201742
657657 −4.33846e12 −0.908429
658658 0 0
659659 3.10137e12 0.640574 0.320287 0.947320i 0.396221π-0.396221\pi
0.320287 + 0.947320i 0.396221π0.396221\pi
660660 −1.21411e12 −0.249064
661661 2.62494e12 0.534826 0.267413 0.963582i 0.413831π-0.413831\pi
0.267413 + 0.963582i 0.413831π0.413831\pi
662662 −1.99543e12 −0.403808
663663 2.41040e12 0.484483
664664 5.13374e12 1.02489
665665 0 0
666666 5.88911e11 0.115989
667667 2.03219e12 0.397556
668668 5.20166e12 1.01076
669669 5.33988e12 1.03066
670670 −8.67190e11 −0.166256
671671 3.20623e12 0.610582
672672 0 0
673673 8.40711e12 1.57972 0.789858 0.613290i 0.210154π-0.210154\pi
0.789858 + 0.613290i 0.210154π0.210154\pi
674674 3.72588e12 0.695439
675675 5.87285e11 0.108888
676676 3.66130e12 0.674334
677677 −5.51141e12 −1.00836 −0.504178 0.863600i 0.668204π-0.668204\pi
−0.504178 + 0.863600i 0.668204π0.668204\pi
678678 5.59065e12 1.01608
679679 0 0
680680 1.74292e12 0.312599
681681 5.13782e12 0.915413
682682 2.72845e11 0.0482932
683683 5.28804e11 0.0929826 0.0464913 0.998919i 0.485196π-0.485196\pi
0.0464913 + 0.998919i 0.485196π0.485196\pi
684684 −1.09130e12 −0.190631
685685 −1.86243e12 −0.323200
686686 0 0
687687 −2.54823e12 −0.436448
688688 −5.47716e12 −0.931982
689689 9.59327e11 0.162174
690690 1.28538e12 0.215879
691691 7.40471e12 1.23554 0.617770 0.786359i 0.288036π-0.288036\pi
0.617770 + 0.786359i 0.288036π0.288036\pi
692692 5.07014e12 0.840510
693693 0 0
694694 −4.17873e12 −0.683797
695695 −4.64730e12 −0.755560
696696 −2.57457e12 −0.415875
697697 2.28991e12 0.367511
698698 1.82310e12 0.290710
699699 −8.33180e12 −1.32005
700700 0 0
701701 3.15485e12 0.493455 0.246727 0.969085i 0.420645π-0.420645\pi
0.246727 + 0.969085i 0.420645π0.420645\pi
702702 6.26414e11 0.0973519
703703 −1.29651e12 −0.200206
704704 3.13799e11 0.0481475
705705 6.73269e12 1.02645
706706 5.75374e11 0.0871623
707707 0 0
708708 1.22059e12 0.182566
709709 1.22184e12 0.181596 0.0907982 0.995869i 0.471058π-0.471058\pi
0.0907982 + 0.995869i 0.471058π0.471058\pi
710710 3.41564e11 0.0504440
711711 4.97166e12 0.729606
712712 −6.89282e12 −1.00516
713713 1.34291e12 0.194600
714714 0 0
715715 7.18544e11 0.102820
716716 −8.16286e12 −1.16074
717717 −1.39490e13 −1.97109
718718 2.77653e11 0.0389891
719719 1.24183e12 0.173294 0.0866468 0.996239i 0.472385π-0.472385\pi
0.0866468 + 0.996239i 0.472385π0.472385\pi
720720 9.11126e11 0.126352
721721 0 0
722722 2.55529e12 0.349963
723723 −8.43668e12 −1.14828
724724 9.27217e12 1.25417
725725 6.44902e11 0.0866907
726726 −2.78664e12 −0.372276
727727 −6.23382e12 −0.827656 −0.413828 0.910355i 0.635808π-0.635808\pi
−0.413828 + 0.910355i 0.635808π0.635808\pi
728728 0 0
729729 −1.71863e11 −0.0225377
730730 2.32225e12 0.302661
731731 −1.31072e13 −1.69778
732732 −9.02551e12 −1.16191
733733 1.13604e13 1.45354 0.726769 0.686882i 0.241021π-0.241021\pi
0.726769 + 0.686882i 0.241021π0.241021\pi
734734 4.66266e12 0.592927
735735 0 0
736736 −7.13700e12 −0.896531
737737 −3.82856e12 −0.478004
738738 −7.72195e11 −0.0958237
739739 6.78685e12 0.837082 0.418541 0.908198i 0.362542π-0.362542\pi
0.418541 + 0.908198i 0.362542π0.362542\pi
740740 1.46549e12 0.179655
741741 1.78947e12 0.218043
742742 0 0
743743 −3.07367e12 −0.370005 −0.185002 0.982738i 0.559229π-0.559229\pi
−0.185002 + 0.982738i 0.559229π0.559229\pi
744744 −1.70132e12 −0.203567
745745 −8.70708e11 −0.103555
746746 −1.89566e12 −0.224097
747747 6.42227e12 0.754651
748748 3.47380e12 0.405740
749749 0 0
750750 4.07906e11 0.0470743
751751 1.55928e13 1.78873 0.894366 0.447337i 0.147627π-0.147627\pi
0.894366 + 0.447337i 0.147627π0.147627\pi
752752 −8.04974e12 −0.917913
753753 −1.19225e13 −1.35141
754754 6.87870e11 0.0775060
755755 −4.66537e12 −0.522546
756756 0 0
757757 −2.01197e11 −0.0222684 −0.0111342 0.999938i 0.503544π-0.503544\pi
−0.0111342 + 0.999938i 0.503544π0.503544\pi
758758 1.26051e12 0.138687
759759 5.67481e12 0.620674
760760 1.29394e12 0.140686
761761 −1.00060e13 −1.08151 −0.540755 0.841180i 0.681861π-0.681861\pi
−0.540755 + 0.841180i 0.681861π0.681861\pi
762762 4.78421e12 0.514059
763763 0 0
764764 −1.13831e13 −1.20876
765765 2.18038e12 0.230174
766766 −5.75069e12 −0.603519
767767 −7.22381e11 −0.0753680
768768 4.07658e12 0.422834
769769 −6.54056e11 −0.0674445 −0.0337223 0.999431i 0.510736π-0.510736\pi
−0.0337223 + 0.999431i 0.510736π0.510736\pi
770770 0 0
771771 −1.44078e13 −1.46843
772772 −8.09040e12 −0.819770
773773 −1.50342e13 −1.51451 −0.757255 0.653120i 0.773460π-0.773460\pi
−0.757255 + 0.653120i 0.773460π0.773460\pi
774774 4.41997e12 0.442675
775775 4.26163e11 0.0424344
776776 6.80128e12 0.673307
777777 0 0
778778 −4.76622e12 −0.466408
779779 1.70002e12 0.165400
780780 −2.02269e12 −0.195661
781781 1.50797e12 0.145032
782782 −3.67771e12 −0.351680
783783 2.48212e12 0.235991
784784 0 0
785785 −3.41738e12 −0.321203
786786 3.01382e11 0.0281654
787787 −2.10567e12 −0.195661 −0.0978305 0.995203i 0.531190π-0.531190\pi
−0.0978305 + 0.995203i 0.531190π0.531190\pi
788788 −1.52868e13 −1.41237
789789 −2.44323e12 −0.224449
790790 −2.66119e12 −0.243082
791791 0 0
792792 −2.59482e12 −0.234339
793793 5.34155e12 0.479665
794794 2.50875e11 0.0224009
795795 2.40433e12 0.213472
796796 −1.35397e13 −1.19536
797797 −1.24161e13 −1.08999 −0.544997 0.838438i 0.683469π-0.683469\pi
−0.544997 + 0.838438i 0.683469π0.683469\pi
798798 0 0
799799 −1.92635e13 −1.67215
800800 −2.26488e12 −0.195497
801801 −8.62287e12 −0.740126
802802 8.20218e12 0.700075
803803 1.02525e13 0.870182
804804 1.07773e13 0.909619
805805 0 0
806806 4.54557e11 0.0379385
807807 −4.58747e12 −0.380752
808808 8.43036e12 0.695817
809809 −1.17105e13 −0.961183 −0.480591 0.876945i 0.659578π-0.659578\pi
−0.480591 + 0.876945i 0.659578π0.659578\pi
810810 2.87186e12 0.234412
811811 −1.51560e13 −1.23024 −0.615122 0.788432i 0.710893π-0.710893\pi
−0.615122 + 0.788432i 0.710893π0.710893\pi
812812 0 0
813813 2.55905e13 2.05433
814814 −1.39170e12 −0.111105
815815 7.37048e12 0.585176
816816 −7.22286e12 −0.570300
817817 −9.73073e12 −0.764093
818818 −3.22538e12 −0.251878
819819 0 0
820820 −1.92158e12 −0.148421
821821 −7.80111e12 −0.599255 −0.299628 0.954056i 0.596862π-0.596862\pi
−0.299628 + 0.954056i 0.596862π0.596862\pi
822822 −4.97873e12 −0.380361
823823 6.32663e12 0.480699 0.240350 0.970686i 0.422738π-0.422738\pi
0.240350 + 0.970686i 0.422738π0.422738\pi
824824 −5.00876e12 −0.378493
825825 1.80086e12 0.135344
826826 0 0
827827 −2.24559e13 −1.66938 −0.834689 0.550721i 0.814353π-0.814353\pi
−0.834689 + 0.550721i 0.814353π0.814353\pi
828828 −5.76560e12 −0.426293
829829 −1.48421e13 −1.09144 −0.545718 0.837969i 0.683743π-0.683743\pi
−0.545718 + 0.837969i 0.683743π0.683743\pi
830830 −3.43766e12 −0.251427
831831 −2.07421e13 −1.50886
832832 5.22785e11 0.0378240
833833 0 0
834834 −1.24234e13 −0.889186
835835 −7.71551e12 −0.549257
836836 2.57894e12 0.182605
837837 1.64023e12 0.115515
838838 3.54558e12 0.248365
839839 −2.98994e12 −0.208321 −0.104160 0.994561i 0.533216π-0.533216\pi
−0.104160 + 0.994561i 0.533216π0.533216\pi
840840 0 0
841841 −1.17815e13 −0.812118
842842 1.98090e12 0.135818
843843 2.48230e13 1.69290
844844 1.13014e13 0.766638
845845 −5.43073e12 −0.366440
846846 6.49599e12 0.435992
847847 0 0
848848 −2.87466e12 −0.190900
849849 −3.16274e13 −2.08919
850850 −1.16710e12 −0.0766870
851851 −6.84975e12 −0.447705
852852 −4.24492e12 −0.275989
853853 3.18183e12 0.205781 0.102891 0.994693i 0.467191π-0.467191\pi
0.102891 + 0.994693i 0.467191π0.467191\pi
854854 0 0
855855 1.61871e12 0.103591
856856 −3.80446e12 −0.242192
857857 −4.67041e10 −0.00295761 −0.00147881 0.999999i 0.500471π-0.500471\pi
−0.00147881 + 0.999999i 0.500471π0.500471\pi
858858 1.92085e12 0.121004
859859 2.45887e13 1.54087 0.770436 0.637518i 0.220039π-0.220039\pi
0.770436 + 0.637518i 0.220039π0.220039\pi
860860 1.09989e13 0.685658
861861 0 0
862862 8.00529e12 0.493849
863863 −4.91452e12 −0.301601 −0.150800 0.988564i 0.548185π-0.548185\pi
−0.150800 + 0.988564i 0.548185π0.548185\pi
864864 −8.71713e12 −0.532184
865865 −7.52043e12 −0.456741
866866 −1.01169e13 −0.611246
867867 3.52706e12 0.211996
868868 0 0
869869 −1.17489e13 −0.698888
870870 1.72398e12 0.102023
871871 −6.37833e12 −0.375513
872872 6.40265e12 0.375004
873873 8.50836e12 0.495772
874874 −2.73032e12 −0.158275
875875 0 0
876876 −2.88607e13 −1.65591
877877 6.49150e12 0.370550 0.185275 0.982687i 0.440682π-0.440682\pi
0.185275 + 0.982687i 0.440682π0.440682\pi
878878 −1.90385e12 −0.108120
879879 −2.03793e12 −0.115143
880880 −2.15315e12 −0.121032
881881 6.22021e11 0.0347867 0.0173934 0.999849i 0.494463π-0.494463\pi
0.0173934 + 0.999849i 0.494463π0.494463\pi
882882 0 0
883883 2.83144e13 1.56741 0.783707 0.621131i 0.213326π-0.213326\pi
0.783707 + 0.621131i 0.213326π0.213326\pi
884884 5.78732e12 0.318744
885885 −1.81048e12 −0.0992084
886886 5.16539e12 0.281612
887887 2.76786e13 1.50137 0.750685 0.660660i 0.229724π-0.229724\pi
0.750685 + 0.660660i 0.229724π0.229724\pi
888888 8.67790e12 0.468335
889889 0 0
890890 4.61558e12 0.246587
891891 1.26790e13 0.673960
892892 1.28209e13 0.678075
893893 −1.43012e13 −0.752558
894894 −2.32762e12 −0.121869
895895 1.21078e13 0.630756
896896 0 0
897897 9.45416e12 0.487593
898898 −1.08425e12 −0.0556399
899899 1.80115e12 0.0919667
900900 −1.82967e12 −0.0929571
901901 −6.87924e12 −0.347760
902902 1.82483e12 0.0917893
903903 0 0
904904 2.97334e13 1.48076
905905 −1.37532e13 −0.681530
906906 −1.24717e13 −0.614962
907907 1.55835e13 0.764598 0.382299 0.924039i 0.375132π-0.375132\pi
0.382299 + 0.924039i 0.375132π0.375132\pi
908908 1.23358e13 0.602255
909909 1.05463e13 0.512346
910910 0 0
911911 −3.32939e13 −1.60152 −0.800760 0.598985i 0.795571π-0.795571\pi
−0.800760 + 0.598985i 0.795571π0.795571\pi
912912 −5.36222e12 −0.256666
913913 −1.51769e13 −0.722878
914914 −6.15959e12 −0.291940
915915 1.33873e13 0.631392
916916 −6.11823e12 −0.287142
917917 0 0
918918 −4.49196e12 −0.208758
919919 3.33563e13 1.54262 0.771309 0.636461i 0.219602π-0.219602\pi
0.771309 + 0.636461i 0.219602π0.219602\pi
920920 6.83615e12 0.314606
921921 1.33361e13 0.610744
922922 2.87897e12 0.131204
923923 2.51226e12 0.113935
924924 0 0
925925 −2.17372e12 −0.0976262
926926 −6.07074e12 −0.271326
927927 −6.26592e12 −0.278693
928928 −9.57235e12 −0.423694
929929 2.59300e13 1.14217 0.571086 0.820890i 0.306522π-0.306522\pi
0.571086 + 0.820890i 0.306522π0.306522\pi
930930 1.13924e12 0.0499392
931931 0 0
932932 −2.00045e13 −0.868471
933933 1.06264e13 0.459113
934934 −1.54426e13 −0.663988
935935 −5.15261e12 −0.220483
936936 −4.32295e12 −0.184093
937937 1.05742e13 0.448148 0.224074 0.974572i 0.428064π-0.428064\pi
0.224074 + 0.974572i 0.428064π0.428064\pi
938938 0 0
939939 3.24246e13 1.36107
940940 1.61650e13 0.675307
941941 −4.43349e11 −0.0184329 −0.00921643 0.999958i 0.502934π-0.502934\pi
−0.00921643 + 0.999958i 0.502934π0.502934\pi
942942 −9.13552e12 −0.378011
943943 8.98156e12 0.369870
944944 2.16464e12 0.0887181
945945 0 0
946946 −1.04451e13 −0.424037
947947 2.08797e13 0.843625 0.421812 0.906683i 0.361394π-0.361394\pi
0.421812 + 0.906683i 0.361394π0.361394\pi
948948 3.30729e13 1.32995
949949 1.70806e13 0.683603
950950 −8.66447e11 −0.0345132
951951 −1.71031e13 −0.678052
952952 0 0
953953 2.68247e13 1.05346 0.526728 0.850034i 0.323419π-0.323419\pi
0.526728 + 0.850034i 0.323419π0.323419\pi
954954 2.31980e12 0.0906739
955955 1.68843e13 0.656854
956956 −3.34913e13 −1.29679
957957 7.61122e12 0.293326
958958 −7.24933e12 −0.278069
959959 0 0
960960 1.31024e12 0.0497885
961961 −2.52494e13 −0.954983
962962 −2.31855e12 −0.0872828
963963 −4.75935e12 −0.178332
964964 −2.02563e13 −0.755463
965965 1.20003e13 0.445471
966966 0 0
967967 4.80960e13 1.76885 0.884423 0.466686i 0.154552π-0.154552\pi
0.884423 + 0.466686i 0.154552π0.154552\pi
968968 −1.48205e13 −0.542529
969969 −1.28321e13 −0.467565
970970 −4.55428e12 −0.165176
971971 −4.95038e13 −1.78711 −0.893556 0.448952i 0.851797π-0.851797\pi
−0.893556 + 0.448952i 0.851797π0.851797\pi
972972 −2.32220e13 −0.834451
973973 0 0
974974 1.58215e13 0.563292
975975 3.00022e12 0.106324
976976 −1.60062e13 −0.564629
977977 3.89809e13 1.36876 0.684378 0.729127i 0.260074π-0.260074\pi
0.684378 + 0.729127i 0.260074π0.260074\pi
978978 1.97031e13 0.688669
979979 2.03773e13 0.708965
980980 0 0
981981 8.00968e12 0.276124
982982 6.78901e12 0.232973
983983 4.13652e13 1.41301 0.706504 0.707709i 0.250271π-0.250271\pi
0.706504 + 0.707709i 0.250271π0.250271\pi
984984 −1.13787e13 −0.386913
985985 2.26746e13 0.767497
986986 −4.93265e12 −0.166201
987987 0 0
988988 4.29648e12 0.143452
989989 −5.14096e13 −1.70868
990990 1.73755e12 0.0574882
991991 −2.23173e13 −0.735039 −0.367519 0.930016i 0.619793π-0.619793\pi
−0.367519 + 0.930016i 0.619793π0.619793\pi
992992 −6.32558e12 −0.207395
993993 −3.67837e13 −1.20056
994994 0 0
995995 2.00831e13 0.649572
996996 4.27228e13 1.37560
997997 −4.27668e13 −1.37081 −0.685406 0.728161i 0.740375π-0.740375\pi
−0.685406 + 0.728161i 0.740375π0.740375\pi
998998 −3.25821e12 −0.103966
999999 −8.36629e12 −0.265759
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.m.1.6 13
7.2 even 3 35.10.e.b.11.8 26
7.4 even 3 35.10.e.b.16.8 yes 26
7.6 odd 2 245.10.a.l.1.6 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.e.b.11.8 26 7.2 even 3
35.10.e.b.16.8 yes 26 7.4 even 3
245.10.a.l.1.6 13 7.6 odd 2
245.10.a.m.1.6 13 1.1 even 1 trivial