Properties

Label 245.10.a.m.1.6
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(9.52028\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.52028 q^{2} -175.497 q^{3} -421.364 q^{4} +625.000 q^{5} +1670.78 q^{6} +8885.89 q^{8} +11116.2 q^{9} -5950.18 q^{10} -26269.4 q^{11} +73948.1 q^{12} -43764.6 q^{13} -109686. q^{15} +131142. q^{16} +313832. q^{17} -105829. q^{18} +232987. q^{19} -263353. q^{20} +250093. q^{22} +1.23092e6 q^{23} -1.55945e6 q^{24} +390625. q^{25} +416651. q^{26} +1.50345e6 q^{27} +1.65095e6 q^{29} +1.04424e6 q^{30} +1.09098e6 q^{31} -5.79809e6 q^{32} +4.61021e6 q^{33} -2.98777e6 q^{34} -4.68396e6 q^{36} -5.56473e6 q^{37} -2.21810e6 q^{38} +7.68055e6 q^{39} +5.55368e6 q^{40} +7.29660e6 q^{41} -4.17651e7 q^{43} +1.10690e7 q^{44} +6.94762e6 q^{45} -1.17187e7 q^{46} -6.13817e7 q^{47} -2.30151e7 q^{48} -3.71886e6 q^{50} -5.50765e7 q^{51} +1.84408e7 q^{52} -2.19202e7 q^{53} -1.43133e7 q^{54} -1.64184e7 q^{55} -4.08886e7 q^{57} -1.57175e7 q^{58} +1.65061e7 q^{59} +4.62176e7 q^{60} -1.22052e8 q^{61} -1.03864e7 q^{62} -1.19454e7 q^{64} -2.73529e7 q^{65} -4.38905e7 q^{66} +1.45742e8 q^{67} -1.32237e8 q^{68} -2.16023e8 q^{69} -5.74040e7 q^{71} +9.87773e7 q^{72} -3.90283e8 q^{73} +5.29778e7 q^{74} -6.85535e7 q^{75} -9.81725e7 q^{76} -7.31210e7 q^{78} +4.47245e8 q^{79} +8.19639e7 q^{80} -4.82651e8 q^{81} -6.94657e7 q^{82} +5.77741e8 q^{83} +1.96145e8 q^{85} +3.97615e8 q^{86} -2.89737e8 q^{87} -2.33427e8 q^{88} -7.75704e8 q^{89} -6.61433e7 q^{90} -5.18667e8 q^{92} -1.91463e8 q^{93} +5.84372e8 q^{94} +1.45617e8 q^{95} +1.01755e9 q^{96} +7.65402e8 q^{97} -2.92016e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - q^{2} + 268 q^{3} + 3563 q^{4} + 8125 q^{5} + 3040 q^{6} - 4695 q^{8} + 82107 q^{9} - 625 q^{10} + 129087 q^{11} + 356068 q^{12} + 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} + 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.52028 −0.420741 −0.210371 0.977622i \(-0.567467\pi\)
−0.210371 + 0.977622i \(0.567467\pi\)
\(3\) −175.497 −1.25090 −0.625452 0.780263i \(-0.715085\pi\)
−0.625452 + 0.780263i \(0.715085\pi\)
\(4\) −421.364 −0.822977
\(5\) 625.000 0.447214
\(6\) 1670.78 0.526307
\(7\) 0 0
\(8\) 8885.89 0.767001
\(9\) 11116.2 0.564761
\(10\) −5950.18 −0.188161
\(11\) −26269.4 −0.540983 −0.270492 0.962722i \(-0.587186\pi\)
−0.270492 + 0.962722i \(0.587186\pi\)
\(12\) 73948.1 1.02947
\(13\) −43764.6 −0.424989 −0.212494 0.977162i \(-0.568159\pi\)
−0.212494 + 0.977162i \(0.568159\pi\)
\(14\) 0 0
\(15\) −109686. −0.559421
\(16\) 131142. 0.500268
\(17\) 313832. 0.911332 0.455666 0.890151i \(-0.349401\pi\)
0.455666 + 0.890151i \(0.349401\pi\)
\(18\) −105829. −0.237618
\(19\) 232987. 0.410148 0.205074 0.978746i \(-0.434256\pi\)
0.205074 + 0.978746i \(0.434256\pi\)
\(20\) −263353. −0.368046
\(21\) 0 0
\(22\) 250093. 0.227614
\(23\) 1.23092e6 0.917182 0.458591 0.888647i \(-0.348354\pi\)
0.458591 + 0.888647i \(0.348354\pi\)
\(24\) −1.55945e6 −0.959445
\(25\) 390625. 0.200000
\(26\) 416651. 0.178810
\(27\) 1.50345e6 0.544442
\(28\) 0 0
\(29\) 1.65095e6 0.433454 0.216727 0.976232i \(-0.430462\pi\)
0.216727 + 0.976232i \(0.430462\pi\)
\(30\) 1.04424e6 0.235372
\(31\) 1.09098e6 0.212172 0.106086 0.994357i \(-0.466168\pi\)
0.106086 + 0.994357i \(0.466168\pi\)
\(32\) −5.79809e6 −0.977485
\(33\) 4.61021e6 0.676718
\(34\) −2.98777e6 −0.383435
\(35\) 0 0
\(36\) −4.68396e6 −0.464785
\(37\) −5.56473e6 −0.488131 −0.244065 0.969759i \(-0.578481\pi\)
−0.244065 + 0.969759i \(0.578481\pi\)
\(38\) −2.21810e6 −0.172566
\(39\) 7.68055e6 0.531620
\(40\) 5.55368e6 0.343013
\(41\) 7.29660e6 0.403268 0.201634 0.979461i \(-0.435375\pi\)
0.201634 + 0.979461i \(0.435375\pi\)
\(42\) 0 0
\(43\) −4.17651e7 −1.86297 −0.931483 0.363784i \(-0.881485\pi\)
−0.931483 + 0.363784i \(0.881485\pi\)
\(44\) 1.10690e7 0.445217
\(45\) 6.94762e6 0.252569
\(46\) −1.17187e7 −0.385896
\(47\) −6.13817e7 −1.83484 −0.917421 0.397917i \(-0.869733\pi\)
−0.917421 + 0.397917i \(0.869733\pi\)
\(48\) −2.30151e7 −0.625787
\(49\) 0 0
\(50\) −3.71886e6 −0.0841482
\(51\) −5.50765e7 −1.13999
\(52\) 1.84408e7 0.349756
\(53\) −2.19202e7 −0.381595 −0.190797 0.981629i \(-0.561107\pi\)
−0.190797 + 0.981629i \(0.561107\pi\)
\(54\) −1.43133e7 −0.229069
\(55\) −1.64184e7 −0.241935
\(56\) 0 0
\(57\) −4.08886e7 −0.513056
\(58\) −1.57175e7 −0.182372
\(59\) 1.65061e7 0.177341 0.0886705 0.996061i \(-0.471738\pi\)
0.0886705 + 0.996061i \(0.471738\pi\)
\(60\) 4.62176e7 0.460391
\(61\) −1.22052e8 −1.12865 −0.564326 0.825552i \(-0.690864\pi\)
−0.564326 + 0.825552i \(0.690864\pi\)
\(62\) −1.03864e7 −0.0892694
\(63\) 0 0
\(64\) −1.19454e7 −0.0890000
\(65\) −2.73529e7 −0.190061
\(66\) −4.38905e7 −0.284723
\(67\) 1.45742e8 0.883584 0.441792 0.897118i \(-0.354343\pi\)
0.441792 + 0.897118i \(0.354343\pi\)
\(68\) −1.32237e8 −0.750005
\(69\) −2.16023e8 −1.14731
\(70\) 0 0
\(71\) −5.74040e7 −0.268089 −0.134045 0.990975i \(-0.542797\pi\)
−0.134045 + 0.990975i \(0.542797\pi\)
\(72\) 9.87773e7 0.433172
\(73\) −3.90283e8 −1.60852 −0.804260 0.594278i \(-0.797438\pi\)
−0.804260 + 0.594278i \(0.797438\pi\)
\(74\) 5.29778e7 0.205377
\(75\) −6.85535e7 −0.250181
\(76\) −9.81725e7 −0.337543
\(77\) 0 0
\(78\) −7.31210e7 −0.223675
\(79\) 4.47245e8 1.29188 0.645942 0.763386i \(-0.276465\pi\)
0.645942 + 0.763386i \(0.276465\pi\)
\(80\) 8.19639e7 0.223727
\(81\) −4.82651e8 −1.24581
\(82\) −6.94657e7 −0.169671
\(83\) 5.77741e8 1.33623 0.668115 0.744058i \(-0.267101\pi\)
0.668115 + 0.744058i \(0.267101\pi\)
\(84\) 0 0
\(85\) 1.96145e8 0.407560
\(86\) 3.97615e8 0.783827
\(87\) −2.89737e8 −0.542209
\(88\) −2.33427e8 −0.414935
\(89\) −7.75704e8 −1.31051 −0.655256 0.755407i \(-0.727439\pi\)
−0.655256 + 0.755407i \(0.727439\pi\)
\(90\) −6.61433e7 −0.106266
\(91\) 0 0
\(92\) −5.18667e8 −0.754820
\(93\) −1.91463e8 −0.265407
\(94\) 5.84372e8 0.771994
\(95\) 1.45617e8 0.183424
\(96\) 1.01755e9 1.22274
\(97\) 7.65402e8 0.877843 0.438922 0.898525i \(-0.355361\pi\)
0.438922 + 0.898525i \(0.355361\pi\)
\(98\) 0 0
\(99\) −2.92016e8 −0.305526
\(100\) −1.64595e8 −0.164595
\(101\) 9.48735e8 0.907191 0.453596 0.891208i \(-0.350141\pi\)
0.453596 + 0.891208i \(0.350141\pi\)
\(102\) 5.24344e8 0.479640
\(103\) −5.63675e8 −0.493471 −0.246735 0.969083i \(-0.579358\pi\)
−0.246735 + 0.969083i \(0.579358\pi\)
\(104\) −3.88887e8 −0.325967
\(105\) 0 0
\(106\) 2.08686e8 0.160553
\(107\) −4.28146e8 −0.315765 −0.157883 0.987458i \(-0.550467\pi\)
−0.157883 + 0.987458i \(0.550467\pi\)
\(108\) −6.33500e8 −0.448063
\(109\) 7.20541e8 0.488922 0.244461 0.969659i \(-0.421389\pi\)
0.244461 + 0.969659i \(0.421389\pi\)
\(110\) 1.56308e8 0.101792
\(111\) 9.76593e8 0.610605
\(112\) 0 0
\(113\) 3.34613e9 1.93059 0.965295 0.261163i \(-0.0841059\pi\)
0.965295 + 0.261163i \(0.0841059\pi\)
\(114\) 3.89271e8 0.215864
\(115\) 7.69327e8 0.410176
\(116\) −6.95651e8 −0.356722
\(117\) −4.86495e8 −0.240017
\(118\) −1.57142e8 −0.0746147
\(119\) 0 0
\(120\) −9.74655e8 −0.429077
\(121\) −1.66786e9 −0.707337
\(122\) 1.16197e9 0.474870
\(123\) −1.28053e9 −0.504449
\(124\) −4.59698e8 −0.174613
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 2.86346e9 0.976728 0.488364 0.872640i \(-0.337594\pi\)
0.488364 + 0.872640i \(0.337594\pi\)
\(128\) 3.08234e9 1.01493
\(129\) 7.32964e9 2.33039
\(130\) 2.60407e8 0.0799664
\(131\) 1.80384e8 0.0535152 0.0267576 0.999642i \(-0.491482\pi\)
0.0267576 + 0.999642i \(0.491482\pi\)
\(132\) −1.94258e9 −0.556923
\(133\) 0 0
\(134\) −1.38750e9 −0.371760
\(135\) 9.39656e8 0.243482
\(136\) 2.78867e9 0.698993
\(137\) −2.97988e9 −0.722698 −0.361349 0.932431i \(-0.617684\pi\)
−0.361349 + 0.932431i \(0.617684\pi\)
\(138\) 2.05660e9 0.482719
\(139\) −7.43567e9 −1.68948 −0.844741 0.535175i \(-0.820246\pi\)
−0.844741 + 0.535175i \(0.820246\pi\)
\(140\) 0 0
\(141\) 1.07723e10 2.29521
\(142\) 5.46502e8 0.112796
\(143\) 1.14967e9 0.229912
\(144\) 1.45780e9 0.282532
\(145\) 1.03184e9 0.193846
\(146\) 3.71560e9 0.676770
\(147\) 0 0
\(148\) 2.34478e9 0.401720
\(149\) −1.39313e9 −0.231555 −0.115778 0.993275i \(-0.536936\pi\)
−0.115778 + 0.993275i \(0.536936\pi\)
\(150\) 6.52649e8 0.105261
\(151\) −7.46459e9 −1.16845 −0.584224 0.811592i \(-0.698601\pi\)
−0.584224 + 0.811592i \(0.698601\pi\)
\(152\) 2.07030e9 0.314584
\(153\) 3.48861e9 0.514685
\(154\) 0 0
\(155\) 6.81860e8 0.0948861
\(156\) −3.23631e9 −0.437511
\(157\) −5.46781e9 −0.718233 −0.359116 0.933293i \(-0.616922\pi\)
−0.359116 + 0.933293i \(0.616922\pi\)
\(158\) −4.25790e9 −0.543549
\(159\) 3.84692e9 0.477339
\(160\) −3.62381e9 −0.437144
\(161\) 0 0
\(162\) 4.59497e9 0.524162
\(163\) 1.17928e10 1.30849 0.654246 0.756281i \(-0.272986\pi\)
0.654246 + 0.756281i \(0.272986\pi\)
\(164\) −3.07453e9 −0.331880
\(165\) 2.88138e9 0.302637
\(166\) −5.50025e9 −0.562207
\(167\) −1.23448e10 −1.22818 −0.614088 0.789238i \(-0.710476\pi\)
−0.614088 + 0.789238i \(0.710476\pi\)
\(168\) 0 0
\(169\) −8.68916e9 −0.819384
\(170\) −1.86735e9 −0.171477
\(171\) 2.58993e9 0.231636
\(172\) 1.75983e10 1.53318
\(173\) −1.20327e10 −1.02130 −0.510652 0.859787i \(-0.670596\pi\)
−0.510652 + 0.859787i \(0.670596\pi\)
\(174\) 2.75837e9 0.228130
\(175\) 0 0
\(176\) −3.44503e9 −0.270637
\(177\) −2.89676e9 −0.221837
\(178\) 7.38492e9 0.551386
\(179\) 1.93725e10 1.41041 0.705207 0.709002i \(-0.250854\pi\)
0.705207 + 0.709002i \(0.250854\pi\)
\(180\) −2.92748e9 −0.207858
\(181\) −2.20051e10 −1.52395 −0.761974 0.647608i \(-0.775769\pi\)
−0.761974 + 0.647608i \(0.775769\pi\)
\(182\) 0 0
\(183\) 2.14197e10 1.41184
\(184\) 1.09378e10 0.703480
\(185\) −3.47796e9 −0.218299
\(186\) 1.82278e9 0.111667
\(187\) −8.24418e9 −0.493015
\(188\) 2.58641e10 1.51003
\(189\) 0 0
\(190\) −1.38632e9 −0.0771740
\(191\) 2.70149e10 1.46877 0.734385 0.678733i \(-0.237471\pi\)
0.734385 + 0.678733i \(0.237471\pi\)
\(192\) 2.09638e9 0.111331
\(193\) 1.92005e10 0.996103 0.498052 0.867147i \(-0.334049\pi\)
0.498052 + 0.867147i \(0.334049\pi\)
\(194\) −7.28685e9 −0.369345
\(195\) 4.80034e9 0.237748
\(196\) 0 0
\(197\) 3.62794e10 1.71618 0.858088 0.513503i \(-0.171652\pi\)
0.858088 + 0.513503i \(0.171652\pi\)
\(198\) 2.78008e9 0.128547
\(199\) 3.21330e10 1.45249 0.726243 0.687438i \(-0.241265\pi\)
0.726243 + 0.687438i \(0.241265\pi\)
\(200\) 3.47105e9 0.153400
\(201\) −2.55773e10 −1.10528
\(202\) −9.03223e9 −0.381693
\(203\) 0 0
\(204\) 2.32073e10 0.938185
\(205\) 4.56038e9 0.180347
\(206\) 5.36635e9 0.207623
\(207\) 1.36832e10 0.517989
\(208\) −5.73938e9 −0.212608
\(209\) −6.12044e9 −0.221883
\(210\) 0 0
\(211\) −2.68209e10 −0.931542 −0.465771 0.884905i \(-0.654223\pi\)
−0.465771 + 0.884905i \(0.654223\pi\)
\(212\) 9.23638e9 0.314044
\(213\) 1.00742e10 0.335354
\(214\) 4.07607e9 0.132855
\(215\) −2.61032e10 −0.833144
\(216\) 1.33595e10 0.417588
\(217\) 0 0
\(218\) −6.85976e9 −0.205710
\(219\) 6.84934e10 2.01210
\(220\) 6.91813e9 0.199107
\(221\) −1.37347e10 −0.387306
\(222\) −9.29745e9 −0.256907
\(223\) −3.04272e10 −0.823929 −0.411965 0.911200i \(-0.635157\pi\)
−0.411965 + 0.911200i \(0.635157\pi\)
\(224\) 0 0
\(225\) 4.34226e9 0.112952
\(226\) −3.18561e10 −0.812278
\(227\) −2.92758e10 −0.731801 −0.365900 0.930654i \(-0.619239\pi\)
−0.365900 + 0.930654i \(0.619239\pi\)
\(228\) 1.72290e10 0.422233
\(229\) 1.45201e10 0.348906 0.174453 0.984666i \(-0.444184\pi\)
0.174453 + 0.984666i \(0.444184\pi\)
\(230\) −7.32421e9 −0.172578
\(231\) 0 0
\(232\) 1.46702e10 0.332460
\(233\) 4.74755e10 1.05528 0.527640 0.849468i \(-0.323077\pi\)
0.527640 + 0.849468i \(0.323077\pi\)
\(234\) 4.63157e9 0.100985
\(235\) −3.83636e10 −0.820567
\(236\) −6.95506e9 −0.145948
\(237\) −7.84902e10 −1.61602
\(238\) 0 0
\(239\) 7.94829e10 1.57574 0.787868 0.615845i \(-0.211185\pi\)
0.787868 + 0.615845i \(0.211185\pi\)
\(240\) −1.43844e10 −0.279861
\(241\) 4.80731e10 0.917963 0.458982 0.888446i \(-0.348214\pi\)
0.458982 + 0.888446i \(0.348214\pi\)
\(242\) 1.58785e10 0.297606
\(243\) 5.51114e10 1.01394
\(244\) 5.14283e10 0.928855
\(245\) 0 0
\(246\) 1.21910e10 0.212243
\(247\) −1.01966e10 −0.174308
\(248\) 9.69430e9 0.162736
\(249\) −1.01392e11 −1.67150
\(250\) −2.32429e9 −0.0376322
\(251\) 6.79354e10 1.08035 0.540175 0.841553i \(-0.318358\pi\)
0.540175 + 0.841553i \(0.318358\pi\)
\(252\) 0 0
\(253\) −3.23356e10 −0.496180
\(254\) −2.72609e10 −0.410950
\(255\) −3.44228e10 −0.509819
\(256\) −2.32288e10 −0.338023
\(257\) 8.20972e10 1.17390 0.586948 0.809625i \(-0.300329\pi\)
0.586948 + 0.809625i \(0.300329\pi\)
\(258\) −6.97803e10 −0.980492
\(259\) 0 0
\(260\) 1.15255e10 0.156416
\(261\) 1.83523e10 0.244798
\(262\) −1.71731e9 −0.0225160
\(263\) 1.39217e10 0.179429 0.0897146 0.995968i \(-0.471405\pi\)
0.0897146 + 0.995968i \(0.471405\pi\)
\(264\) 4.09658e10 0.519044
\(265\) −1.37001e10 −0.170654
\(266\) 0 0
\(267\) 1.36134e11 1.63932
\(268\) −6.14104e10 −0.727169
\(269\) 2.61399e10 0.304382 0.152191 0.988351i \(-0.451367\pi\)
0.152191 + 0.988351i \(0.451367\pi\)
\(270\) −8.94579e9 −0.102443
\(271\) −1.45817e11 −1.64228 −0.821140 0.570727i \(-0.806661\pi\)
−0.821140 + 0.570727i \(0.806661\pi\)
\(272\) 4.11566e10 0.455910
\(273\) 0 0
\(274\) 2.83693e10 0.304069
\(275\) −1.02615e10 −0.108197
\(276\) 9.10244e10 0.944207
\(277\) 1.18191e11 1.20622 0.603108 0.797660i \(-0.293929\pi\)
0.603108 + 0.797660i \(0.293929\pi\)
\(278\) 7.07897e10 0.710835
\(279\) 1.21275e10 0.119826
\(280\) 0 0
\(281\) −1.41444e11 −1.35334 −0.676670 0.736287i \(-0.736577\pi\)
−0.676670 + 0.736287i \(0.736577\pi\)
\(282\) −1.02555e11 −0.965690
\(283\) 1.80216e11 1.67015 0.835073 0.550139i \(-0.185425\pi\)
0.835073 + 0.550139i \(0.185425\pi\)
\(284\) 2.41880e10 0.220631
\(285\) −2.55553e10 −0.229446
\(286\) −1.09452e10 −0.0967334
\(287\) 0 0
\(288\) −6.44527e10 −0.552045
\(289\) −2.00975e10 −0.169474
\(290\) −9.82344e9 −0.0815591
\(291\) −1.34326e11 −1.09810
\(292\) 1.64451e11 1.32377
\(293\) 1.16123e10 0.0920482 0.0460241 0.998940i \(-0.485345\pi\)
0.0460241 + 0.998940i \(0.485345\pi\)
\(294\) 0 0
\(295\) 1.03163e10 0.0793093
\(296\) −4.94476e10 −0.374397
\(297\) −3.94948e10 −0.294534
\(298\) 1.32630e10 0.0974247
\(299\) −5.38708e10 −0.389792
\(300\) 2.88860e10 0.205893
\(301\) 0 0
\(302\) 7.10650e10 0.491614
\(303\) −1.66500e11 −1.13481
\(304\) 3.05545e10 0.205184
\(305\) −7.62824e10 −0.504749
\(306\) −3.32126e10 −0.216549
\(307\) −7.59903e10 −0.488242 −0.244121 0.969745i \(-0.578499\pi\)
−0.244121 + 0.969745i \(0.578499\pi\)
\(308\) 0 0
\(309\) 9.89233e10 0.617284
\(310\) −6.49150e9 −0.0399225
\(311\) −6.05505e10 −0.367025 −0.183513 0.983017i \(-0.558747\pi\)
−0.183513 + 0.983017i \(0.558747\pi\)
\(312\) 6.82485e10 0.407754
\(313\) −1.84759e11 −1.08807 −0.544033 0.839064i \(-0.683104\pi\)
−0.544033 + 0.839064i \(0.683104\pi\)
\(314\) 5.20551e10 0.302190
\(315\) 0 0
\(316\) −1.88453e11 −1.06319
\(317\) 9.74554e10 0.542050 0.271025 0.962572i \(-0.412637\pi\)
0.271025 + 0.962572i \(0.412637\pi\)
\(318\) −3.66238e10 −0.200836
\(319\) −4.33695e10 −0.234491
\(320\) −7.46586e9 −0.0398020
\(321\) 7.51383e10 0.394992
\(322\) 0 0
\(323\) 7.31188e10 0.373781
\(324\) 2.03372e11 1.02527
\(325\) −1.70955e10 −0.0849978
\(326\) −1.12270e11 −0.550537
\(327\) −1.26453e11 −0.611595
\(328\) 6.48368e10 0.309307
\(329\) 0 0
\(330\) −2.74316e10 −0.127332
\(331\) 2.09598e11 0.959755 0.479877 0.877336i \(-0.340681\pi\)
0.479877 + 0.877336i \(0.340681\pi\)
\(332\) −2.43439e11 −1.09969
\(333\) −6.18586e10 −0.275677
\(334\) 1.17526e11 0.516744
\(335\) 9.10887e10 0.395151
\(336\) 0 0
\(337\) −3.91362e11 −1.65289 −0.826446 0.563016i \(-0.809641\pi\)
−0.826446 + 0.563016i \(0.809641\pi\)
\(338\) 8.27233e10 0.344749
\(339\) −5.87236e11 −2.41498
\(340\) −8.26484e10 −0.335413
\(341\) −2.86593e10 −0.114781
\(342\) −2.46569e10 −0.0974587
\(343\) 0 0
\(344\) −3.71120e11 −1.42890
\(345\) −1.35015e11 −0.513091
\(346\) 1.14555e11 0.429705
\(347\) 4.38929e11 1.62522 0.812610 0.582808i \(-0.198046\pi\)
0.812610 + 0.582808i \(0.198046\pi\)
\(348\) 1.22085e11 0.446226
\(349\) −1.91496e11 −0.690948 −0.345474 0.938428i \(-0.612282\pi\)
−0.345474 + 0.938428i \(0.612282\pi\)
\(350\) 0 0
\(351\) −6.57978e10 −0.231382
\(352\) 1.52313e11 0.528803
\(353\) −6.04366e10 −0.207164 −0.103582 0.994621i \(-0.533030\pi\)
−0.103582 + 0.994621i \(0.533030\pi\)
\(354\) 2.75780e10 0.0933358
\(355\) −3.58775e10 −0.119893
\(356\) 3.26854e11 1.07852
\(357\) 0 0
\(358\) −1.84431e11 −0.593419
\(359\) −2.91644e10 −0.0926676 −0.0463338 0.998926i \(-0.514754\pi\)
−0.0463338 + 0.998926i \(0.514754\pi\)
\(360\) 6.17358e10 0.193721
\(361\) −2.68405e11 −0.831778
\(362\) 2.09495e11 0.641187
\(363\) 2.92705e11 0.884811
\(364\) 0 0
\(365\) −2.43927e11 −0.719352
\(366\) −2.03922e11 −0.594017
\(367\) −4.89761e11 −1.40925 −0.704623 0.709582i \(-0.748884\pi\)
−0.704623 + 0.709582i \(0.748884\pi\)
\(368\) 1.61426e11 0.458837
\(369\) 8.11105e10 0.227750
\(370\) 3.31111e10 0.0918473
\(371\) 0 0
\(372\) 8.06757e10 0.218424
\(373\) 1.99118e11 0.532624 0.266312 0.963887i \(-0.414195\pi\)
0.266312 + 0.963887i \(0.414195\pi\)
\(374\) 7.84870e10 0.207432
\(375\) −4.28459e10 −0.111884
\(376\) −5.45431e11 −1.40733
\(377\) −7.22531e10 −0.184213
\(378\) 0 0
\(379\) −1.32403e11 −0.329626 −0.164813 0.986325i \(-0.552702\pi\)
−0.164813 + 0.986325i \(0.552702\pi\)
\(380\) −6.13578e10 −0.150954
\(381\) −5.02528e11 −1.22179
\(382\) −2.57190e11 −0.617972
\(383\) 6.04046e11 1.43442 0.717209 0.696858i \(-0.245419\pi\)
0.717209 + 0.696858i \(0.245419\pi\)
\(384\) −5.40942e11 −1.26958
\(385\) 0 0
\(386\) −1.82794e11 −0.419102
\(387\) −4.64268e11 −1.05213
\(388\) −3.22513e11 −0.722445
\(389\) 5.00639e11 1.10854 0.554270 0.832337i \(-0.312998\pi\)
0.554270 + 0.832337i \(0.312998\pi\)
\(390\) −4.57006e10 −0.100030
\(391\) 3.86303e11 0.835857
\(392\) 0 0
\(393\) −3.16568e10 −0.0669424
\(394\) −3.45390e11 −0.722066
\(395\) 2.79528e11 0.577748
\(396\) 1.23045e11 0.251441
\(397\) −2.63517e10 −0.0532416 −0.0266208 0.999646i \(-0.508475\pi\)
−0.0266208 + 0.999646i \(0.508475\pi\)
\(398\) −3.05915e11 −0.611121
\(399\) 0 0
\(400\) 5.12274e10 0.100054
\(401\) −8.61548e11 −1.66391 −0.831955 0.554844i \(-0.812778\pi\)
−0.831955 + 0.554844i \(0.812778\pi\)
\(402\) 2.43503e11 0.465036
\(403\) −4.77461e10 −0.0901707
\(404\) −3.99763e11 −0.746597
\(405\) −3.01657e11 −0.557141
\(406\) 0 0
\(407\) 1.46182e11 0.264071
\(408\) −4.89404e11 −0.874373
\(409\) 3.38790e11 0.598653 0.299327 0.954151i \(-0.403238\pi\)
0.299327 + 0.954151i \(0.403238\pi\)
\(410\) −4.34161e10 −0.0758793
\(411\) 5.22961e11 0.904026
\(412\) 2.37512e11 0.406115
\(413\) 0 0
\(414\) −1.30268e11 −0.217939
\(415\) 3.61088e11 0.597580
\(416\) 2.53751e11 0.415420
\(417\) 1.30494e12 2.11338
\(418\) 5.82684e10 0.0933554
\(419\) −3.72424e11 −0.590303 −0.295151 0.955451i \(-0.595370\pi\)
−0.295151 + 0.955451i \(0.595370\pi\)
\(420\) 0 0
\(421\) −2.08072e11 −0.322808 −0.161404 0.986888i \(-0.551602\pi\)
−0.161404 + 0.986888i \(0.551602\pi\)
\(422\) 2.55343e11 0.391938
\(423\) −6.82331e11 −1.03625
\(424\) −1.94780e11 −0.292684
\(425\) 1.22591e11 0.182266
\(426\) −9.59095e10 −0.141097
\(427\) 0 0
\(428\) 1.80405e11 0.259868
\(429\) −2.01764e11 −0.287598
\(430\) 2.48510e11 0.350538
\(431\) −8.40866e11 −1.17376 −0.586880 0.809674i \(-0.699644\pi\)
−0.586880 + 0.809674i \(0.699644\pi\)
\(432\) 1.97166e11 0.272367
\(433\) 1.06266e12 1.45278 0.726392 0.687281i \(-0.241196\pi\)
0.726392 + 0.687281i \(0.241196\pi\)
\(434\) 0 0
\(435\) −1.81085e11 −0.242483
\(436\) −3.03610e11 −0.402372
\(437\) 2.86789e11 0.376181
\(438\) −6.52077e11 −0.846575
\(439\) 1.99978e11 0.256976 0.128488 0.991711i \(-0.458988\pi\)
0.128488 + 0.991711i \(0.458988\pi\)
\(440\) −1.45892e11 −0.185564
\(441\) 0 0
\(442\) 1.30758e11 0.162956
\(443\) −5.42567e11 −0.669324 −0.334662 0.942338i \(-0.608622\pi\)
−0.334662 + 0.942338i \(0.608622\pi\)
\(444\) −4.11501e11 −0.502514
\(445\) −4.84815e11 −0.586079
\(446\) 2.89675e11 0.346661
\(447\) 2.44491e11 0.289653
\(448\) 0 0
\(449\) 1.13888e11 0.132243 0.0661213 0.997812i \(-0.478938\pi\)
0.0661213 + 0.997812i \(0.478938\pi\)
\(450\) −4.13396e10 −0.0475236
\(451\) −1.91678e11 −0.218161
\(452\) −1.40994e12 −1.58883
\(453\) 1.31001e12 1.46162
\(454\) 2.78714e11 0.307899
\(455\) 0 0
\(456\) −3.63331e11 −0.393515
\(457\) 6.46996e11 0.693871 0.346936 0.937889i \(-0.387222\pi\)
0.346936 + 0.937889i \(0.387222\pi\)
\(458\) −1.38235e11 −0.146799
\(459\) 4.71830e11 0.496168
\(460\) −3.24167e11 −0.337566
\(461\) −3.02404e11 −0.311841 −0.155921 0.987770i \(-0.549834\pi\)
−0.155921 + 0.987770i \(0.549834\pi\)
\(462\) 0 0
\(463\) 6.37663e11 0.644877 0.322439 0.946590i \(-0.395497\pi\)
0.322439 + 0.946590i \(0.395497\pi\)
\(464\) 2.16509e11 0.216843
\(465\) −1.19664e11 −0.118693
\(466\) −4.51980e11 −0.444000
\(467\) 1.62208e12 1.57814 0.789070 0.614304i \(-0.210563\pi\)
0.789070 + 0.614304i \(0.210563\pi\)
\(468\) 2.04992e11 0.197529
\(469\) 0 0
\(470\) 3.65232e11 0.345246
\(471\) 9.59585e11 0.898440
\(472\) 1.46671e11 0.136021
\(473\) 1.09714e12 1.00783
\(474\) 7.47249e11 0.679927
\(475\) 9.10106e10 0.0820297
\(476\) 0 0
\(477\) −2.43669e11 −0.215510
\(478\) −7.56700e11 −0.662977
\(479\) 7.61461e11 0.660903 0.330452 0.943823i \(-0.392799\pi\)
0.330452 + 0.943823i \(0.392799\pi\)
\(480\) 6.35967e11 0.546826
\(481\) 2.43538e11 0.207450
\(482\) −4.57669e11 −0.386225
\(483\) 0 0
\(484\) 7.02778e11 0.582122
\(485\) 4.78376e11 0.392583
\(486\) −5.24676e11 −0.426607
\(487\) −1.66188e12 −1.33881 −0.669404 0.742898i \(-0.733451\pi\)
−0.669404 + 0.742898i \(0.733451\pi\)
\(488\) −1.08454e12 −0.865678
\(489\) −2.06959e12 −1.63680
\(490\) 0 0
\(491\) −7.13111e11 −0.553720 −0.276860 0.960910i \(-0.589294\pi\)
−0.276860 + 0.960910i \(0.589294\pi\)
\(492\) 5.39570e11 0.415150
\(493\) 5.18120e11 0.395020
\(494\) 9.70744e10 0.0733387
\(495\) −1.82510e11 −0.136635
\(496\) 1.43073e11 0.106143
\(497\) 0 0
\(498\) 9.65278e11 0.703267
\(499\) 3.42238e11 0.247102 0.123551 0.992338i \(-0.460572\pi\)
0.123551 + 0.992338i \(0.460572\pi\)
\(500\) −1.02872e11 −0.0736093
\(501\) 2.16648e12 1.53633
\(502\) −6.46765e11 −0.454548
\(503\) 1.72343e12 1.20043 0.600217 0.799837i \(-0.295081\pi\)
0.600217 + 0.799837i \(0.295081\pi\)
\(504\) 0 0
\(505\) 5.92959e11 0.405708
\(506\) 3.07845e11 0.208763
\(507\) 1.52492e12 1.02497
\(508\) −1.20656e12 −0.803825
\(509\) −1.18787e12 −0.784401 −0.392201 0.919880i \(-0.628286\pi\)
−0.392201 + 0.919880i \(0.628286\pi\)
\(510\) 3.27715e11 0.214502
\(511\) 0 0
\(512\) −1.35702e12 −0.872710
\(513\) 3.50284e11 0.223302
\(514\) −7.81589e11 −0.493906
\(515\) −3.52297e11 −0.220687
\(516\) −3.08845e12 −1.91786
\(517\) 1.61246e12 0.992619
\(518\) 0 0
\(519\) 2.11170e12 1.27755
\(520\) −2.43055e11 −0.145777
\(521\) −2.40085e11 −0.142757 −0.0713783 0.997449i \(-0.522740\pi\)
−0.0713783 + 0.997449i \(0.522740\pi\)
\(522\) −1.74719e11 −0.102996
\(523\) 7.10285e9 0.00415121 0.00207561 0.999998i \(-0.499339\pi\)
0.00207561 + 0.999998i \(0.499339\pi\)
\(524\) −7.60073e10 −0.0440418
\(525\) 0 0
\(526\) −1.32539e11 −0.0754932
\(527\) 3.42383e11 0.193359
\(528\) 6.04593e11 0.338540
\(529\) −2.85982e11 −0.158777
\(530\) 1.30429e11 0.0718013
\(531\) 1.83485e11 0.100155
\(532\) 0 0
\(533\) −3.19333e11 −0.171384
\(534\) −1.29603e12 −0.689731
\(535\) −2.67591e11 −0.141215
\(536\) 1.29505e12 0.677710
\(537\) −3.39981e12 −1.76429
\(538\) −2.48859e11 −0.128066
\(539\) 0 0
\(540\) −3.95937e11 −0.200380
\(541\) 9.97063e11 0.500420 0.250210 0.968192i \(-0.419500\pi\)
0.250210 + 0.968192i \(0.419500\pi\)
\(542\) 1.38822e12 0.690974
\(543\) 3.86183e12 1.90631
\(544\) −1.81962e12 −0.890813
\(545\) 4.50338e11 0.218653
\(546\) 0 0
\(547\) −2.39224e11 −0.114251 −0.0571256 0.998367i \(-0.518194\pi\)
−0.0571256 + 0.998367i \(0.518194\pi\)
\(548\) 1.25562e12 0.594764
\(549\) −1.35675e12 −0.637419
\(550\) 9.76924e10 0.0455228
\(551\) 3.84650e11 0.177780
\(552\) −1.91956e12 −0.879986
\(553\) 0 0
\(554\) −1.12521e12 −0.507505
\(555\) 6.10371e11 0.273071
\(556\) 3.13313e12 1.39041
\(557\) 1.28056e12 0.563704 0.281852 0.959458i \(-0.409051\pi\)
0.281852 + 0.959458i \(0.409051\pi\)
\(558\) −1.15457e11 −0.0504159
\(559\) 1.82783e12 0.791740
\(560\) 0 0
\(561\) 1.44683e12 0.616715
\(562\) 1.34659e12 0.569405
\(563\) 4.17614e12 1.75181 0.875905 0.482484i \(-0.160265\pi\)
0.875905 + 0.482484i \(0.160265\pi\)
\(564\) −4.53907e12 −1.88891
\(565\) 2.09133e12 0.863386
\(566\) −1.71571e12 −0.702699
\(567\) 0 0
\(568\) −5.10086e11 −0.205625
\(569\) 7.47920e11 0.299123 0.149562 0.988752i \(-0.452214\pi\)
0.149562 + 0.988752i \(0.452214\pi\)
\(570\) 2.43294e11 0.0965372
\(571\) 3.30415e12 1.30076 0.650380 0.759609i \(-0.274610\pi\)
0.650380 + 0.759609i \(0.274610\pi\)
\(572\) −4.84430e11 −0.189212
\(573\) −4.74104e12 −1.83729
\(574\) 0 0
\(575\) 4.80829e11 0.183436
\(576\) −1.32787e11 −0.0502638
\(577\) 4.91162e11 0.184473 0.0922367 0.995737i \(-0.470598\pi\)
0.0922367 + 0.995737i \(0.470598\pi\)
\(578\) 1.91334e11 0.0713046
\(579\) −3.36963e12 −1.24603
\(580\) −4.34782e11 −0.159531
\(581\) 0 0
\(582\) 1.27882e12 0.462015
\(583\) 5.75831e11 0.206436
\(584\) −3.46801e12 −1.23374
\(585\) −3.04060e11 −0.107339
\(586\) −1.10553e11 −0.0387285
\(587\) 3.13584e12 1.09014 0.545070 0.838390i \(-0.316503\pi\)
0.545070 + 0.838390i \(0.316503\pi\)
\(588\) 0 0
\(589\) 2.54184e11 0.0870219
\(590\) −9.82140e10 −0.0333687
\(591\) −6.36692e12 −2.14677
\(592\) −7.29771e11 −0.244196
\(593\) 2.78743e12 0.925673 0.462837 0.886444i \(-0.346832\pi\)
0.462837 + 0.886444i \(0.346832\pi\)
\(594\) 3.76001e11 0.123923
\(595\) 0 0
\(596\) 5.87016e11 0.190564
\(597\) −5.63924e12 −1.81692
\(598\) 5.12865e11 0.164002
\(599\) −4.50849e12 −1.43090 −0.715452 0.698662i \(-0.753779\pi\)
−0.715452 + 0.698662i \(0.753779\pi\)
\(600\) −6.09159e11 −0.191889
\(601\) −4.42349e12 −1.38303 −0.691513 0.722364i \(-0.743056\pi\)
−0.691513 + 0.722364i \(0.743056\pi\)
\(602\) 0 0
\(603\) 1.62009e12 0.499014
\(604\) 3.14531e12 0.961606
\(605\) −1.04242e12 −0.316331
\(606\) 1.58513e12 0.477461
\(607\) −2.66914e12 −0.798037 −0.399018 0.916943i \(-0.630649\pi\)
−0.399018 + 0.916943i \(0.630649\pi\)
\(608\) −1.35088e12 −0.400914
\(609\) 0 0
\(610\) 7.26230e11 0.212368
\(611\) 2.68635e12 0.779788
\(612\) −1.46998e12 −0.423574
\(613\) −2.71304e12 −0.776040 −0.388020 0.921651i \(-0.626841\pi\)
−0.388020 + 0.921651i \(0.626841\pi\)
\(614\) 7.23449e11 0.205424
\(615\) −8.00333e11 −0.225597
\(616\) 0 0
\(617\) −4.55367e11 −0.126497 −0.0632483 0.997998i \(-0.520146\pi\)
−0.0632483 + 0.997998i \(0.520146\pi\)
\(618\) −9.41778e11 −0.259717
\(619\) 3.92204e12 1.07375 0.536876 0.843661i \(-0.319604\pi\)
0.536876 + 0.843661i \(0.319604\pi\)
\(620\) −2.87311e11 −0.0780891
\(621\) 1.85063e12 0.499353
\(622\) 5.76458e11 0.154423
\(623\) 0 0
\(624\) 1.00724e12 0.265953
\(625\) 1.52588e11 0.0400000
\(626\) 1.75896e12 0.457794
\(627\) 1.07412e12 0.277555
\(628\) 2.30394e12 0.591089
\(629\) −1.74639e12 −0.444849
\(630\) 0 0
\(631\) 2.74330e12 0.688876 0.344438 0.938809i \(-0.388070\pi\)
0.344438 + 0.938809i \(0.388070\pi\)
\(632\) 3.97417e12 0.990877
\(633\) 4.70699e12 1.16527
\(634\) −9.27803e11 −0.228063
\(635\) 1.78966e12 0.436806
\(636\) −1.62096e12 −0.392839
\(637\) 0 0
\(638\) 4.12890e11 0.0986601
\(639\) −6.38114e11 −0.151406
\(640\) 1.92647e12 0.453891
\(641\) 4.11504e12 0.962749 0.481374 0.876515i \(-0.340138\pi\)
0.481374 + 0.876515i \(0.340138\pi\)
\(642\) −7.15338e11 −0.166189
\(643\) 3.64691e12 0.841349 0.420675 0.907212i \(-0.361793\pi\)
0.420675 + 0.907212i \(0.361793\pi\)
\(644\) 0 0
\(645\) 4.58103e12 1.04218
\(646\) −6.96112e11 −0.157265
\(647\) 2.34539e12 0.526193 0.263097 0.964769i \(-0.415256\pi\)
0.263097 + 0.964769i \(0.415256\pi\)
\(648\) −4.28878e12 −0.955535
\(649\) −4.33605e11 −0.0959385
\(650\) 1.62754e11 0.0357621
\(651\) 0 0
\(652\) −4.96905e12 −1.07686
\(653\) 1.73236e11 0.0372846 0.0186423 0.999826i \(-0.494066\pi\)
0.0186423 + 0.999826i \(0.494066\pi\)
\(654\) 1.20387e12 0.257323
\(655\) 1.12740e11 0.0239327
\(656\) 9.56893e11 0.201742
\(657\) −4.33846e12 −0.908429
\(658\) 0 0
\(659\) 3.10137e12 0.640574 0.320287 0.947320i \(-0.396221\pi\)
0.320287 + 0.947320i \(0.396221\pi\)
\(660\) −1.21411e12 −0.249064
\(661\) 2.62494e12 0.534826 0.267413 0.963582i \(-0.413831\pi\)
0.267413 + 0.963582i \(0.413831\pi\)
\(662\) −1.99543e12 −0.403808
\(663\) 2.41040e12 0.484483
\(664\) 5.13374e12 1.02489
\(665\) 0 0
\(666\) 5.88911e11 0.115989
\(667\) 2.03219e12 0.397556
\(668\) 5.20166e12 1.01076
\(669\) 5.33988e12 1.03066
\(670\) −8.67190e11 −0.166256
\(671\) 3.20623e12 0.610582
\(672\) 0 0
\(673\) 8.40711e12 1.57972 0.789858 0.613290i \(-0.210154\pi\)
0.789858 + 0.613290i \(0.210154\pi\)
\(674\) 3.72588e12 0.695439
\(675\) 5.87285e11 0.108888
\(676\) 3.66130e12 0.674334
\(677\) −5.51141e12 −1.00836 −0.504178 0.863600i \(-0.668204\pi\)
−0.504178 + 0.863600i \(0.668204\pi\)
\(678\) 5.59065e12 1.01608
\(679\) 0 0
\(680\) 1.74292e12 0.312599
\(681\) 5.13782e12 0.915413
\(682\) 2.72845e11 0.0482932
\(683\) 5.28804e11 0.0929826 0.0464913 0.998919i \(-0.485196\pi\)
0.0464913 + 0.998919i \(0.485196\pi\)
\(684\) −1.09130e12 −0.190631
\(685\) −1.86243e12 −0.323200
\(686\) 0 0
\(687\) −2.54823e12 −0.436448
\(688\) −5.47716e12 −0.931982
\(689\) 9.59327e11 0.162174
\(690\) 1.28538e12 0.215879
\(691\) 7.40471e12 1.23554 0.617770 0.786359i \(-0.288036\pi\)
0.617770 + 0.786359i \(0.288036\pi\)
\(692\) 5.07014e12 0.840510
\(693\) 0 0
\(694\) −4.17873e12 −0.683797
\(695\) −4.64730e12 −0.755560
\(696\) −2.57457e12 −0.415875
\(697\) 2.28991e12 0.367511
\(698\) 1.82310e12 0.290710
\(699\) −8.33180e12 −1.32005
\(700\) 0 0
\(701\) 3.15485e12 0.493455 0.246727 0.969085i \(-0.420645\pi\)
0.246727 + 0.969085i \(0.420645\pi\)
\(702\) 6.26414e11 0.0973519
\(703\) −1.29651e12 −0.200206
\(704\) 3.13799e11 0.0481475
\(705\) 6.73269e12 1.02645
\(706\) 5.75374e11 0.0871623
\(707\) 0 0
\(708\) 1.22059e12 0.182566
\(709\) 1.22184e12 0.181596 0.0907982 0.995869i \(-0.471058\pi\)
0.0907982 + 0.995869i \(0.471058\pi\)
\(710\) 3.41564e11 0.0504440
\(711\) 4.97166e12 0.729606
\(712\) −6.89282e12 −1.00516
\(713\) 1.34291e12 0.194600
\(714\) 0 0
\(715\) 7.18544e11 0.102820
\(716\) −8.16286e12 −1.16074
\(717\) −1.39490e13 −1.97109
\(718\) 2.77653e11 0.0389891
\(719\) 1.24183e12 0.173294 0.0866468 0.996239i \(-0.472385\pi\)
0.0866468 + 0.996239i \(0.472385\pi\)
\(720\) 9.11126e11 0.126352
\(721\) 0 0
\(722\) 2.55529e12 0.349963
\(723\) −8.43668e12 −1.14828
\(724\) 9.27217e12 1.25417
\(725\) 6.44902e11 0.0866907
\(726\) −2.78664e12 −0.372276
\(727\) −6.23382e12 −0.827656 −0.413828 0.910355i \(-0.635808\pi\)
−0.413828 + 0.910355i \(0.635808\pi\)
\(728\) 0 0
\(729\) −1.71863e11 −0.0225377
\(730\) 2.32225e12 0.302661
\(731\) −1.31072e13 −1.69778
\(732\) −9.02551e12 −1.16191
\(733\) 1.13604e13 1.45354 0.726769 0.686882i \(-0.241021\pi\)
0.726769 + 0.686882i \(0.241021\pi\)
\(734\) 4.66266e12 0.592927
\(735\) 0 0
\(736\) −7.13700e12 −0.896531
\(737\) −3.82856e12 −0.478004
\(738\) −7.72195e11 −0.0958237
\(739\) 6.78685e12 0.837082 0.418541 0.908198i \(-0.362542\pi\)
0.418541 + 0.908198i \(0.362542\pi\)
\(740\) 1.46549e12 0.179655
\(741\) 1.78947e12 0.218043
\(742\) 0 0
\(743\) −3.07367e12 −0.370005 −0.185002 0.982738i \(-0.559229\pi\)
−0.185002 + 0.982738i \(0.559229\pi\)
\(744\) −1.70132e12 −0.203567
\(745\) −8.70708e11 −0.103555
\(746\) −1.89566e12 −0.224097
\(747\) 6.42227e12 0.754651
\(748\) 3.47380e12 0.405740
\(749\) 0 0
\(750\) 4.07906e11 0.0470743
\(751\) 1.55928e13 1.78873 0.894366 0.447337i \(-0.147627\pi\)
0.894366 + 0.447337i \(0.147627\pi\)
\(752\) −8.04974e12 −0.917913
\(753\) −1.19225e13 −1.35141
\(754\) 6.87870e11 0.0775060
\(755\) −4.66537e12 −0.522546
\(756\) 0 0
\(757\) −2.01197e11 −0.0222684 −0.0111342 0.999938i \(-0.503544\pi\)
−0.0111342 + 0.999938i \(0.503544\pi\)
\(758\) 1.26051e12 0.138687
\(759\) 5.67481e12 0.620674
\(760\) 1.29394e12 0.140686
\(761\) −1.00060e13 −1.08151 −0.540755 0.841180i \(-0.681861\pi\)
−0.540755 + 0.841180i \(0.681861\pi\)
\(762\) 4.78421e12 0.514059
\(763\) 0 0
\(764\) −1.13831e13 −1.20876
\(765\) 2.18038e12 0.230174
\(766\) −5.75069e12 −0.603519
\(767\) −7.22381e11 −0.0753680
\(768\) 4.07658e12 0.422834
\(769\) −6.54056e11 −0.0674445 −0.0337223 0.999431i \(-0.510736\pi\)
−0.0337223 + 0.999431i \(0.510736\pi\)
\(770\) 0 0
\(771\) −1.44078e13 −1.46843
\(772\) −8.09040e12 −0.819770
\(773\) −1.50342e13 −1.51451 −0.757255 0.653120i \(-0.773460\pi\)
−0.757255 + 0.653120i \(0.773460\pi\)
\(774\) 4.41997e12 0.442675
\(775\) 4.26163e11 0.0424344
\(776\) 6.80128e12 0.673307
\(777\) 0 0
\(778\) −4.76622e12 −0.466408
\(779\) 1.70002e12 0.165400
\(780\) −2.02269e12 −0.195661
\(781\) 1.50797e12 0.145032
\(782\) −3.67771e12 −0.351680
\(783\) 2.48212e12 0.235991
\(784\) 0 0
\(785\) −3.41738e12 −0.321203
\(786\) 3.01382e11 0.0281654
\(787\) −2.10567e12 −0.195661 −0.0978305 0.995203i \(-0.531190\pi\)
−0.0978305 + 0.995203i \(0.531190\pi\)
\(788\) −1.52868e13 −1.41237
\(789\) −2.44323e12 −0.224449
\(790\) −2.66119e12 −0.243082
\(791\) 0 0
\(792\) −2.59482e12 −0.234339
\(793\) 5.34155e12 0.479665
\(794\) 2.50875e11 0.0224009
\(795\) 2.40433e12 0.213472
\(796\) −1.35397e13 −1.19536
\(797\) −1.24161e13 −1.08999 −0.544997 0.838438i \(-0.683469\pi\)
−0.544997 + 0.838438i \(0.683469\pi\)
\(798\) 0 0
\(799\) −1.92635e13 −1.67215
\(800\) −2.26488e12 −0.195497
\(801\) −8.62287e12 −0.740126
\(802\) 8.20218e12 0.700075
\(803\) 1.02525e13 0.870182
\(804\) 1.07773e13 0.909619
\(805\) 0 0
\(806\) 4.54557e11 0.0379385
\(807\) −4.58747e12 −0.380752
\(808\) 8.43036e12 0.695817
\(809\) −1.17105e13 −0.961183 −0.480591 0.876945i \(-0.659578\pi\)
−0.480591 + 0.876945i \(0.659578\pi\)
\(810\) 2.87186e12 0.234412
\(811\) −1.51560e13 −1.23024 −0.615122 0.788432i \(-0.710893\pi\)
−0.615122 + 0.788432i \(0.710893\pi\)
\(812\) 0 0
\(813\) 2.55905e13 2.05433
\(814\) −1.39170e12 −0.111105
\(815\) 7.37048e12 0.585176
\(816\) −7.22286e12 −0.570300
\(817\) −9.73073e12 −0.764093
\(818\) −3.22538e12 −0.251878
\(819\) 0 0
\(820\) −1.92158e12 −0.148421
\(821\) −7.80111e12 −0.599255 −0.299628 0.954056i \(-0.596862\pi\)
−0.299628 + 0.954056i \(0.596862\pi\)
\(822\) −4.97873e12 −0.380361
\(823\) 6.32663e12 0.480699 0.240350 0.970686i \(-0.422738\pi\)
0.240350 + 0.970686i \(0.422738\pi\)
\(824\) −5.00876e12 −0.378493
\(825\) 1.80086e12 0.135344
\(826\) 0 0
\(827\) −2.24559e13 −1.66938 −0.834689 0.550721i \(-0.814353\pi\)
−0.834689 + 0.550721i \(0.814353\pi\)
\(828\) −5.76560e12 −0.426293
\(829\) −1.48421e13 −1.09144 −0.545718 0.837969i \(-0.683743\pi\)
−0.545718 + 0.837969i \(0.683743\pi\)
\(830\) −3.43766e12 −0.251427
\(831\) −2.07421e13 −1.50886
\(832\) 5.22785e11 0.0378240
\(833\) 0 0
\(834\) −1.24234e13 −0.889186
\(835\) −7.71551e12 −0.549257
\(836\) 2.57894e12 0.182605
\(837\) 1.64023e12 0.115515
\(838\) 3.54558e12 0.248365
\(839\) −2.98994e12 −0.208321 −0.104160 0.994561i \(-0.533216\pi\)
−0.104160 + 0.994561i \(0.533216\pi\)
\(840\) 0 0
\(841\) −1.17815e13 −0.812118
\(842\) 1.98090e12 0.135818
\(843\) 2.48230e13 1.69290
\(844\) 1.13014e13 0.766638
\(845\) −5.43073e12 −0.366440
\(846\) 6.49599e12 0.435992
\(847\) 0 0
\(848\) −2.87466e12 −0.190900
\(849\) −3.16274e13 −2.08919
\(850\) −1.16710e12 −0.0766870
\(851\) −6.84975e12 −0.447705
\(852\) −4.24492e12 −0.275989
\(853\) 3.18183e12 0.205781 0.102891 0.994693i \(-0.467191\pi\)
0.102891 + 0.994693i \(0.467191\pi\)
\(854\) 0 0
\(855\) 1.61871e12 0.103591
\(856\) −3.80446e12 −0.242192
\(857\) −4.67041e10 −0.00295761 −0.00147881 0.999999i \(-0.500471\pi\)
−0.00147881 + 0.999999i \(0.500471\pi\)
\(858\) 1.92085e12 0.121004
\(859\) 2.45887e13 1.54087 0.770436 0.637518i \(-0.220039\pi\)
0.770436 + 0.637518i \(0.220039\pi\)
\(860\) 1.09989e13 0.685658
\(861\) 0 0
\(862\) 8.00529e12 0.493849
\(863\) −4.91452e12 −0.301601 −0.150800 0.988564i \(-0.548185\pi\)
−0.150800 + 0.988564i \(0.548185\pi\)
\(864\) −8.71713e12 −0.532184
\(865\) −7.52043e12 −0.456741
\(866\) −1.01169e13 −0.611246
\(867\) 3.52706e12 0.211996
\(868\) 0 0
\(869\) −1.17489e13 −0.698888
\(870\) 1.72398e12 0.102023
\(871\) −6.37833e12 −0.375513
\(872\) 6.40265e12 0.375004
\(873\) 8.50836e12 0.495772
\(874\) −2.73032e12 −0.158275
\(875\) 0 0
\(876\) −2.88607e13 −1.65591
\(877\) 6.49150e12 0.370550 0.185275 0.982687i \(-0.440682\pi\)
0.185275 + 0.982687i \(0.440682\pi\)
\(878\) −1.90385e12 −0.108120
\(879\) −2.03793e12 −0.115143
\(880\) −2.15315e12 −0.121032
\(881\) 6.22021e11 0.0347867 0.0173934 0.999849i \(-0.494463\pi\)
0.0173934 + 0.999849i \(0.494463\pi\)
\(882\) 0 0
\(883\) 2.83144e13 1.56741 0.783707 0.621131i \(-0.213326\pi\)
0.783707 + 0.621131i \(0.213326\pi\)
\(884\) 5.78732e12 0.318744
\(885\) −1.81048e12 −0.0992084
\(886\) 5.16539e12 0.281612
\(887\) 2.76786e13 1.50137 0.750685 0.660660i \(-0.229724\pi\)
0.750685 + 0.660660i \(0.229724\pi\)
\(888\) 8.67790e12 0.468335
\(889\) 0 0
\(890\) 4.61558e12 0.246587
\(891\) 1.26790e13 0.673960
\(892\) 1.28209e13 0.678075
\(893\) −1.43012e13 −0.752558
\(894\) −2.32762e12 −0.121869
\(895\) 1.21078e13 0.630756
\(896\) 0 0
\(897\) 9.45416e12 0.487593
\(898\) −1.08425e12 −0.0556399
\(899\) 1.80115e12 0.0919667
\(900\) −1.82967e12 −0.0929571
\(901\) −6.87924e12 −0.347760
\(902\) 1.82483e12 0.0917893
\(903\) 0 0
\(904\) 2.97334e13 1.48076
\(905\) −1.37532e13 −0.681530
\(906\) −1.24717e13 −0.614962
\(907\) 1.55835e13 0.764598 0.382299 0.924039i \(-0.375132\pi\)
0.382299 + 0.924039i \(0.375132\pi\)
\(908\) 1.23358e13 0.602255
\(909\) 1.05463e13 0.512346
\(910\) 0 0
\(911\) −3.32939e13 −1.60152 −0.800760 0.598985i \(-0.795571\pi\)
−0.800760 + 0.598985i \(0.795571\pi\)
\(912\) −5.36222e12 −0.256666
\(913\) −1.51769e13 −0.722878
\(914\) −6.15959e12 −0.291940
\(915\) 1.33873e13 0.631392
\(916\) −6.11823e12 −0.287142
\(917\) 0 0
\(918\) −4.49196e12 −0.208758
\(919\) 3.33563e13 1.54262 0.771309 0.636461i \(-0.219602\pi\)
0.771309 + 0.636461i \(0.219602\pi\)
\(920\) 6.83615e12 0.314606
\(921\) 1.33361e13 0.610744
\(922\) 2.87897e12 0.131204
\(923\) 2.51226e12 0.113935
\(924\) 0 0
\(925\) −2.17372e12 −0.0976262
\(926\) −6.07074e12 −0.271326
\(927\) −6.26592e12 −0.278693
\(928\) −9.57235e12 −0.423694
\(929\) 2.59300e13 1.14217 0.571086 0.820890i \(-0.306522\pi\)
0.571086 + 0.820890i \(0.306522\pi\)
\(930\) 1.13924e12 0.0499392
\(931\) 0 0
\(932\) −2.00045e13 −0.868471
\(933\) 1.06264e13 0.459113
\(934\) −1.54426e13 −0.663988
\(935\) −5.15261e12 −0.220483
\(936\) −4.32295e12 −0.184093
\(937\) 1.05742e13 0.448148 0.224074 0.974572i \(-0.428064\pi\)
0.224074 + 0.974572i \(0.428064\pi\)
\(938\) 0 0
\(939\) 3.24246e13 1.36107
\(940\) 1.61650e13 0.675307
\(941\) −4.43349e11 −0.0184329 −0.00921643 0.999958i \(-0.502934\pi\)
−0.00921643 + 0.999958i \(0.502934\pi\)
\(942\) −9.13552e12 −0.378011
\(943\) 8.98156e12 0.369870
\(944\) 2.16464e12 0.0887181
\(945\) 0 0
\(946\) −1.04451e13 −0.424037
\(947\) 2.08797e13 0.843625 0.421812 0.906683i \(-0.361394\pi\)
0.421812 + 0.906683i \(0.361394\pi\)
\(948\) 3.30729e13 1.32995
\(949\) 1.70806e13 0.683603
\(950\) −8.66447e11 −0.0345132
\(951\) −1.71031e13 −0.678052
\(952\) 0 0
\(953\) 2.68247e13 1.05346 0.526728 0.850034i \(-0.323419\pi\)
0.526728 + 0.850034i \(0.323419\pi\)
\(954\) 2.31980e12 0.0906739
\(955\) 1.68843e13 0.656854
\(956\) −3.34913e13 −1.29679
\(957\) 7.61122e12 0.293326
\(958\) −7.24933e12 −0.278069
\(959\) 0 0
\(960\) 1.31024e12 0.0497885
\(961\) −2.52494e13 −0.954983
\(962\) −2.31855e12 −0.0872828
\(963\) −4.75935e12 −0.178332
\(964\) −2.02563e13 −0.755463
\(965\) 1.20003e13 0.445471
\(966\) 0 0
\(967\) 4.80960e13 1.76885 0.884423 0.466686i \(-0.154552\pi\)
0.884423 + 0.466686i \(0.154552\pi\)
\(968\) −1.48205e13 −0.542529
\(969\) −1.28321e13 −0.467565
\(970\) −4.55428e12 −0.165176
\(971\) −4.95038e13 −1.78711 −0.893556 0.448952i \(-0.851797\pi\)
−0.893556 + 0.448952i \(0.851797\pi\)
\(972\) −2.32220e13 −0.834451
\(973\) 0 0
\(974\) 1.58215e13 0.563292
\(975\) 3.00022e12 0.106324
\(976\) −1.60062e13 −0.564629
\(977\) 3.89809e13 1.36876 0.684378 0.729127i \(-0.260074\pi\)
0.684378 + 0.729127i \(0.260074\pi\)
\(978\) 1.97031e13 0.688669
\(979\) 2.03773e13 0.708965
\(980\) 0 0
\(981\) 8.00968e12 0.276124
\(982\) 6.78901e12 0.232973
\(983\) 4.13652e13 1.41301 0.706504 0.707709i \(-0.250271\pi\)
0.706504 + 0.707709i \(0.250271\pi\)
\(984\) −1.13787e13 −0.386913
\(985\) 2.26746e13 0.767497
\(986\) −4.93265e12 −0.166201
\(987\) 0 0
\(988\) 4.29648e12 0.143452
\(989\) −5.14096e13 −1.70868
\(990\) 1.73755e12 0.0574882
\(991\) −2.23173e13 −0.735039 −0.367519 0.930016i \(-0.619793\pi\)
−0.367519 + 0.930016i \(0.619793\pi\)
\(992\) −6.32558e12 −0.207395
\(993\) −3.67837e13 −1.20056
\(994\) 0 0
\(995\) 2.00831e13 0.649572
\(996\) 4.27228e13 1.37560
\(997\) −4.27668e13 −1.37081 −0.685406 0.728161i \(-0.740375\pi\)
−0.685406 + 0.728161i \(0.740375\pi\)
\(998\) −3.25821e12 −0.103966
\(999\) −8.36629e12 −0.265759
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.m.1.6 13
7.2 even 3 35.10.e.b.11.8 26
7.4 even 3 35.10.e.b.16.8 yes 26
7.6 odd 2 245.10.a.l.1.6 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.e.b.11.8 26 7.2 even 3
35.10.e.b.16.8 yes 26 7.4 even 3
245.10.a.l.1.6 13 7.6 odd 2
245.10.a.m.1.6 13 1.1 even 1 trivial