Properties

Label 245.10.a.m.1.7
Level 245245
Weight 1010
Character 245.1
Self dual yes
Analytic conductor 126.184126.184
Analytic rank 00
Dimension 1313
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 126.183779860126.183779860
Analytic rank: 00
Dimension: 1313
Coefficient field: Q[x]/(x13)\mathbb{Q}[x]/(x^{13} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x13x125109x11+3203x10+9635922x9+242128x88405086048x7+96 ⁣ ⁣52 x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 214335377 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7}
Twist minimal: no (minimal twist has level 35)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.7
Root 2.561372.56137 of defining polynomial
Character χ\chi == 245.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.56137q2+177.556q3505.439q4+625.000q5454.786q6+2606.03q8+11843.1q91600.85q10+61420.1q1189743.7q12124067.q13+110972.q15+252110.q16378822.q1730334.5q18+723503.q19315900.q20157319.q22+550898.q23+462717.q24+390625.q25+317781.q261.39202e6q273.62757e6q29284241.q30+9.99103e6q311.98004e6q32+1.09055e7q33+970303.q345.98596e6q36+4.29506e6q371.85316e6q382.20288e7q39+1.62877e6q403.15614e7q41+2.85304e7q433.10441e7q44+7.40193e6q451.41105e6q46+253613.q47+4.47636e7q481.00053e6q506.72621e7q51+6.27083e7q523.77798e7q53+3.56548e6q54+3.83876e7q55+1.28462e8q57+9.29154e6q585.52319e6q595.60898e7q60+1.08962e8q612.55907e7q621.24009e8q647.75418e7q652.79330e7q66+1.05611e8q67+1.91472e8q68+9.78153e7q69+3.77844e8q71+3.08635e7q72+3.95504e8q731.10012e7q74+6.93578e7q753.65687e8q76+5.64238e7q781.08755e8q79+1.57569e8q804.80269e8q81+8.08402e7q821.26402e8q832.36764e8q857.30768e7q866.44097e8q87+1.60063e8q882.22530e8q891.89591e7q902.78446e8q92+1.77397e9q93649597.q94+4.52189e8q953.51567e8q96+1.34841e9q97+7.27404e8q99+O(q100)q-2.56137 q^{2} +177.556 q^{3} -505.439 q^{4} +625.000 q^{5} -454.786 q^{6} +2606.03 q^{8} +11843.1 q^{9} -1600.85 q^{10} +61420.1 q^{11} -89743.7 q^{12} -124067. q^{13} +110972. q^{15} +252110. q^{16} -378822. q^{17} -30334.5 q^{18} +723503. q^{19} -315900. q^{20} -157319. q^{22} +550898. q^{23} +462717. q^{24} +390625. q^{25} +317781. q^{26} -1.39202e6 q^{27} -3.62757e6 q^{29} -284241. q^{30} +9.99103e6 q^{31} -1.98004e6 q^{32} +1.09055e7 q^{33} +970303. q^{34} -5.98596e6 q^{36} +4.29506e6 q^{37} -1.85316e6 q^{38} -2.20288e7 q^{39} +1.62877e6 q^{40} -3.15614e7 q^{41} +2.85304e7 q^{43} -3.10441e7 q^{44} +7.40193e6 q^{45} -1.41105e6 q^{46} +253613. q^{47} +4.47636e7 q^{48} -1.00053e6 q^{50} -6.72621e7 q^{51} +6.27083e7 q^{52} -3.77798e7 q^{53} +3.56548e6 q^{54} +3.83876e7 q^{55} +1.28462e8 q^{57} +9.29154e6 q^{58} -5.52319e6 q^{59} -5.60898e7 q^{60} +1.08962e8 q^{61} -2.55907e7 q^{62} -1.24009e8 q^{64} -7.75418e7 q^{65} -2.79330e7 q^{66} +1.05611e8 q^{67} +1.91472e8 q^{68} +9.78153e7 q^{69} +3.77844e8 q^{71} +3.08635e7 q^{72} +3.95504e8 q^{73} -1.10012e7 q^{74} +6.93578e7 q^{75} -3.65687e8 q^{76} +5.64238e7 q^{78} -1.08755e8 q^{79} +1.57569e8 q^{80} -4.80269e8 q^{81} +8.08402e7 q^{82} -1.26402e8 q^{83} -2.36764e8 q^{85} -7.30768e7 q^{86} -6.44097e8 q^{87} +1.60063e8 q^{88} -2.22530e8 q^{89} -1.89591e7 q^{90} -2.78446e8 q^{92} +1.77397e9 q^{93} -649597. q^{94} +4.52189e8 q^{95} -3.51567e8 q^{96} +1.34841e9 q^{97} +7.27404e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 13qq2+268q3+3563q4+8125q5+3040q64695q8+82107q9625q10+129087q11+356068q12+35889q13+167500q15+1379187q16+251650q17+391089q18++5266142099q99+O(q100) 13 q - q^{2} + 268 q^{3} + 3563 q^{4} + 8125 q^{5} + 3040 q^{6} - 4695 q^{8} + 82107 q^{9} - 625 q^{10} + 129087 q^{11} + 356068 q^{12} + 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} + 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.56137 −0.113197 −0.0565987 0.998397i 0.518026π-0.518026\pi
−0.0565987 + 0.998397i 0.518026π0.518026\pi
33 177.556 1.26558 0.632790 0.774324i 0.281910π-0.281910\pi
0.632790 + 0.774324i 0.281910π0.281910\pi
44 −505.439 −0.987186
55 625.000 0.447214
66 −454.786 −0.143260
77 0 0
88 2606.03 0.224944
99 11843.1 0.601691
1010 −1600.85 −0.0506234
1111 61420.1 1.26486 0.632431 0.774616i 0.282057π-0.282057\pi
0.632431 + 0.774616i 0.282057π0.282057\pi
1212 −89743.7 −1.24936
1313 −124067. −1.20479 −0.602394 0.798199i 0.705786π-0.705786\pi
−0.602394 + 0.798199i 0.705786π0.705786\pi
1414 0 0
1515 110972. 0.565984
1616 252110. 0.961723
1717 −378822. −1.10006 −0.550029 0.835146i 0.685383π-0.685383\pi
−0.550029 + 0.835146i 0.685383π0.685383\pi
1818 −30334.5 −0.0681099
1919 723503. 1.27365 0.636823 0.771010i 0.280248π-0.280248\pi
0.636823 + 0.771010i 0.280248π0.280248\pi
2020 −315900. −0.441483
2121 0 0
2222 −157319. −0.143179
2323 550898. 0.410484 0.205242 0.978711i 0.434202π-0.434202\pi
0.205242 + 0.978711i 0.434202π0.434202\pi
2424 462717. 0.284685
2525 390625. 0.200000
2626 317781. 0.136379
2727 −1.39202e6 −0.504091
2828 0 0
2929 −3.62757e6 −0.952413 −0.476207 0.879333i 0.657989π-0.657989\pi
−0.476207 + 0.879333i 0.657989π0.657989\pi
3030 −284241. −0.0640680
3131 9.99103e6 1.94304 0.971522 0.236948i 0.0761472π-0.0761472\pi
0.971522 + 0.236948i 0.0761472π0.0761472\pi
3232 −1.98004e6 −0.333809
3333 1.09055e7 1.60078
3434 970303. 0.124524
3535 0 0
3636 −5.98596e6 −0.593981
3737 4.29506e6 0.376757 0.188379 0.982096i 0.439677π-0.439677\pi
0.188379 + 0.982096i 0.439677π0.439677\pi
3838 −1.85316e6 −0.144174
3939 −2.20288e7 −1.52475
4040 1.62877e6 0.100598
4141 −3.15614e7 −1.74433 −0.872165 0.489212i 0.837285π-0.837285\pi
−0.872165 + 0.489212i 0.837285π0.837285\pi
4242 0 0
4343 2.85304e7 1.27262 0.636312 0.771432i 0.280459π-0.280459\pi
0.636312 + 0.771432i 0.280459π0.280459\pi
4444 −3.10441e7 −1.24866
4545 7.40193e6 0.269085
4646 −1.41105e6 −0.0464657
4747 253613. 0.00758109 0.00379055 0.999993i 0.498793π-0.498793\pi
0.00379055 + 0.999993i 0.498793π0.498793\pi
4848 4.47636e7 1.21714
4949 0 0
5050 −1.00053e6 −0.0226395
5151 −6.72621e7 −1.39221
5252 6.27083e7 1.18935
5353 −3.77798e7 −0.657686 −0.328843 0.944385i 0.606659π-0.606659\pi
−0.328843 + 0.944385i 0.606659π0.606659\pi
5454 3.56548e6 0.0570618
5555 3.83876e7 0.565664
5656 0 0
5757 1.28462e8 1.61190
5858 9.29154e6 0.107811
5959 −5.52319e6 −0.0593411 −0.0296705 0.999560i 0.509446π-0.509446\pi
−0.0296705 + 0.999560i 0.509446π0.509446\pi
6060 −5.60898e7 −0.558732
6161 1.08962e8 1.00761 0.503805 0.863817i 0.331933π-0.331933\pi
0.503805 + 0.863817i 0.331933π0.331933\pi
6262 −2.55907e7 −0.219948
6363 0 0
6464 −1.24009e8 −0.923937
6565 −7.75418e7 −0.538798
6666 −2.79330e7 −0.181205
6767 1.05611e8 0.640284 0.320142 0.947370i 0.396269π-0.396269\pi
0.320142 + 0.947370i 0.396269π0.396269\pi
6868 1.91472e8 1.08596
6969 9.78153e7 0.519500
7070 0 0
7171 3.77844e8 1.76461 0.882307 0.470675i 0.155990π-0.155990\pi
0.882307 + 0.470675i 0.155990π0.155990\pi
7272 3.08635e7 0.135347
7373 3.95504e8 1.63004 0.815019 0.579435i 0.196727π-0.196727\pi
0.815019 + 0.579435i 0.196727π0.196727\pi
7474 −1.10012e7 −0.0426480
7575 6.93578e7 0.253116
7676 −3.65687e8 −1.25733
7777 0 0
7878 5.64238e7 0.172598
7979 −1.08755e8 −0.314144 −0.157072 0.987587i 0.550205π-0.550205\pi
−0.157072 + 0.987587i 0.550205π0.550205\pi
8080 1.57569e8 0.430096
8181 −4.80269e8 −1.23966
8282 8.08402e7 0.197454
8383 −1.26402e8 −0.292350 −0.146175 0.989259i 0.546696π-0.546696\pi
−0.146175 + 0.989259i 0.546696π0.546696\pi
8484 0 0
8585 −2.36764e8 −0.491961
8686 −7.30768e7 −0.144058
8787 −6.44097e8 −1.20535
8888 1.60063e8 0.284524
8989 −2.22530e8 −0.375953 −0.187977 0.982174i 0.560193π-0.560193\pi
−0.187977 + 0.982174i 0.560193π0.560193\pi
9090 −1.89591e7 −0.0304597
9191 0 0
9292 −2.78446e8 −0.405224
9393 1.77397e9 2.45908
9494 −649597. −0.000858160 0
9595 4.52189e8 0.569592
9696 −3.51567e8 −0.422462
9797 1.34841e9 1.54650 0.773251 0.634100i 0.218629π-0.218629\pi
0.773251 + 0.634100i 0.218629π0.218629\pi
9898 0 0
9999 7.27404e8 0.761057
100100 −1.97437e8 −0.197437
101101 −2.82967e8 −0.270576 −0.135288 0.990806i 0.543196π-0.543196\pi
−0.135288 + 0.990806i 0.543196π0.543196\pi
102102 1.72283e8 0.157595
103103 −5.68288e8 −0.497509 −0.248755 0.968567i 0.580021π-0.580021\pi
−0.248755 + 0.968567i 0.580021π0.580021\pi
104104 −3.23322e8 −0.271010
105105 0 0
106106 9.67680e7 0.0744484
107107 −7.04831e7 −0.0519826 −0.0259913 0.999662i 0.508274π-0.508274\pi
−0.0259913 + 0.999662i 0.508274π0.508274\pi
108108 7.03583e8 0.497632
109109 1.37924e9 0.935881 0.467941 0.883760i 0.344996π-0.344996\pi
0.467941 + 0.883760i 0.344996π0.344996\pi
110110 −9.83246e7 −0.0640317
111111 7.62614e8 0.476816
112112 0 0
113113 2.75046e8 0.158691 0.0793456 0.996847i 0.474717π-0.474717\pi
0.0793456 + 0.996847i 0.474717π0.474717\pi
114114 −3.29039e8 −0.182463
115115 3.44312e8 0.183574
116116 1.83352e9 0.940209
117117 −1.46933e9 −0.724910
118118 1.41469e7 0.00671726
119119 0 0
120120 2.89198e8 0.127315
121121 1.41448e9 0.599878
122122 −2.79093e8 −0.114059
123123 −5.60391e9 −2.20759
124124 −5.04986e9 −1.91815
125125 2.44141e8 0.0894427
126126 0 0
127127 3.10782e8 0.106008 0.0530041 0.998594i 0.483120π-0.483120\pi
0.0530041 + 0.998594i 0.483120π0.483120\pi
128128 1.33141e9 0.438396
129129 5.06574e9 1.61061
130130 1.98613e8 0.0609905
131131 1.82219e9 0.540595 0.270298 0.962777i 0.412878π-0.412878\pi
0.270298 + 0.962777i 0.412878π0.412878\pi
132132 −5.51207e9 −1.58027
133133 0 0
134134 −2.70508e8 −0.0724785
135135 −8.70014e8 −0.225436
136136 −9.87224e8 −0.247452
137137 2.98052e9 0.722851 0.361426 0.932401i 0.382290π-0.382290\pi
0.361426 + 0.932401i 0.382290π0.382290\pi
138138 −2.50541e8 −0.0588061
139139 −1.75415e9 −0.398566 −0.199283 0.979942i 0.563861π-0.563861\pi
−0.199283 + 0.979942i 0.563861π0.563861\pi
140140 0 0
141141 4.50305e7 0.00959447
142142 −9.67796e8 −0.199750
143143 −7.62020e9 −1.52389
144144 2.98576e9 0.578660
145145 −2.26723e9 −0.425932
146146 −1.01303e9 −0.184516
147147 0 0
148148 −2.17089e9 −0.371930
149149 −9.07770e8 −0.150882 −0.0754411 0.997150i 0.524036π-0.524036\pi
−0.0754411 + 0.997150i 0.524036π0.524036\pi
150150 −1.77651e8 −0.0286521
151151 8.00466e8 0.125299 0.0626494 0.998036i 0.480045π-0.480045\pi
0.0626494 + 0.998036i 0.480045π0.480045\pi
152152 1.88547e9 0.286500
153153 −4.48643e9 −0.661895
154154 0 0
155155 6.24440e9 0.868956
156156 1.11342e10 1.50522
157157 9.10237e9 1.19566 0.597828 0.801625i 0.296031π-0.296031\pi
0.597828 + 0.801625i 0.296031π0.296031\pi
158158 2.78562e8 0.0355603
159159 −6.70803e9 −0.832354
160160 −1.23752e9 −0.149284
161161 0 0
162162 1.23015e9 0.140326
163163 9.55974e8 0.106072 0.0530362 0.998593i 0.483110π-0.483110\pi
0.0530362 + 0.998593i 0.483110π0.483110\pi
164164 1.59524e10 1.72198
165165 6.81594e9 0.715892
166166 3.23762e8 0.0330933
167167 −1.37955e9 −0.137250 −0.0686251 0.997643i 0.521861π-0.521861\pi
−0.0686251 + 0.997643i 0.521861π0.521861\pi
168168 0 0
169169 4.78808e9 0.451514
170170 6.06439e8 0.0556887
171171 8.56851e9 0.766342
172172 −1.44204e10 −1.25632
173173 2.24196e10 1.90292 0.951460 0.307773i 0.0995836π-0.0995836\pi
0.951460 + 0.307773i 0.0995836π0.0995836\pi
174174 1.64977e9 0.136443
175175 0 0
176176 1.54846e10 1.21645
177177 −9.80674e8 −0.0751009
178178 5.69981e8 0.0425569
179179 −6.40788e9 −0.466526 −0.233263 0.972414i 0.574940π-0.574940\pi
−0.233263 + 0.972414i 0.574940π0.574940\pi
180180 −3.74123e9 −0.265637
181181 −9.27682e8 −0.0642459 −0.0321230 0.999484i 0.510227π-0.510227\pi
−0.0321230 + 0.999484i 0.510227π0.510227\pi
182182 0 0
183183 1.93469e10 1.27521
184184 1.43566e9 0.0923361
185185 2.68441e9 0.168491
186186 −4.54378e9 −0.278361
187187 −2.32673e10 −1.39142
188188 −1.28186e8 −0.00748395
189189 0 0
190190 −1.15822e9 −0.0644764
191191 1.19777e10 0.651215 0.325608 0.945505i 0.394431π-0.394431\pi
0.325608 + 0.945505i 0.394431π0.394431\pi
192192 −2.20185e10 −1.16932
193193 2.81326e10 1.45949 0.729746 0.683718i 0.239638π-0.239638\pi
0.729746 + 0.683718i 0.239638π0.239638\pi
194194 −3.45378e9 −0.175060
195195 −1.37680e10 −0.681891
196196 0 0
197197 3.85039e10 1.82141 0.910703 0.413062i 0.135541π-0.135541\pi
0.910703 + 0.413062i 0.135541π0.135541\pi
198198 −1.86315e9 −0.0861497
199199 3.31316e10 1.49763 0.748813 0.662781i 0.230624π-0.230624\pi
0.748813 + 0.662781i 0.230624π0.230624\pi
200200 1.01798e9 0.0449889
201201 1.87519e10 0.810330
202202 7.24782e8 0.0306285
203203 0 0
204204 3.39969e10 1.37437
205205 −1.97259e10 −0.780088
206206 1.45559e9 0.0563168
207207 6.52434e9 0.246985
208208 −3.12785e10 −1.15867
209209 4.44376e10 1.61099
210210 0 0
211211 3.03122e10 1.05280 0.526401 0.850236i 0.323541π-0.323541\pi
0.526401 + 0.850236i 0.323541π0.323541\pi
212212 1.90954e10 0.649259
213213 6.70884e10 2.23326
214214 1.80533e8 0.00588430
215215 1.78315e10 0.569135
216216 −3.62766e9 −0.113393
217217 0 0
218218 −3.53274e9 −0.105939
219219 7.02240e10 2.06294
220220 −1.94026e10 −0.558416
221221 4.69993e10 1.32534
222222 −1.95333e9 −0.0539744
223223 1.91220e10 0.517798 0.258899 0.965904i 0.416640π-0.416640\pi
0.258899 + 0.965904i 0.416640π0.416640\pi
224224 0 0
225225 4.62621e9 0.120338
226226 −7.04495e8 −0.0179634
227227 7.97902e9 0.199450 0.0997249 0.995015i 0.468204π-0.468204\pi
0.0997249 + 0.995015i 0.468204π0.468204\pi
228228 −6.49298e10 −1.59125
229229 2.88522e10 0.693298 0.346649 0.937995i 0.387320π-0.387320\pi
0.346649 + 0.937995i 0.387320π0.387320\pi
230230 −8.81908e8 −0.0207801
231231 0 0
232232 −9.45358e9 −0.214240
233233 6.91973e10 1.53811 0.769055 0.639182i 0.220727π-0.220727\pi
0.769055 + 0.639182i 0.220727π0.220727\pi
234234 3.76350e9 0.0820580
235235 1.58508e8 0.00339037
236236 2.79164e9 0.0585807
237237 −1.93101e10 −0.397574
238238 0 0
239239 −9.68936e10 −1.92090 −0.960450 0.278454i 0.910178π-0.910178\pi
−0.960450 + 0.278454i 0.910178π0.910178\pi
240240 2.79773e10 0.544320
241241 3.79341e10 0.724357 0.362179 0.932109i 0.382033π-0.382033\pi
0.362179 + 0.932109i 0.382033π0.382033\pi
242242 −3.62300e9 −0.0679046
243243 −5.78755e10 −1.06480
244244 −5.50739e10 −0.994699
245245 0 0
246246 1.43537e10 0.249893
247247 −8.97627e10 −1.53447
248248 2.60370e10 0.437077
249249 −2.24435e10 −0.369993
250250 −6.25333e8 −0.0101247
251251 −1.01212e11 −1.60954 −0.804770 0.593587i 0.797711π-0.797711\pi
−0.804770 + 0.593587i 0.797711π0.797711\pi
252252 0 0
253253 3.38362e10 0.519206
254254 −7.96027e8 −0.0119999
255255 −4.20388e10 −0.622616
256256 6.00822e10 0.874312
257257 −8.96566e10 −1.28199 −0.640993 0.767547i 0.721477π-0.721477\pi
−0.640993 + 0.767547i 0.721477π0.721477\pi
258258 −1.29752e10 −0.182317
259259 0 0
260260 3.91927e10 0.531894
261261 −4.29617e10 −0.573059
262262 −4.66729e9 −0.0611940
263263 5.75178e10 0.741312 0.370656 0.928770i 0.379133π-0.379133\pi
0.370656 + 0.928770i 0.379133π0.379133\pi
264264 2.84201e10 0.360087
265265 −2.36124e10 −0.294126
266266 0 0
267267 −3.95115e10 −0.475798
268268 −5.33800e10 −0.632079
269269 −1.13252e11 −1.31875 −0.659373 0.751816i 0.729178π-0.729178\pi
−0.659373 + 0.751816i 0.729178π0.729178\pi
270270 2.22842e9 0.0255188
271271 −1.48390e10 −0.167126 −0.0835628 0.996503i 0.526630π-0.526630\pi
−0.0835628 + 0.996503i 0.526630π0.526630\pi
272272 −9.55049e10 −1.05795
273273 0 0
274274 −7.63419e9 −0.0818249
275275 2.39922e10 0.252973
276276 −4.94397e10 −0.512843
277277 −5.27359e10 −0.538205 −0.269102 0.963112i 0.586727π-0.586727\pi
−0.269102 + 0.963112i 0.586727π0.586727\pi
278278 4.49302e9 0.0451166
279279 1.18325e11 1.16911
280280 0 0
281281 4.52563e10 0.433013 0.216507 0.976281i 0.430534π-0.430534\pi
0.216507 + 0.976281i 0.430534π0.430534\pi
282282 −1.15340e8 −0.00108607
283283 9.89752e10 0.917249 0.458625 0.888630i 0.348342π-0.348342\pi
0.458625 + 0.888630i 0.348342π0.348342\pi
284284 −1.90977e11 −1.74200
285285 8.02889e10 0.720864
286286 1.95181e10 0.172501
287287 0 0
288288 −2.34497e10 −0.200850
289289 2.49186e10 0.210127
290290 5.80722e9 0.0482144
291291 2.39419e11 1.95722
292292 −1.99903e11 −1.60915
293293 1.17784e11 0.933648 0.466824 0.884350i 0.345398π-0.345398\pi
0.466824 + 0.884350i 0.345398π0.345398\pi
294294 0 0
295295 −3.45199e9 −0.0265381
296296 1.11931e10 0.0847495
297297 −8.54981e10 −0.637606
298298 2.32513e9 0.0170795
299299 −6.83482e10 −0.494546
300300 −3.50561e10 −0.249873
301301 0 0
302302 −2.05029e9 −0.0141835
303303 −5.02425e10 −0.342436
304304 1.82402e11 1.22490
305305 6.81015e10 0.450617
306306 1.14914e10 0.0749248
307307 1.98293e11 1.27404 0.637022 0.770846i 0.280166π-0.280166\pi
0.637022 + 0.770846i 0.280166π0.280166\pi
308308 0 0
309309 −1.00903e11 −0.629638
310310 −1.59942e10 −0.0983636
311311 −2.22587e11 −1.34921 −0.674603 0.738181i 0.735685π-0.735685\pi
−0.674603 + 0.738181i 0.735685π0.735685\pi
312312 −5.74078e10 −0.342985
313313 −9.30008e10 −0.547693 −0.273846 0.961773i 0.588296π-0.588296\pi
−0.273846 + 0.961773i 0.588296π0.588296\pi
314314 −2.33145e10 −0.135345
315315 0 0
316316 5.49692e10 0.310118
317317 −2.35019e11 −1.30718 −0.653592 0.756847i 0.726739π-0.726739\pi
−0.653592 + 0.756847i 0.726739π0.726739\pi
318318 1.71817e10 0.0942203
319319 −2.22806e11 −1.20467
320320 −7.75054e10 −0.413197
321321 −1.25147e10 −0.0657881
322322 0 0
323323 −2.74079e11 −1.40109
324324 2.42747e11 1.22377
325325 −4.84636e10 −0.240958
326326 −2.44860e9 −0.0120071
327327 2.44892e11 1.18443
328328 −8.22501e10 −0.392377
329329 0 0
330330 −1.74581e10 −0.0810372
331331 2.15343e11 0.986063 0.493032 0.870011i 0.335889π-0.335889\pi
0.493032 + 0.870011i 0.335889π0.335889\pi
332332 6.38887e10 0.288604
333333 5.08668e10 0.226692
334334 3.53353e9 0.0155364
335335 6.60069e10 0.286344
336336 0 0
337337 −1.40598e11 −0.593808 −0.296904 0.954907i 0.595954π-0.595954\pi
−0.296904 + 0.954907i 0.595954π0.595954\pi
338338 −1.22640e10 −0.0511102
339339 4.88361e10 0.200836
340340 1.19670e11 0.485657
341341 6.13650e11 2.45768
342342 −2.19471e10 −0.0867480
343343 0 0
344344 7.43512e10 0.286270
345345 6.11345e10 0.232328
346346 −5.74248e10 −0.215406
347347 −3.78195e11 −1.40034 −0.700169 0.713977i 0.746892π-0.746892\pi
−0.700169 + 0.713977i 0.746892π0.746892\pi
348348 3.25552e11 1.18991
349349 −1.14065e11 −0.411563 −0.205781 0.978598i 0.565974π-0.565974\pi
−0.205781 + 0.978598i 0.565974π0.565974\pi
350350 0 0
351351 1.72704e11 0.607323
352352 −1.21614e11 −0.422223
353353 −2.46679e11 −0.845562 −0.422781 0.906232i 0.638946π-0.638946\pi
−0.422781 + 0.906232i 0.638946π0.638946\pi
354354 2.51186e9 0.00850123
355355 2.36152e11 0.789159
356356 1.12475e11 0.371136
357357 0 0
358358 1.64129e10 0.0528095
359359 −3.46303e11 −1.10035 −0.550175 0.835049i 0.685439π-0.685439\pi
−0.550175 + 0.835049i 0.685439π0.685439\pi
360360 1.92897e10 0.0605291
361361 2.00769e11 0.622176
362362 2.37613e9 0.00727248
363363 2.51149e11 0.759193
364364 0 0
365365 2.47190e11 0.728975
366366 −4.95545e10 −0.144351
367367 3.46091e9 0.00995847 0.00497924 0.999988i 0.498415π-0.498415\pi
0.00497924 + 0.999988i 0.498415π0.498415\pi
368368 1.38887e11 0.394772
369369 −3.73784e11 −1.04955
370370 −6.87577e9 −0.0190728
371371 0 0
372372 −8.96633e11 −2.42757
373373 −3.48180e11 −0.931354 −0.465677 0.884955i 0.654189π-0.654189\pi
−0.465677 + 0.884955i 0.654189π0.654189\pi
374374 5.95961e10 0.157505
375375 4.33486e10 0.113197
376376 6.60925e8 0.00170532
377377 4.50062e11 1.14746
378378 0 0
379379 −9.54829e10 −0.237711 −0.118856 0.992912i 0.537923π-0.537923\pi
−0.118856 + 0.992912i 0.537923π0.537923\pi
380380 −2.28554e11 −0.562294
381381 5.51812e10 0.134162
382382 −3.06794e10 −0.0737159
383383 3.75656e11 0.892063 0.446032 0.895017i 0.352837π-0.352837\pi
0.446032 + 0.895017i 0.352837π0.352837\pi
384384 2.36400e11 0.554825
385385 0 0
386386 −7.20578e10 −0.165211
387387 3.37888e11 0.765727
388388 −6.81542e11 −1.52669
389389 5.25576e11 1.16376 0.581878 0.813276i 0.302318π-0.302318\pi
0.581878 + 0.813276i 0.302318π0.302318\pi
390390 3.52649e10 0.0771883
391391 −2.08693e11 −0.451556
392392 0 0
393393 3.23540e11 0.684166
394394 −9.86226e10 −0.206178
395395 −6.79721e10 −0.140489
396396 −3.67658e11 −0.751305
397397 −5.30855e11 −1.07255 −0.536276 0.844042i 0.680170π-0.680170\pi
−0.536276 + 0.844042i 0.680170π0.680170\pi
398398 −8.48621e10 −0.169527
399399 0 0
400400 9.84805e10 0.192345
401401 −2.40177e11 −0.463855 −0.231928 0.972733i 0.574503π-0.574503\pi
−0.231928 + 0.972733i 0.574503π0.574503\pi
402402 −4.80303e10 −0.0917273
403403 −1.23956e12 −2.34096
404404 1.43023e11 0.267109
405405 −3.00168e11 −0.554392
406406 0 0
407407 2.63803e11 0.476546
408408 −1.75287e11 −0.313170
409409 −3.29172e11 −0.581659 −0.290830 0.956775i 0.593931π-0.593931\pi
−0.290830 + 0.956775i 0.593931π0.593931\pi
410410 5.05252e10 0.0883040
411411 5.29208e11 0.914826
412412 2.87235e11 0.491134
413413 0 0
414414 −1.67112e10 −0.0279580
415415 −7.90014e10 −0.130743
416416 2.45657e11 0.402169
417417 −3.11460e11 −0.504417
418418 −1.13821e11 −0.182360
419419 −9.28534e10 −0.147175 −0.0735876 0.997289i 0.523445π-0.523445\pi
−0.0735876 + 0.997289i 0.523445π0.523445\pi
420420 0 0
421421 −1.04637e12 −1.62336 −0.811681 0.584101i 0.801447π-0.801447\pi
−0.811681 + 0.584101i 0.801447π0.801447\pi
422422 −7.76407e10 −0.119175
423423 3.00357e9 0.00456148
424424 −9.84555e10 −0.147943
425425 −1.47978e11 −0.220012
426426 −1.71838e11 −0.252799
427427 0 0
428428 3.56249e10 0.0513165
429429 −1.35301e12 −1.92861
430430 −4.56730e10 −0.0644246
431431 1.19221e12 1.66420 0.832099 0.554628i 0.187139π-0.187139\pi
0.832099 + 0.554628i 0.187139π0.187139\pi
432432 −3.50943e11 −0.484796
433433 −4.53584e11 −0.620100 −0.310050 0.950720i 0.600346π-0.600346\pi
−0.310050 + 0.950720i 0.600346π0.600346\pi
434434 0 0
435435 −4.02561e11 −0.539051
436436 −6.97123e11 −0.923889
437437 3.98577e11 0.522812
438438 −1.79869e11 −0.233520
439439 −3.75167e11 −0.482097 −0.241049 0.970513i 0.577491π-0.577491\pi
−0.241049 + 0.970513i 0.577491π0.577491\pi
440440 1.00039e11 0.127243
441441 0 0
442442 −1.20382e11 −0.150025
443443 9.01687e11 1.11234 0.556172 0.831067i 0.312270π-0.312270\pi
0.556172 + 0.831067i 0.312270π0.312270\pi
444444 −3.85455e11 −0.470707
445445 −1.39081e11 −0.168131
446446 −4.89783e10 −0.0586134
447447 −1.61180e11 −0.190953
448448 0 0
449449 −1.14634e12 −1.33108 −0.665542 0.746361i 0.731799π-0.731799\pi
−0.665542 + 0.746361i 0.731799π0.731799\pi
450450 −1.18494e10 −0.0136220
451451 −1.93850e12 −2.20634
452452 −1.39019e11 −0.156658
453453 1.42127e11 0.158576
454454 −2.04372e10 −0.0225772
455455 0 0
456456 3.34777e11 0.362588
457457 5.27249e11 0.565448 0.282724 0.959201i 0.408762π-0.408762\pi
0.282724 + 0.959201i 0.408762π0.408762\pi
458458 −7.39011e10 −0.0784795
459459 5.27329e11 0.554530
460460 −1.74029e11 −0.181222
461461 −1.34068e12 −1.38252 −0.691262 0.722605i 0.742945π-0.742945\pi
−0.691262 + 0.722605i 0.742945π0.742945\pi
462462 0 0
463463 −9.25590e11 −0.936061 −0.468031 0.883712i 0.655036π-0.655036\pi
−0.468031 + 0.883712i 0.655036π0.655036\pi
464464 −9.14548e11 −0.915958
465465 1.10873e12 1.09973
466466 −1.77240e11 −0.174110
467467 5.16869e11 0.502869 0.251434 0.967874i 0.419098π-0.419098\pi
0.251434 + 0.967874i 0.419098π0.419098\pi
468468 7.42660e11 0.715622
469469 0 0
470470 −4.05998e8 −0.000383781 0
471471 1.61618e12 1.51320
472472 −1.43936e10 −0.0133484
473473 1.75234e12 1.60969
474474 4.94603e10 0.0450043
475475 2.82618e11 0.254729
476476 0 0
477477 −4.47430e11 −0.395724
478478 2.48180e11 0.217441
479479 −1.18715e12 −1.03038 −0.515189 0.857077i 0.672278π-0.672278\pi
−0.515189 + 0.857077i 0.672278π0.672278\pi
480480 −2.19729e11 −0.188931
481481 −5.32875e11 −0.453913
482482 −9.71630e10 −0.0819954
483483 0 0
484484 −7.14934e11 −0.592191
485485 8.42759e11 0.691617
486486 1.48240e11 0.120532
487487 −9.13222e10 −0.0735692 −0.0367846 0.999323i 0.511712π-0.511712\pi
−0.0367846 + 0.999323i 0.511712π0.511712\pi
488488 2.83960e11 0.226656
489489 1.69739e11 0.134243
490490 0 0
491491 1.56534e12 1.21547 0.607733 0.794141i 0.292079π-0.292079\pi
0.607733 + 0.794141i 0.292079π0.292079\pi
492492 2.83244e12 2.17930
493493 1.37421e12 1.04771
494494 2.29915e11 0.173699
495495 4.54627e11 0.340355
496496 2.51884e12 1.86867
497497 0 0
498498 5.74859e10 0.0418822
499499 1.38428e12 0.999471 0.499735 0.866178i 0.333431π-0.333431\pi
0.499735 + 0.866178i 0.333431π0.333431\pi
500500 −1.23398e11 −0.0882966
501501 −2.44947e11 −0.173701
502502 2.59242e11 0.182196
503503 −4.84565e11 −0.337517 −0.168759 0.985657i 0.553976π-0.553976\pi
−0.168759 + 0.985657i 0.553976π0.553976\pi
504504 0 0
505505 −1.76854e11 −0.121005
506506 −8.66670e10 −0.0587728
507507 8.50152e11 0.571427
508508 −1.57082e11 −0.104650
509509 −1.74471e12 −1.15211 −0.576055 0.817411i 0.695409π-0.695409\pi
−0.576055 + 0.817411i 0.695409π0.695409\pi
510510 1.07677e11 0.0704785
511511 0 0
512512 −8.35574e11 −0.537366
513513 −1.00713e12 −0.642034
514514 2.29643e11 0.145118
515515 −3.55180e11 −0.222493
516516 −2.56043e12 −1.58997
517517 1.55770e10 0.00958904
518518 0 0
519519 3.98073e12 2.40830
520520 −2.02077e11 −0.121199
521521 −7.49241e11 −0.445504 −0.222752 0.974875i 0.571504π-0.571504\pi
−0.222752 + 0.974875i 0.571504π0.571504\pi
522522 1.10041e11 0.0648688
523523 1.88714e12 1.10292 0.551462 0.834200i 0.314070π-0.314070\pi
0.551462 + 0.834200i 0.314070π0.314070\pi
524524 −9.21005e11 −0.533668
525525 0 0
526526 −1.47324e11 −0.0839146
527527 −3.78483e12 −2.13746
528528 2.74938e12 1.53951
529529 −1.49766e12 −0.831503
530530 6.04800e10 0.0332943
531531 −6.54116e10 −0.0357050
532532 0 0
533533 3.91572e12 2.10155
534534 1.01203e11 0.0538592
535535 −4.40519e10 −0.0232473
536536 2.75226e11 0.144028
537537 −1.13776e12 −0.590425
538538 2.90080e11 0.149279
539539 0 0
540540 4.39739e11 0.222548
541541 6.00505e11 0.301390 0.150695 0.988580i 0.451849π-0.451849\pi
0.150695 + 0.988580i 0.451849π0.451849\pi
542542 3.80081e10 0.0189182
543543 −1.64715e11 −0.0813083
544544 7.50082e11 0.367209
545545 8.62025e11 0.418539
546546 0 0
547547 3.39461e12 1.62124 0.810619 0.585573i 0.199131π-0.199131\pi
0.810619 + 0.585573i 0.199131π0.199131\pi
548548 −1.50647e12 −0.713589
549549 1.29045e12 0.606270
550550 −6.14529e10 −0.0286358
551551 −2.62456e12 −1.21304
552552 2.54910e11 0.116859
553553 0 0
554554 1.35076e11 0.0609234
555555 4.76634e11 0.213239
556556 8.86617e11 0.393459
557557 1.30071e12 0.572572 0.286286 0.958144i 0.407579π-0.407579\pi
0.286286 + 0.958144i 0.407579π0.407579\pi
558558 −3.03073e11 −0.132341
559559 −3.53968e12 −1.53324
560560 0 0
561561 −4.13125e12 −1.76096
562562 −1.15918e11 −0.0490160
563563 −1.91933e12 −0.805123 −0.402562 0.915393i 0.631880π-0.631880\pi
−0.402562 + 0.915393i 0.631880π0.631880\pi
564564 −2.27602e10 −0.00947153
565565 1.71904e11 0.0709689
566566 −2.53512e11 −0.103830
567567 0 0
568568 9.84673e11 0.396940
569569 4.27941e12 1.71151 0.855754 0.517383i 0.173094π-0.173094\pi
0.855754 + 0.517383i 0.173094π0.173094\pi
570570 −2.05649e11 −0.0816000
571571 −9.47095e11 −0.372847 −0.186424 0.982469i 0.559690π-0.559690\pi
−0.186424 + 0.982469i 0.559690π0.559690\pi
572572 3.85155e12 1.50436
573573 2.12672e12 0.824165
574574 0 0
575575 2.15195e11 0.0820968
576576 −1.46865e12 −0.555925
577577 1.12407e12 0.422183 0.211091 0.977466i 0.432298π-0.432298\pi
0.211091 + 0.977466i 0.432298π0.432298\pi
578578 −6.38255e10 −0.0237859
579579 4.99511e12 1.84710
580580 1.14595e12 0.420474
581581 0 0
582582 −6.13239e11 −0.221552
583583 −2.32044e12 −0.831883
584584 1.03070e12 0.366668
585585 −9.18334e11 −0.324190
586586 −3.01689e11 −0.105687
587587 −2.55175e12 −0.887089 −0.443545 0.896252i 0.646279π-0.646279\pi
−0.443545 + 0.896252i 0.646279π0.646279\pi
588588 0 0
589589 7.22854e12 2.47475
590590 8.84181e9 0.00300405
591591 6.83659e12 2.30513
592592 1.08283e12 0.362336
593593 1.17380e11 0.0389804 0.0194902 0.999810i 0.493796π-0.493796\pi
0.0194902 + 0.999810i 0.493796π0.493796\pi
594594 2.18992e11 0.0721754
595595 0 0
596596 4.58823e11 0.148949
597597 5.88271e12 1.89537
598598 1.75065e11 0.0559814
599599 4.62131e11 0.146671 0.0733355 0.997307i 0.476636π-0.476636\pi
0.0733355 + 0.997307i 0.476636π0.476636\pi
600600 1.80749e11 0.0569370
601601 −3.15713e12 −0.987091 −0.493545 0.869720i 0.664299π-0.664299\pi
−0.493545 + 0.869720i 0.664299π0.664299\pi
602602 0 0
603603 1.25076e12 0.385253
604604 −4.04587e11 −0.123693
605605 8.84050e11 0.268273
606606 1.28689e11 0.0387628
607607 −1.20538e12 −0.360391 −0.180195 0.983631i 0.557673π-0.557673\pi
−0.180195 + 0.983631i 0.557673π0.557673\pi
608608 −1.43256e12 −0.425155
609609 0 0
610610 −1.74433e11 −0.0510087
611611 −3.14650e10 −0.00913361
612612 2.26762e12 0.653414
613613 −1.77289e12 −0.507118 −0.253559 0.967320i 0.581601π-0.581601\pi
−0.253559 + 0.967320i 0.581601π0.581601\pi
614614 −5.07901e11 −0.144219
615615 −3.50244e12 −0.987264
616616 0 0
617617 2.48233e12 0.689568 0.344784 0.938682i 0.387952π-0.387952\pi
0.344784 + 0.938682i 0.387952π0.387952\pi
618618 2.58449e11 0.0712734
619619 −4.73625e12 −1.29666 −0.648331 0.761359i 0.724533π-0.724533\pi
−0.648331 + 0.761359i 0.724533π0.724533\pi
620620 −3.15616e12 −0.857821
621621 −7.66863e11 −0.206921
622622 5.70127e11 0.152727
623623 0 0
624624 −5.55368e12 −1.46639
625625 1.52588e11 0.0400000
626626 2.38209e11 0.0619974
627627 7.89016e12 2.03883
628628 −4.60070e12 −1.18033
629629 −1.62707e12 −0.414455
630630 0 0
631631 −4.14529e12 −1.04093 −0.520467 0.853882i 0.674242π-0.674242\pi
−0.520467 + 0.853882i 0.674242π0.674242\pi
632632 −2.83420e11 −0.0706649
633633 5.38212e12 1.33241
634634 6.01970e11 0.147970
635635 1.94239e11 0.0474083
636636 3.39050e12 0.821688
637637 0 0
638638 5.70688e11 0.136366
639639 4.47484e12 1.06175
640640 8.32131e11 0.196057
641641 −5.77430e12 −1.35095 −0.675473 0.737384i 0.736061π-0.736061\pi
−0.675473 + 0.737384i 0.736061π0.736061\pi
642642 3.20547e10 0.00744705
643643 −5.07338e12 −1.17044 −0.585219 0.810875i 0.698991π-0.698991\pi
−0.585219 + 0.810875i 0.698991π0.698991\pi
644644 0 0
645645 3.16609e12 0.720285
646646 7.02017e11 0.158599
647647 −5.75157e12 −1.29038 −0.645189 0.764023i 0.723221π-0.723221\pi
−0.645189 + 0.764023i 0.723221π0.723221\pi
648648 −1.25160e12 −0.278854
649649 −3.39235e11 −0.0750583
650650 1.24133e11 0.0272758
651651 0 0
652652 −4.83187e11 −0.104713
653653 −2.83020e12 −0.609127 −0.304564 0.952492i 0.598511π-0.598511\pi
−0.304564 + 0.952492i 0.598511π0.598511\pi
654654 −6.27259e11 −0.134075
655655 1.13887e12 0.241762
656656 −7.95694e12 −1.67756
657657 4.68398e12 0.980779
658658 0 0
659659 −5.37338e12 −1.10985 −0.554923 0.831902i 0.687252π-0.687252\pi
−0.554923 + 0.831902i 0.687252π0.687252\pi
660660 −3.44504e12 −0.706719
661661 −2.32341e12 −0.473389 −0.236695 0.971584i 0.576064π-0.576064\pi
−0.236695 + 0.971584i 0.576064π0.576064\pi
662662 −5.51572e11 −0.111620
663663 8.34500e12 1.67732
664664 −3.29409e11 −0.0657626
665665 0 0
666666 −1.30289e11 −0.0256609
667667 −1.99843e12 −0.390950
668668 6.97278e11 0.135492
669669 3.39522e12 0.655315
670670 −1.69068e11 −0.0324134
671671 6.69248e12 1.27449
672672 0 0
673673 5.66684e12 1.06481 0.532406 0.846489i 0.321288π-0.321288\pi
0.532406 + 0.846489i 0.321288π0.321288\pi
674674 3.60124e11 0.0672175
675675 −5.43759e11 −0.100818
676676 −2.42009e12 −0.445729
677677 −3.78584e12 −0.692649 −0.346324 0.938115i 0.612570π-0.612570\pi
−0.346324 + 0.938115i 0.612570π0.612570\pi
678678 −1.25087e11 −0.0227342
679679 0 0
680680 −6.17015e11 −0.110664
681681 1.41672e12 0.252419
682682 −1.57178e12 −0.278204
683683 9.08477e12 1.59743 0.798713 0.601712i 0.205515π-0.205515\pi
0.798713 + 0.601712i 0.205515π0.205515\pi
684684 −4.33086e12 −0.756523
685685 1.86282e12 0.323269
686686 0 0
687687 5.12288e12 0.877423
688688 7.19280e12 1.22391
689689 4.68722e12 0.792372
690690 −1.56588e11 −0.0262989
691691 −9.23118e12 −1.54030 −0.770151 0.637862i 0.779819π-0.779819\pi
−0.770151 + 0.637862i 0.779819π0.779819\pi
692692 −1.13318e13 −1.87854
693693 0 0
694694 9.68695e11 0.158515
695695 −1.09634e12 −0.178244
696696 −1.67854e12 −0.271138
697697 1.19562e13 1.91886
698698 2.92161e11 0.0465879
699699 1.22864e13 1.94660
700700 0 0
701701 −5.84730e12 −0.914586 −0.457293 0.889316i 0.651181π-0.651181\pi
−0.457293 + 0.889316i 0.651181π0.651181\pi
702702 −4.42358e11 −0.0687474
703703 3.10749e12 0.479856
704704 −7.61663e12 −1.16865
705705 2.81441e10 0.00429078
706706 6.31834e11 0.0957154
707707 0 0
708708 4.95671e11 0.0741385
709709 −3.81574e12 −0.567114 −0.283557 0.958955i 0.591515π-0.591515\pi
−0.283557 + 0.958955i 0.591515π0.591515\pi
710710 −6.04872e11 −0.0893308
711711 −1.28800e12 −0.189018
712712 −5.79921e11 −0.0845685
713713 5.50404e12 0.797589
714714 0 0
715715 −4.76262e12 −0.681505
716716 3.23879e12 0.460548
717717 −1.72040e13 −2.43105
718718 8.87008e11 0.124557
719719 −1.82131e12 −0.254158 −0.127079 0.991893i 0.540560π-0.540560\pi
−0.127079 + 0.991893i 0.540560π0.540560\pi
720720 1.86610e12 0.258785
721721 0 0
722722 −5.14242e11 −0.0704288
723723 6.73542e12 0.916732
724724 4.68887e11 0.0634227
725725 −1.41702e12 −0.190483
726726 −6.43285e11 −0.0859387
727727 −6.45622e12 −0.857183 −0.428592 0.903498i 0.640990π-0.640990\pi
−0.428592 + 0.903498i 0.640990π0.640990\pi
728728 0 0
729729 −8.22987e11 −0.107924
730730 −6.33143e11 −0.0825181
731731 −1.08080e13 −1.39996
732732 −9.77870e12 −1.25887
733733 1.37462e13 1.75879 0.879394 0.476096i 0.157948π-0.157948\pi
0.879394 + 0.476096i 0.157948π0.157948\pi
734734 −8.86465e9 −0.00112727
735735 0 0
736736 −1.09080e12 −0.137023
737737 6.48664e12 0.809871
738738 9.57398e11 0.118806
739739 1.53823e13 1.89724 0.948619 0.316420i 0.102481π-0.102481\pi
0.948619 + 0.316420i 0.102481π0.102481\pi
740740 −1.35681e12 −0.166332
741741 −1.59379e13 −1.94200
742742 0 0
743743 6.44915e12 0.776342 0.388171 0.921587i 0.373107π-0.373107\pi
0.388171 + 0.921587i 0.373107π0.373107\pi
744744 4.62302e12 0.553156
745745 −5.67357e11 −0.0674765
746746 8.91817e11 0.105427
747747 −1.49699e12 −0.175905
748748 1.17602e13 1.37359
749749 0 0
750750 −1.11032e11 −0.0128136
751751 −2.74018e12 −0.314340 −0.157170 0.987572i 0.550237π-0.550237\pi
−0.157170 + 0.987572i 0.550237π0.550237\pi
752752 6.39385e10 0.00729091
753753 −1.79708e13 −2.03700
754754 −1.15277e12 −0.129889
755755 5.00291e11 0.0560353
756756 0 0
757757 −1.18565e13 −1.31227 −0.656136 0.754643i 0.727810π-0.727810\pi
−0.656136 + 0.754643i 0.727810π0.727810\pi
758758 2.44567e11 0.0269083
759759 6.00782e12 0.657096
760760 1.17842e12 0.128127
761761 1.18396e13 1.27969 0.639847 0.768502i 0.278998π-0.278998\pi
0.639847 + 0.768502i 0.278998π0.278998\pi
762762 −1.41339e11 −0.0151868
763763 0 0
764764 −6.05402e12 −0.642871
765765 −2.80402e12 −0.296009
766766 −9.62192e11 −0.100979
767767 6.85244e11 0.0714934
768768 1.06680e13 1.10651
769769 −2.48568e12 −0.256316 −0.128158 0.991754i 0.540907π-0.540907\pi
−0.128158 + 0.991754i 0.540907π0.540907\pi
770770 0 0
771771 −1.59191e13 −1.62246
772772 −1.42193e13 −1.44079
773773 5.46173e12 0.550202 0.275101 0.961415i 0.411289π-0.411289\pi
0.275101 + 0.961415i 0.411289π0.411289\pi
774774 −8.65455e11 −0.0866783
775775 3.90275e12 0.388609
776776 3.51401e12 0.347877
777777 0 0
778778 −1.34619e12 −0.131734
779779 −2.28348e13 −2.22166
780780 6.95889e12 0.673154
781781 2.32072e13 2.23199
782782 5.34538e11 0.0511150
783783 5.04966e12 0.480103
784784 0 0
785785 5.68898e12 0.534713
786786 −8.28704e11 −0.0774459
787787 −1.01285e13 −0.941153 −0.470577 0.882359i 0.655954π-0.655954\pi
−0.470577 + 0.882359i 0.655954π0.655954\pi
788788 −1.94614e13 −1.79807
789789 1.02126e13 0.938189
790790 1.74101e11 0.0159030
791791 0 0
792792 1.89564e12 0.171195
793793 −1.35186e13 −1.21396
794794 1.35971e12 0.121410
795795 −4.19252e12 −0.372240
796796 −1.67460e13 −1.47844
797797 −1.18226e13 −1.03789 −0.518943 0.854809i 0.673674π-0.673674\pi
−0.518943 + 0.854809i 0.673674π0.673674\pi
798798 0 0
799799 −9.60744e10 −0.00833964
800800 −7.73451e11 −0.0667618
801801 −2.63544e12 −0.226208
802802 6.15182e11 0.0525072
803803 2.42919e13 2.06177
804804 −9.47792e12 −0.799947
805805 0 0
806806 3.17496e12 0.264990
807807 −2.01086e13 −1.66898
808808 −7.37422e11 −0.0608646
809809 3.50219e11 0.0287456 0.0143728 0.999897i 0.495425π-0.495425\pi
0.0143728 + 0.999897i 0.495425π0.495425\pi
810810 7.68841e11 0.0627558
811811 3.99021e12 0.323893 0.161946 0.986800i 0.448223π-0.448223\pi
0.161946 + 0.986800i 0.448223π0.448223\pi
812812 0 0
813813 −2.63475e12 −0.211511
814814 −6.75696e11 −0.0539438
815815 5.97484e11 0.0474370
816816 −1.69575e13 −1.33892
817817 2.06418e13 1.62087
818818 8.43131e11 0.0658423
819819 0 0
820820 9.97023e12 0.770092
821821 1.67758e13 1.28867 0.644333 0.764745i 0.277135π-0.277135\pi
0.644333 + 0.764745i 0.277135π0.277135\pi
822822 −1.35550e12 −0.103556
823823 −8.57343e12 −0.651411 −0.325706 0.945471i 0.605602π-0.605602\pi
−0.325706 + 0.945471i 0.605602π0.605602\pi
824824 −1.48098e12 −0.111912
825825 4.25996e12 0.320157
826826 0 0
827827 −4.63367e12 −0.344469 −0.172235 0.985056i 0.555099π-0.555099\pi
−0.172235 + 0.985056i 0.555099π0.555099\pi
828828 −3.29766e12 −0.243820
829829 1.07635e13 0.791516 0.395758 0.918355i 0.370482π-0.370482\pi
0.395758 + 0.918355i 0.370482π0.370482\pi
830830 2.02352e11 0.0147998
831831 −9.36357e12 −0.681141
832832 1.53854e13 1.11315
833833 0 0
834834 7.97762e11 0.0570987
835835 −8.62218e11 −0.0613802
836836 −2.24605e13 −1.59035
837837 −1.39077e13 −0.979472
838838 2.37832e11 0.0166599
839839 1.96594e13 1.36975 0.684876 0.728659i 0.259856π-0.259856\pi
0.684876 + 0.728659i 0.259856π0.259856\pi
840840 0 0
841841 −1.34785e12 −0.0929093
842842 2.68013e12 0.183760
843843 8.03553e12 0.548012
844844 −1.53210e13 −1.03931
845845 2.99255e12 0.201923
846846 −7.69323e9 −0.000516348 0
847847 0 0
848848 −9.52467e12 −0.632512
849849 1.75736e13 1.16085
850850 3.79025e11 0.0249047
851851 2.36614e12 0.154653
852852 −3.39091e13 −2.20464
853853 1.38848e12 0.0897984 0.0448992 0.998992i 0.485703π-0.485703\pi
0.0448992 + 0.998992i 0.485703π0.485703\pi
854854 0 0
855855 5.35532e12 0.342719
856856 −1.83681e11 −0.0116932
857857 2.05314e13 1.30019 0.650093 0.759854i 0.274730π-0.274730\pi
0.650093 + 0.759854i 0.274730π0.274730\pi
858858 3.46556e12 0.218313
859859 −9.16692e12 −0.574453 −0.287226 0.957863i 0.592733π-0.592733\pi
−0.287226 + 0.957863i 0.592733π0.592733\pi
860860 −9.01275e12 −0.561842
861861 0 0
862862 −3.05368e12 −0.188383
863863 −1.47606e13 −0.905849 −0.452925 0.891549i 0.649619π-0.649619\pi
−0.452925 + 0.891549i 0.649619π0.649619\pi
864864 2.75625e12 0.168270
865865 1.40123e13 0.851012
866866 1.16179e12 0.0701938
867867 4.42444e12 0.265933
868868 0 0
869869 −6.67976e12 −0.397349
870870 1.03111e12 0.0610192
871871 −1.31028e13 −0.771406
872872 3.59435e12 0.210521
873873 1.59694e13 0.930517
874874 −1.02090e12 −0.0591809
875875 0 0
876876 −3.54940e13 −2.03651
877877 1.13101e13 0.645607 0.322804 0.946466i 0.395375π-0.395375\pi
0.322804 + 0.946466i 0.395375π0.395375\pi
878878 9.60941e11 0.0545722
879879 2.09133e13 1.18161
880880 9.67789e12 0.544012
881881 1.76889e13 0.989255 0.494628 0.869105i 0.335304π-0.335304\pi
0.494628 + 0.869105i 0.335304π0.335304\pi
882882 0 0
883883 2.94773e13 1.63179 0.815894 0.578201i 0.196245π-0.196245\pi
0.815894 + 0.578201i 0.196245π0.196245\pi
884884 −2.37553e13 −1.30835
885885 −6.12921e11 −0.0335861
886886 −2.30955e12 −0.125914
887887 −1.21733e13 −0.660316 −0.330158 0.943926i 0.607102π-0.607102\pi
−0.330158 + 0.943926i 0.607102π0.607102\pi
888888 1.98740e12 0.107257
889889 0 0
890890 3.56238e11 0.0190320
891891 −2.94982e13 −1.56800
892892 −9.66500e12 −0.511163
893893 1.83490e11 0.00965563
894894 4.12841e11 0.0216154
895895 −4.00492e12 −0.208637
896896 0 0
897897 −1.21356e13 −0.625888
898898 2.93620e12 0.150675
899899 −3.62432e13 −1.85058
900900 −2.33827e12 −0.118796
901901 1.43118e13 0.723493
902902 4.96522e12 0.249752
903903 0 0
904904 7.16780e11 0.0356967
905905 −5.79801e11 −0.0287317
906906 −3.64040e11 −0.0179503
907907 5.65317e12 0.277370 0.138685 0.990337i 0.455712π-0.455712\pi
0.138685 + 0.990337i 0.455712π0.455712\pi
908908 −4.03291e12 −0.196894
909909 −3.35120e12 −0.162803
910910 0 0
911911 9.15118e12 0.440194 0.220097 0.975478i 0.429363π-0.429363\pi
0.220097 + 0.975478i 0.429363π0.429363\pi
912912 3.23866e13 1.55020
913913 −7.76364e12 −0.369783
914914 −1.35048e12 −0.0640073
915915 1.20918e13 0.570292
916916 −1.45831e13 −0.684414
917917 0 0
918918 −1.35068e12 −0.0627713
919919 3.96150e13 1.83206 0.916030 0.401110i 0.131376π-0.131376\pi
0.916030 + 0.401110i 0.131376π0.131376\pi
920920 8.97288e11 0.0412940
921921 3.52081e13 1.61240
922922 3.43398e12 0.156498
923923 −4.68779e13 −2.12598
924924 0 0
925925 1.67776e12 0.0753515
926926 2.37077e12 0.105960
927927 −6.73029e12 −0.299347
928928 7.18273e12 0.317924
929929 −3.57785e11 −0.0157598 −0.00787991 0.999969i 0.502508π-0.502508\pi
−0.00787991 + 0.999969i 0.502508π0.502508\pi
930930 −2.83986e12 −0.124487
931931 0 0
932932 −3.49750e13 −1.51840
933933 −3.95216e13 −1.70753
934934 −1.32389e12 −0.0569235
935935 −1.45421e13 −0.622263
936936 −3.82914e12 −0.163065
937937 3.35453e13 1.42169 0.710843 0.703350i 0.248313π-0.248313\pi
0.710843 + 0.703350i 0.248313π0.248313\pi
938938 0 0
939939 −1.65128e13 −0.693149
940940 −8.01164e10 −0.00334692
941941 −1.55016e13 −0.644502 −0.322251 0.946654i 0.604440π-0.604440\pi
−0.322251 + 0.946654i 0.604440π0.604440\pi
942942 −4.13963e12 −0.171290
943943 −1.73871e13 −0.716020
944944 −1.39245e12 −0.0570697
945945 0 0
946946 −4.48839e12 −0.182213
947947 1.07939e13 0.436119 0.218059 0.975935i 0.430027π-0.430027\pi
0.218059 + 0.975935i 0.430027π0.430027\pi
948948 9.76011e12 0.392480
949949 −4.90689e13 −1.96385
950950 −7.23889e11 −0.0288347
951951 −4.17290e13 −1.65434
952952 0 0
953953 1.09164e13 0.428708 0.214354 0.976756i 0.431235π-0.431235\pi
0.214354 + 0.976756i 0.431235π0.431235\pi
954954 1.14603e12 0.0447949
955955 7.48609e12 0.291232
956956 4.89739e13 1.89629
957957 −3.95605e13 −1.52461
958958 3.04073e12 0.116636
959959 0 0
960960 −1.37615e13 −0.522934
961961 7.33811e13 2.77542
962962 1.36489e12 0.0513818
963963 −8.34738e11 −0.0312775
964964 −1.91734e13 −0.715076
965965 1.75829e13 0.652705
966966 0 0
967967 −1.61178e13 −0.592769 −0.296385 0.955069i 0.595781π-0.595781\pi
−0.296385 + 0.955069i 0.595781π0.595781\pi
968968 3.68618e12 0.134939
969969 −4.86644e13 −1.77318
970970 −2.15861e12 −0.0782892
971971 −4.36523e13 −1.57587 −0.787936 0.615757i 0.788850π-0.788850\pi
−0.787936 + 0.615757i 0.788850π0.788850\pi
972972 2.92525e13 1.05115
973973 0 0
974974 2.33910e11 0.00832785
975975 −8.60500e12 −0.304951
976976 2.74705e13 0.969042
977977 −2.71335e12 −0.0952751 −0.0476376 0.998865i 0.515169π-0.515169\pi
−0.0476376 + 0.998865i 0.515169π0.515169\pi
978978 −4.34763e11 −0.0151960
979979 −1.36678e13 −0.475529
980980 0 0
981981 1.63345e13 0.563112
982982 −4.00942e12 −0.137588
983983 4.23770e13 1.44757 0.723785 0.690026i 0.242401π-0.242401\pi
0.723785 + 0.690026i 0.242401π0.242401\pi
984984 −1.46040e13 −0.496585
985985 2.40649e13 0.814557
986986 −3.51985e12 −0.118598
987987 0 0
988988 4.53696e13 1.51481
989989 1.57174e13 0.522392
990990 −1.16447e12 −0.0385273
991991 5.03010e13 1.65670 0.828352 0.560207i 0.189279π-0.189279\pi
0.828352 + 0.560207i 0.189279π0.189279\pi
992992 −1.97826e13 −0.648606
993993 3.82354e13 1.24794
994994 0 0
995995 2.07072e13 0.669759
996996 1.13438e13 0.365252
997997 2.15692e13 0.691361 0.345681 0.938352i 0.387648π-0.387648\pi
0.345681 + 0.938352i 0.387648π0.387648\pi
998998 −3.54564e12 −0.113138
999999 −5.97882e12 −0.189920
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.m.1.7 13
7.2 even 3 35.10.e.b.11.7 26
7.4 even 3 35.10.e.b.16.7 yes 26
7.6 odd 2 245.10.a.l.1.7 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.e.b.11.7 26 7.2 even 3
35.10.e.b.16.7 yes 26 7.4 even 3
245.10.a.l.1.7 13 7.6 odd 2
245.10.a.m.1.7 13 1.1 even 1 trivial