Properties

Label 245.4.b.d.99.8
Level $245$
Weight $4$
Character 245.99
Analytic conductor $14.455$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(99,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.8
Root \(1.85474i\) of defining polynomial
Character \(\chi\) \(=\) 245.99
Dual form 245.4.b.d.99.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85474i q^{2} +8.98858i q^{3} -0.149548 q^{4} +(-3.91321 + 10.4731i) q^{5} -25.6601 q^{6} +22.4110i q^{8} -53.7945 q^{9} +(-29.8981 - 11.1712i) q^{10} +37.4408 q^{11} -1.34423i q^{12} +3.96370i q^{13} +(-94.1387 - 35.1742i) q^{15} -65.1740 q^{16} -51.6780i q^{17} -153.569i q^{18} +25.9323 q^{19} +(0.585214 - 1.56624i) q^{20} +106.884i q^{22} +173.454i q^{23} -201.443 q^{24} +(-94.3736 - 81.9673i) q^{25} -11.3154 q^{26} -240.845i q^{27} +245.676 q^{29} +(100.413 - 268.742i) q^{30} +172.074 q^{31} -6.76690i q^{32} +336.539i q^{33} +147.527 q^{34} +8.04488 q^{36} -250.699i q^{37} +74.0300i q^{38} -35.6281 q^{39} +(-234.714 - 87.6990i) q^{40} +48.8649 q^{41} +143.612i q^{43} -5.59920 q^{44} +(210.509 - 563.398i) q^{45} -495.167 q^{46} +36.6415i q^{47} -585.822i q^{48} +(233.995 - 269.412i) q^{50} +464.511 q^{51} -0.592765i q^{52} -645.286i q^{53} +687.549 q^{54} +(-146.514 + 392.123i) q^{55} +233.094i q^{57} +701.343i q^{58} +395.495 q^{59} +(14.0783 + 5.26024i) q^{60} -47.5130 q^{61} +491.228i q^{62} -502.074 q^{64} +(-41.5125 - 15.5108i) q^{65} -960.733 q^{66} +263.189i q^{67} +7.72835i q^{68} -1559.11 q^{69} -268.177 q^{71} -1205.59i q^{72} +199.757i q^{73} +715.680 q^{74} +(736.769 - 848.284i) q^{75} -3.87813 q^{76} -101.709i q^{78} -473.640 q^{79} +(255.040 - 682.577i) q^{80} +712.399 q^{81} +139.497i q^{82} -72.7028i q^{83} +(541.231 + 202.227i) q^{85} -409.975 q^{86} +2208.28i q^{87} +839.086i q^{88} -1552.25 q^{89} +(1608.36 + 600.950i) q^{90} -25.9398i q^{92} +1546.70i q^{93} -104.602 q^{94} +(-101.478 + 271.593i) q^{95} +60.8248 q^{96} -243.338i q^{97} -2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} - 6 q^{5} - 12 q^{6} - 46 q^{9} + 16 q^{10} + 84 q^{11} + 8 q^{15} + 148 q^{16} - 72 q^{19} + 68 q^{20} - 72 q^{24} - 362 q^{25} + 620 q^{26} + 88 q^{29} + 52 q^{30} - 120 q^{31} - 964 q^{34}+ \cdots - 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.85474i 1.00930i 0.863323 + 0.504652i \(0.168379\pi\)
−0.863323 + 0.504652i \(0.831621\pi\)
\(3\) 8.98858i 1.72985i 0.501899 + 0.864926i \(0.332635\pi\)
−0.501899 + 0.864926i \(0.667365\pi\)
\(4\) −0.149548 −0.0186935
\(5\) −3.91321 + 10.4731i −0.350008 + 0.936747i
\(6\) −25.6601 −1.74595
\(7\) 0 0
\(8\) 22.4110i 0.990436i
\(9\) −53.7945 −1.99239
\(10\) −29.8981 11.1712i −0.945462 0.353265i
\(11\) 37.4408 1.02626 0.513128 0.858312i \(-0.328487\pi\)
0.513128 + 0.858312i \(0.328487\pi\)
\(12\) 1.34423i 0.0323371i
\(13\) 3.96370i 0.0845641i 0.999106 + 0.0422821i \(0.0134628\pi\)
−0.999106 + 0.0422821i \(0.986537\pi\)
\(14\) 0 0
\(15\) −94.1387 35.1742i −1.62043 0.605463i
\(16\) −65.1740 −1.01834
\(17\) 51.6780i 0.737279i −0.929572 0.368640i \(-0.879824\pi\)
0.929572 0.368640i \(-0.120176\pi\)
\(18\) 153.569i 2.01093i
\(19\) 25.9323 0.313120 0.156560 0.987668i \(-0.449960\pi\)
0.156560 + 0.987668i \(0.449960\pi\)
\(20\) 0.585214 1.56624i 0.00654289 0.0175111i
\(21\) 0 0
\(22\) 106.884i 1.03580i
\(23\) 173.454i 1.57251i 0.617902 + 0.786255i \(0.287983\pi\)
−0.617902 + 0.786255i \(0.712017\pi\)
\(24\) −201.443 −1.71331
\(25\) −94.3736 81.9673i −0.754988 0.655738i
\(26\) −11.3154 −0.0853509
\(27\) 240.845i 1.71669i
\(28\) 0 0
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) 100.413 268.742i 0.611096 1.63551i
\(31\) 172.074 0.996951 0.498475 0.866904i \(-0.333893\pi\)
0.498475 + 0.866904i \(0.333893\pi\)
\(32\) 6.76690i 0.0373822i
\(33\) 336.539i 1.77527i
\(34\) 147.527 0.744139
\(35\) 0 0
\(36\) 8.04488 0.0372448
\(37\) 250.699i 1.11391i −0.830543 0.556954i \(-0.811970\pi\)
0.830543 0.556954i \(-0.188030\pi\)
\(38\) 74.0300i 0.316033i
\(39\) −35.6281 −0.146283
\(40\) −234.714 87.6990i −0.927788 0.346661i
\(41\) 48.8649 0.186132 0.0930661 0.995660i \(-0.470333\pi\)
0.0930661 + 0.995660i \(0.470333\pi\)
\(42\) 0 0
\(43\) 143.612i 0.509317i 0.967031 + 0.254658i \(0.0819630\pi\)
−0.967031 + 0.254658i \(0.918037\pi\)
\(44\) −5.59920 −0.0191844
\(45\) 210.509 563.398i 0.697353 1.86636i
\(46\) −495.167 −1.58714
\(47\) 36.6415i 0.113717i 0.998382 + 0.0568587i \(0.0181085\pi\)
−0.998382 + 0.0568587i \(0.981892\pi\)
\(48\) 585.822i 1.76159i
\(49\) 0 0
\(50\) 233.995 269.412i 0.661839 0.762012i
\(51\) 464.511 1.27538
\(52\) 0.592765i 0.00158080i
\(53\) 645.286i 1.67239i −0.548430 0.836196i \(-0.684774\pi\)
0.548430 0.836196i \(-0.315226\pi\)
\(54\) 687.549 1.73266
\(55\) −146.514 + 392.123i −0.359198 + 0.961342i
\(56\) 0 0
\(57\) 233.094i 0.541651i
\(58\) 701.343i 1.58777i
\(59\) 395.495 0.872696 0.436348 0.899778i \(-0.356272\pi\)
0.436348 + 0.899778i \(0.356272\pi\)
\(60\) 14.0783 + 5.26024i 0.0302916 + 0.0113182i
\(61\) −47.5130 −0.0997282 −0.0498641 0.998756i \(-0.515879\pi\)
−0.0498641 + 0.998756i \(0.515879\pi\)
\(62\) 491.228i 1.00623i
\(63\) 0 0
\(64\) −502.074 −0.980614
\(65\) −41.5125 15.5108i −0.0792152 0.0295981i
\(66\) −960.733 −1.79179
\(67\) 263.189i 0.479906i 0.970785 + 0.239953i \(0.0771320\pi\)
−0.970785 + 0.239953i \(0.922868\pi\)
\(68\) 7.72835i 0.0137824i
\(69\) −1559.11 −2.72021
\(70\) 0 0
\(71\) −268.177 −0.448264 −0.224132 0.974559i \(-0.571955\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(72\) 1205.59i 1.97333i
\(73\) 199.757i 0.320271i 0.987095 + 0.160136i \(0.0511931\pi\)
−0.987095 + 0.160136i \(0.948807\pi\)
\(74\) 715.680 1.12427
\(75\) 736.769 848.284i 1.13433 1.30602i
\(76\) −3.87813 −0.00585331
\(77\) 0 0
\(78\) 101.709i 0.147644i
\(79\) −473.640 −0.674540 −0.337270 0.941408i \(-0.609503\pi\)
−0.337270 + 0.941408i \(0.609503\pi\)
\(80\) 255.040 682.577i 0.356429 0.953930i
\(81\) 712.399 0.977227
\(82\) 139.497i 0.187864i
\(83\) 72.7028i 0.0961466i −0.998844 0.0480733i \(-0.984692\pi\)
0.998844 0.0480733i \(-0.0153081\pi\)
\(84\) 0 0
\(85\) 541.231 + 202.227i 0.690644 + 0.258054i
\(86\) −409.975 −0.514055
\(87\) 2208.28i 2.72129i
\(88\) 839.086i 1.01644i
\(89\) −1552.25 −1.84874 −0.924369 0.381500i \(-0.875408\pi\)
−0.924369 + 0.381500i \(0.875408\pi\)
\(90\) 1608.36 + 600.950i 1.88373 + 0.703841i
\(91\) 0 0
\(92\) 25.9398i 0.0293958i
\(93\) 1546.70i 1.72458i
\(94\) −104.602 −0.114775
\(95\) −101.478 + 271.593i −0.109594 + 0.293314i
\(96\) 60.8248 0.0646657
\(97\) 243.338i 0.254714i −0.991857 0.127357i \(-0.959351\pi\)
0.991857 0.127357i \(-0.0406494\pi\)
\(98\) 0 0
\(99\) −2014.11 −2.04470
\(100\) 14.1134 + 12.2581i 0.0141134 + 0.0122581i
\(101\) 1539.34 1.51653 0.758265 0.651946i \(-0.226047\pi\)
0.758265 + 0.651946i \(0.226047\pi\)
\(102\) 1326.06i 1.28725i
\(103\) 948.628i 0.907486i 0.891133 + 0.453743i \(0.149912\pi\)
−0.891133 + 0.453743i \(0.850088\pi\)
\(104\) −88.8306 −0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) 863.983i 0.780602i 0.920687 + 0.390301i \(0.127629\pi\)
−0.920687 + 0.390301i \(0.872371\pi\)
\(108\) 36.0179i 0.0320910i
\(109\) −886.319 −0.778844 −0.389422 0.921060i \(-0.627325\pi\)
−0.389422 + 0.921060i \(0.627325\pi\)
\(110\) −1119.41 418.259i −0.970286 0.362540i
\(111\) 2253.42 1.92690
\(112\) 0 0
\(113\) 765.957i 0.637657i −0.947812 0.318828i \(-0.896711\pi\)
0.947812 0.318828i \(-0.103289\pi\)
\(114\) −665.424 −0.546690
\(115\) −1816.61 678.763i −1.47304 0.550391i
\(116\) −36.7405 −0.0294075
\(117\) 213.226i 0.168485i
\(118\) 1129.04i 0.880816i
\(119\) 0 0
\(120\) 788.289 2109.74i 0.599672 1.60494i
\(121\) 70.8116 0.0532018
\(122\) 135.637i 0.100656i
\(123\) 439.226i 0.321981i
\(124\) −25.7334 −0.0186365
\(125\) 1227.76 667.633i 0.878513 0.477719i
\(126\) 0 0
\(127\) 505.042i 0.352876i 0.984312 + 0.176438i \(0.0564575\pi\)
−0.984312 + 0.176438i \(0.943543\pi\)
\(128\) 1487.43i 1.02712i
\(129\) −1290.87 −0.881043
\(130\) 44.2794 118.507i 0.0298735 0.0799521i
\(131\) −672.930 −0.448811 −0.224405 0.974496i \(-0.572044\pi\)
−0.224405 + 0.974496i \(0.572044\pi\)
\(132\) 50.3289i 0.0331861i
\(133\) 0 0
\(134\) −751.337 −0.484371
\(135\) 2522.40 + 942.476i 1.60810 + 0.600855i
\(136\) 1158.16 0.730228
\(137\) 1552.28i 0.968032i 0.875059 + 0.484016i \(0.160822\pi\)
−0.875059 + 0.484016i \(0.839178\pi\)
\(138\) 4450.85i 2.74552i
\(139\) −1072.02 −0.654154 −0.327077 0.944998i \(-0.606064\pi\)
−0.327077 + 0.944998i \(0.606064\pi\)
\(140\) 0 0
\(141\) −329.355 −0.196714
\(142\) 765.575i 0.452434i
\(143\) 148.404i 0.0867845i
\(144\) 3506.01 2.02894
\(145\) −961.384 + 2573.00i −0.550611 + 1.47363i
\(146\) −570.255 −0.323251
\(147\) 0 0
\(148\) 37.4915i 0.0208229i
\(149\) −645.936 −0.355149 −0.177574 0.984107i \(-0.556825\pi\)
−0.177574 + 0.984107i \(0.556825\pi\)
\(150\) 2421.63 + 2103.29i 1.31817 + 1.14488i
\(151\) 243.194 0.131065 0.0655326 0.997850i \(-0.479125\pi\)
0.0655326 + 0.997850i \(0.479125\pi\)
\(152\) 581.169i 0.310125i
\(153\) 2779.99i 1.46895i
\(154\) 0 0
\(155\) −673.363 + 1802.16i −0.348941 + 0.933890i
\(156\) 5.32811 0.00273455
\(157\) 1552.56i 0.789223i 0.918848 + 0.394611i \(0.129121\pi\)
−0.918848 + 0.394611i \(0.870879\pi\)
\(158\) 1352.12i 0.680815i
\(159\) 5800.20 2.89299
\(160\) 70.8707 + 26.4803i 0.0350176 + 0.0130841i
\(161\) 0 0
\(162\) 2033.71i 0.986319i
\(163\) 2553.65i 1.22710i −0.789656 0.613550i \(-0.789741\pi\)
0.789656 0.613550i \(-0.210259\pi\)
\(164\) −7.30766 −0.00347947
\(165\) −3524.63 1316.95i −1.66298 0.621360i
\(166\) 207.548 0.0970411
\(167\) 3573.14i 1.65568i −0.560966 0.827839i \(-0.689570\pi\)
0.560966 0.827839i \(-0.310430\pi\)
\(168\) 0 0
\(169\) 2181.29 0.992849
\(170\) −577.305 + 1545.07i −0.260455 + 0.697069i
\(171\) −1395.01 −0.623856
\(172\) 21.4769i 0.00952093i
\(173\) 2234.71i 0.982090i 0.871134 + 0.491045i \(0.163385\pi\)
−0.871134 + 0.491045i \(0.836615\pi\)
\(174\) −6304.07 −2.74661
\(175\) 0 0
\(176\) −2440.17 −1.04508
\(177\) 3554.94i 1.50964i
\(178\) 4431.26i 1.86594i
\(179\) 1830.53 0.764361 0.382180 0.924088i \(-0.375173\pi\)
0.382180 + 0.924088i \(0.375173\pi\)
\(180\) −31.4813 + 84.2552i −0.0130360 + 0.0348889i
\(181\) −2437.22 −1.00087 −0.500433 0.865775i \(-0.666826\pi\)
−0.500433 + 0.865775i \(0.666826\pi\)
\(182\) 0 0
\(183\) 427.075i 0.172515i
\(184\) −3887.29 −1.55747
\(185\) 2625.60 + 981.037i 1.04345 + 0.389877i
\(186\) −4415.44 −1.74062
\(187\) 1934.86i 0.756638i
\(188\) 5.47968i 0.00212578i
\(189\) 0 0
\(190\) −775.327 289.695i −0.296043 0.110614i
\(191\) 5079.50 1.92429 0.962145 0.272538i \(-0.0878632\pi\)
0.962145 + 0.272538i \(0.0878632\pi\)
\(192\) 4512.93i 1.69632i
\(193\) 2805.09i 1.04619i 0.852274 + 0.523095i \(0.175223\pi\)
−0.852274 + 0.523095i \(0.824777\pi\)
\(194\) 694.667 0.257084
\(195\) 139.420 373.138i 0.0512004 0.137031i
\(196\) 0 0
\(197\) 3107.79i 1.12396i −0.827149 0.561982i \(-0.810039\pi\)
0.827149 0.561982i \(-0.189961\pi\)
\(198\) 5749.76i 2.06373i
\(199\) −2145.63 −0.764321 −0.382161 0.924096i \(-0.624820\pi\)
−0.382161 + 0.924096i \(0.624820\pi\)
\(200\) 1836.97 2115.01i 0.649467 0.747768i
\(201\) −2365.70 −0.830166
\(202\) 4394.41i 1.53064i
\(203\) 0 0
\(204\) −69.4669 −0.0238414
\(205\) −191.219 + 511.769i −0.0651478 + 0.174359i
\(206\) −2708.09 −0.915929
\(207\) 9330.89i 3.13305i
\(208\) 258.331i 0.0861154i
\(209\) 970.925 0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) 96.5013i 0.0312629i
\(213\) 2410.53i 0.775430i
\(214\) −2466.45 −0.787864
\(215\) −1504.07 561.984i −0.477101 0.178265i
\(216\) 5397.57 1.70027
\(217\) 0 0
\(218\) 2530.21i 0.786089i
\(219\) −1795.53 −0.554022
\(220\) 21.9109 58.6413i 0.00671468 0.0179709i
\(221\) 204.836 0.0623474
\(222\) 6432.94i 1.94482i
\(223\) 4741.40i 1.42380i −0.702280 0.711901i \(-0.747834\pi\)
0.702280 0.711901i \(-0.252166\pi\)
\(224\) 0 0
\(225\) 5076.78 + 4409.39i 1.50423 + 1.30649i
\(226\) 2186.61 0.643589
\(227\) 960.790i 0.280925i 0.990086 + 0.140462i \(0.0448589\pi\)
−0.990086 + 0.140462i \(0.955141\pi\)
\(228\) 34.8589i 0.0101254i
\(229\) 744.006 0.214696 0.107348 0.994222i \(-0.465764\pi\)
0.107348 + 0.994222i \(0.465764\pi\)
\(230\) 1937.69 5185.96i 0.555512 1.48675i
\(231\) 0 0
\(232\) 5505.86i 1.55809i
\(233\) 1550.56i 0.435968i −0.975952 0.217984i \(-0.930052\pi\)
0.975952 0.217984i \(-0.0699480\pi\)
\(234\) 608.704 0.170052
\(235\) −383.752 143.386i −0.106524 0.0398020i
\(236\) −59.1456 −0.0163138
\(237\) 4257.35i 1.16685i
\(238\) 0 0
\(239\) −2775.00 −0.751045 −0.375523 0.926813i \(-0.622537\pi\)
−0.375523 + 0.926813i \(0.622537\pi\)
\(240\) 6135.40 + 2292.44i 1.65016 + 0.616569i
\(241\) 2550.20 0.681630 0.340815 0.940130i \(-0.389297\pi\)
0.340815 + 0.940130i \(0.389297\pi\)
\(242\) 202.149i 0.0536968i
\(243\) 99.3558i 0.0262291i
\(244\) 7.10549 0.00186427
\(245\) 0 0
\(246\) −1253.88 −0.324977
\(247\) 102.788i 0.0264787i
\(248\) 3856.36i 0.987416i
\(249\) 653.494 0.166319
\(250\) 1905.92 + 3504.93i 0.482164 + 0.886686i
\(251\) 2933.00 0.737568 0.368784 0.929515i \(-0.379774\pi\)
0.368784 + 0.929515i \(0.379774\pi\)
\(252\) 0 0
\(253\) 6494.26i 1.61380i
\(254\) −1441.76 −0.356159
\(255\) −1817.73 + 4864.90i −0.446395 + 1.19471i
\(256\) 229.626 0.0560611
\(257\) 2725.22i 0.661459i −0.943726 0.330729i \(-0.892705\pi\)
0.943726 0.330729i \(-0.107295\pi\)
\(258\) 3685.09i 0.889240i
\(259\) 0 0
\(260\) 6.20811 + 2.31961i 0.00148081 + 0.000553294i
\(261\) −13216.0 −3.13430
\(262\) 1921.04i 0.452986i
\(263\) 3027.26i 0.709767i −0.934910 0.354884i \(-0.884520\pi\)
0.934910 0.354884i \(-0.115480\pi\)
\(264\) −7542.19 −1.75829
\(265\) 6758.17 + 2525.14i 1.56661 + 0.585351i
\(266\) 0 0
\(267\) 13952.5i 3.19804i
\(268\) 39.3595i 0.00897114i
\(269\) −1442.46 −0.326946 −0.163473 0.986548i \(-0.552270\pi\)
−0.163473 + 0.986548i \(0.552270\pi\)
\(270\) −2690.52 + 7200.80i −0.606445 + 1.62306i
\(271\) 6464.45 1.44903 0.724516 0.689258i \(-0.242063\pi\)
0.724516 + 0.689258i \(0.242063\pi\)
\(272\) 3368.06i 0.750804i
\(273\) 0 0
\(274\) −4431.36 −0.977038
\(275\) −3533.42 3068.92i −0.774812 0.672955i
\(276\) 233.162 0.0508503
\(277\) 876.614i 0.190147i −0.995470 0.0950733i \(-0.969691\pi\)
0.995470 0.0950733i \(-0.0303086\pi\)
\(278\) 3060.33i 0.660240i
\(279\) −9256.66 −1.98631
\(280\) 0 0
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) 940.224i 0.198544i
\(283\) 2250.07i 0.472625i −0.971677 0.236312i \(-0.924061\pi\)
0.971677 0.236312i \(-0.0759389\pi\)
\(284\) 40.1054 0.00837963
\(285\) −2441.23 912.147i −0.507390 0.189582i
\(286\) −423.655 −0.0875919
\(287\) 0 0
\(288\) 364.022i 0.0744799i
\(289\) 2242.39 0.456419
\(290\) −7345.26 2744.50i −1.48734 0.555733i
\(291\) 2187.26 0.440617
\(292\) 29.8733i 0.00598700i
\(293\) 5917.86i 1.17995i 0.807422 + 0.589975i \(0.200862\pi\)
−0.807422 + 0.589975i \(0.799138\pi\)
\(294\) 0 0
\(295\) −1547.66 + 4142.08i −0.305451 + 0.817495i
\(296\) 5618.41 1.10325
\(297\) 9017.41i 1.76176i
\(298\) 1843.98i 0.358453i
\(299\) −687.522 −0.132978
\(300\) −110.183 + 126.859i −0.0212046 + 0.0244141i
\(301\) 0 0
\(302\) 694.256i 0.132284i
\(303\) 13836.4i 2.62337i
\(304\) −1690.11 −0.318864
\(305\) 185.929 497.611i 0.0349057 0.0934200i
\(306\) −7936.16 −1.48261
\(307\) 9458.47i 1.75838i 0.476469 + 0.879191i \(0.341916\pi\)
−0.476469 + 0.879191i \(0.658084\pi\)
\(308\) 0 0
\(309\) −8526.81 −1.56982
\(310\) −5144.70 1922.28i −0.942579 0.352187i
\(311\) 7576.78 1.38148 0.690739 0.723104i \(-0.257285\pi\)
0.690739 + 0.723104i \(0.257285\pi\)
\(312\) 798.461i 0.144884i
\(313\) 9172.41i 1.65641i 0.560427 + 0.828204i \(0.310637\pi\)
−0.560427 + 0.828204i \(0.689363\pi\)
\(314\) −4432.16 −0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) 3077.94i 0.545345i 0.962107 + 0.272672i \(0.0879075\pi\)
−0.962107 + 0.272672i \(0.912092\pi\)
\(318\) 16558.1i 2.91991i
\(319\) 9198.31 1.61444
\(320\) 1964.72 5258.30i 0.343223 0.918587i
\(321\) −7765.98 −1.35033
\(322\) 0 0
\(323\) 1340.13i 0.230857i
\(324\) −106.538 −0.0182678
\(325\) 324.894 374.069i 0.0554519 0.0638449i
\(326\) 7290.01 1.23852
\(327\) 7966.75i 1.34728i
\(328\) 1095.11i 0.184352i
\(329\) 0 0
\(330\) 3759.55 10061.9i 0.627141 1.67845i
\(331\) 3234.50 0.537113 0.268557 0.963264i \(-0.413453\pi\)
0.268557 + 0.963264i \(0.413453\pi\)
\(332\) 10.8726i 0.00179732i
\(333\) 13486.2i 2.21934i
\(334\) 10200.4 1.67108
\(335\) −2756.42 1029.92i −0.449550 0.167971i
\(336\) 0 0
\(337\) 3777.84i 0.610658i 0.952247 + 0.305329i \(0.0987665\pi\)
−0.952247 + 0.305329i \(0.901234\pi\)
\(338\) 6227.02i 1.00209i
\(339\) 6884.87 1.10305
\(340\) −80.9401 30.2427i −0.0129106 0.00482394i
\(341\) 6442.60 1.02313
\(342\) 3982.41i 0.629660i
\(343\) 0 0
\(344\) −3218.49 −0.504446
\(345\) 6101.12 16328.8i 0.952096 2.54815i
\(346\) −6379.51 −0.991227
\(347\) 8244.08i 1.27540i 0.770283 + 0.637702i \(0.220115\pi\)
−0.770283 + 0.637702i \(0.779885\pi\)
\(348\) 330.245i 0.0508706i
\(349\) 7173.78 1.10030 0.550148 0.835067i \(-0.314571\pi\)
0.550148 + 0.835067i \(0.314571\pi\)
\(350\) 0 0
\(351\) 954.637 0.145170
\(352\) 253.358i 0.0383637i
\(353\) 4191.51i 0.631987i 0.948761 + 0.315994i \(0.102338\pi\)
−0.948761 + 0.315994i \(0.897662\pi\)
\(354\) −10148.4 −1.52368
\(355\) 1049.43 2808.65i 0.156896 0.419910i
\(356\) 232.136 0.0345594
\(357\) 0 0
\(358\) 5225.70i 0.771472i
\(359\) 3136.29 0.461078 0.230539 0.973063i \(-0.425951\pi\)
0.230539 + 0.973063i \(0.425951\pi\)
\(360\) 12626.3 + 4717.73i 1.84851 + 0.690683i
\(361\) −6186.52 −0.901956
\(362\) 6957.62i 1.01018i
\(363\) 636.496i 0.0920313i
\(364\) 0 0
\(365\) −2092.08 781.691i −0.300013 0.112098i
\(366\) 1219.19 0.174120
\(367\) 1723.30i 0.245110i 0.992462 + 0.122555i \(0.0391088\pi\)
−0.992462 + 0.122555i \(0.960891\pi\)
\(368\) 11304.7i 1.60136i
\(369\) −2628.67 −0.370848
\(370\) −2800.61 + 7495.42i −0.393504 + 1.05316i
\(371\) 0 0
\(372\) 231.307i 0.0322384i
\(373\) 2818.55i 0.391258i −0.980678 0.195629i \(-0.937325\pi\)
0.980678 0.195629i \(-0.0626748\pi\)
\(374\) 5523.53 0.763677
\(375\) 6001.07 + 11035.8i 0.826384 + 1.51970i
\(376\) −821.174 −0.112630
\(377\) 973.788i 0.133031i
\(378\) 0 0
\(379\) 10466.1 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(380\) 15.1759 40.6162i 0.00204871 0.00548307i
\(381\) −4539.61 −0.610423
\(382\) 14500.6i 1.94219i
\(383\) 258.055i 0.0344282i −0.999852 0.0172141i \(-0.994520\pi\)
0.999852 0.0172141i \(-0.00547969\pi\)
\(384\) 13369.9 1.77677
\(385\) 0 0
\(386\) −8007.81 −1.05592
\(387\) 7725.54i 1.01476i
\(388\) 36.3908i 0.00476150i
\(389\) −4573.87 −0.596156 −0.298078 0.954542i \(-0.596346\pi\)
−0.298078 + 0.954542i \(0.596346\pi\)
\(390\) 1065.21 + 398.008i 0.138305 + 0.0516768i
\(391\) 8963.77 1.15938
\(392\) 0 0
\(393\) 6048.69i 0.776376i
\(394\) 8871.94 1.13442
\(395\) 1853.45 4960.50i 0.236094 0.631873i
\(396\) 301.206 0.0382227
\(397\) 3624.55i 0.458215i −0.973401 0.229107i \(-0.926419\pi\)
0.973401 0.229107i \(-0.0735807\pi\)
\(398\) 6125.23i 0.771432i
\(399\) 0 0
\(400\) 6150.70 + 5342.14i 0.768838 + 0.667767i
\(401\) 6358.32 0.791819 0.395910 0.918289i \(-0.370429\pi\)
0.395910 + 0.918289i \(0.370429\pi\)
\(402\) 6753.45i 0.837890i
\(403\) 682.052i 0.0843063i
\(404\) −230.205 −0.0283493
\(405\) −2787.77 + 7461.05i −0.342038 + 0.915414i
\(406\) 0 0
\(407\) 9386.35i 1.14316i
\(408\) 10410.2i 1.26319i
\(409\) −6536.39 −0.790228 −0.395114 0.918632i \(-0.629295\pi\)
−0.395114 + 0.918632i \(0.629295\pi\)
\(410\) −1460.97 545.880i −0.175981 0.0657539i
\(411\) −13952.8 −1.67455
\(412\) 141.866i 0.0169641i
\(413\) 0 0
\(414\) 26637.3 3.16220
\(415\) 761.427 + 284.501i 0.0900650 + 0.0336521i
\(416\) 26.8220 0.00316119
\(417\) 9635.91i 1.13159i
\(418\) 2771.74i 0.324331i
\(419\) 6333.56 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 8100.18i 0.934385i
\(423\) 1971.11i 0.226569i
\(424\) 14461.5 1.65640
\(425\) −4235.90 + 4877.03i −0.483462 + 0.556637i
\(426\) 6881.43 0.782645
\(427\) 0 0
\(428\) 129.207i 0.0145922i
\(429\) −1333.94 −0.150124
\(430\) 1604.32 4293.73i 0.179924 0.481539i
\(431\) −14367.6 −1.60571 −0.802856 0.596173i \(-0.796687\pi\)
−0.802856 + 0.596173i \(0.796687\pi\)
\(432\) 15696.8i 1.74818i
\(433\) 8399.05i 0.932176i −0.884738 0.466088i \(-0.845663\pi\)
0.884738 0.466088i \(-0.154337\pi\)
\(434\) 0 0
\(435\) −23127.6 8641.47i −2.54916 0.952475i
\(436\) 132.547 0.0145593
\(437\) 4498.07i 0.492384i
\(438\) 5125.78i 0.559176i
\(439\) −17860.8 −1.94180 −0.970901 0.239482i \(-0.923022\pi\)
−0.970901 + 0.239482i \(0.923022\pi\)
\(440\) −8787.87 3283.52i −0.952148 0.355763i
\(441\) 0 0
\(442\) 584.754i 0.0629274i
\(443\) 1901.57i 0.203942i −0.994787 0.101971i \(-0.967485\pi\)
0.994787 0.101971i \(-0.0325148\pi\)
\(444\) −336.996 −0.0360205
\(445\) 6074.26 16256.9i 0.647074 1.73180i
\(446\) 13535.5 1.43705
\(447\) 5806.05i 0.614355i
\(448\) 0 0
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) −12587.7 + 14492.9i −1.31864 + 1.51823i
\(451\) 1829.54 0.191019
\(452\) 114.548i 0.0119201i
\(453\) 2185.97i 0.226723i
\(454\) −2742.81 −0.283538
\(455\) 0 0
\(456\) −5223.88 −0.536471
\(457\) 11198.8i 1.14630i −0.819451 0.573149i \(-0.805722\pi\)
0.819451 0.573149i \(-0.194278\pi\)
\(458\) 2123.94i 0.216693i
\(459\) −12446.4 −1.26568
\(460\) 271.671 + 101.508i 0.0275364 + 0.0102888i
\(461\) −17270.7 −1.74485 −0.872427 0.488744i \(-0.837455\pi\)
−0.872427 + 0.488744i \(0.837455\pi\)
\(462\) 0 0
\(463\) 385.660i 0.0387109i −0.999813 0.0193554i \(-0.993839\pi\)
0.999813 0.0193554i \(-0.00616141\pi\)
\(464\) −16011.7 −1.60199
\(465\) −16198.9 6052.58i −1.61549 0.603616i
\(466\) 4426.44 0.440024
\(467\) 5035.36i 0.498947i −0.968382 0.249474i \(-0.919742\pi\)
0.968382 0.249474i \(-0.0802576\pi\)
\(468\) 31.8875i 0.00314957i
\(469\) 0 0
\(470\) 409.330 1095.51i 0.0401723 0.107515i
\(471\) −13955.3 −1.36524
\(472\) 8863.45i 0.864350i
\(473\) 5376.94i 0.522689i
\(474\) 12153.6 1.17771
\(475\) −2447.32 2125.60i −0.236402 0.205324i
\(476\) 0 0
\(477\) 34712.8i 3.33206i
\(478\) 7921.91i 0.758033i
\(479\) −8681.99 −0.828163 −0.414082 0.910240i \(-0.635897\pi\)
−0.414082 + 0.910240i \(0.635897\pi\)
\(480\) −238.020 + 637.027i −0.0226335 + 0.0605754i
\(481\) 993.695 0.0941967
\(482\) 7280.16i 0.687972i
\(483\) 0 0
\(484\) −10.5898 −0.000994530
\(485\) 2548.51 + 952.233i 0.238602 + 0.0891519i
\(486\) 283.635 0.0264731
\(487\) 890.476i 0.0828569i 0.999141 + 0.0414284i \(0.0131909\pi\)
−0.999141 + 0.0414284i \(0.986809\pi\)
\(488\) 1064.81i 0.0987744i
\(489\) 22953.7 2.12270
\(490\) 0 0
\(491\) 1562.48 0.143613 0.0718063 0.997419i \(-0.477124\pi\)
0.0718063 + 0.997419i \(0.477124\pi\)
\(492\) 65.6855i 0.00601897i
\(493\) 12696.1i 1.15984i
\(494\) −293.433 −0.0267250
\(495\) 7881.63 21094.1i 0.715663 1.91537i
\(496\) −11214.8 −1.01524
\(497\) 0 0
\(498\) 1865.56i 0.167867i
\(499\) −8234.33 −0.738716 −0.369358 0.929287i \(-0.620422\pi\)
−0.369358 + 0.929287i \(0.620422\pi\)
\(500\) −183.609 + 99.8433i −0.0164225 + 0.00893026i
\(501\) 32117.5 2.86408
\(502\) 8372.97i 0.744430i
\(503\) 72.5340i 0.00642969i 0.999995 + 0.00321484i \(0.00102332\pi\)
−0.999995 + 0.00321484i \(0.998977\pi\)
\(504\) 0 0
\(505\) −6023.75 + 16121.7i −0.530798 + 1.42061i
\(506\) −18539.4 −1.62881
\(507\) 19606.7i 1.71748i
\(508\) 75.5281i 0.00659649i
\(509\) 7793.44 0.678660 0.339330 0.940667i \(-0.389800\pi\)
0.339330 + 0.940667i \(0.389800\pi\)
\(510\) −13888.0 5189.15i −1.20583 0.450548i
\(511\) 0 0
\(512\) 11243.9i 0.970537i
\(513\) 6245.65i 0.537529i
\(514\) 7779.81 0.667612
\(515\) −9935.12 3712.18i −0.850084 0.317628i
\(516\) 193.047 0.0164698
\(517\) 1371.89i 0.116703i
\(518\) 0 0
\(519\) −20086.8 −1.69887
\(520\) 347.613 930.336i 0.0293151 0.0784576i
\(521\) −4645.42 −0.390633 −0.195316 0.980740i \(-0.562573\pi\)
−0.195316 + 0.980740i \(0.562573\pi\)
\(522\) 37728.4i 3.16346i
\(523\) 8783.88i 0.734402i 0.930142 + 0.367201i \(0.119684\pi\)
−0.930142 + 0.367201i \(0.880316\pi\)
\(524\) 100.636 0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) 8892.46i 0.735031i
\(528\) 21933.6i 1.80784i
\(529\) −17919.4 −1.47279
\(530\) −7208.62 + 19292.8i −0.590797 + 1.58118i
\(531\) −21275.5 −1.73875
\(532\) 0 0
\(533\) 193.686i 0.0157401i
\(534\) 39830.7 3.22780
\(535\) −9048.62 3380.95i −0.731226 0.273217i
\(536\) −5898.34 −0.475316
\(537\) 16453.9i 1.32223i
\(538\) 4117.86i 0.329988i
\(539\) 0 0
\(540\) −377.221 140.946i −0.0300611 0.0112321i
\(541\) −7054.13 −0.560593 −0.280296 0.959913i \(-0.590433\pi\)
−0.280296 + 0.959913i \(0.590433\pi\)
\(542\) 18454.3i 1.46251i
\(543\) 21907.1i 1.73135i
\(544\) −349.700 −0.0275611
\(545\) 3468.35 9282.55i 0.272602 0.729579i
\(546\) 0 0
\(547\) 5776.83i 0.451553i −0.974179 0.225776i \(-0.927508\pi\)
0.974179 0.225776i \(-0.0724919\pi\)
\(548\) 232.141i 0.0180959i
\(549\) 2555.94 0.198697
\(550\) 8760.97 10087.0i 0.679216 0.782020i
\(551\) 6370.95 0.492580
\(552\) 34941.2i 2.69419i
\(553\) 0 0
\(554\) 2502.51 0.191916
\(555\) −8818.12 + 23600.4i −0.674430 + 1.80501i
\(556\) 160.318 0.0122284
\(557\) 20562.6i 1.56421i 0.623145 + 0.782106i \(0.285854\pi\)
−0.623145 + 0.782106i \(0.714146\pi\)
\(558\) 26425.4i 2.00479i
\(559\) −569.235 −0.0430699
\(560\) 0 0
\(561\) 17391.7 1.30887
\(562\) 17848.4i 1.33966i
\(563\) 24009.5i 1.79730i −0.438666 0.898650i \(-0.644549\pi\)
0.438666 0.898650i \(-0.355451\pi\)
\(564\) 49.2545 0.00367729
\(565\) 8021.98 + 2997.35i 0.597323 + 0.223185i
\(566\) 6423.37 0.477022
\(567\) 0 0
\(568\) 6010.11i 0.443977i
\(569\) 24157.5 1.77985 0.889925 0.456107i \(-0.150757\pi\)
0.889925 + 0.456107i \(0.150757\pi\)
\(570\) 2603.94 6969.08i 0.191346 0.512110i
\(571\) −706.993 −0.0518157 −0.0259078 0.999664i \(-0.508248\pi\)
−0.0259078 + 0.999664i \(0.508248\pi\)
\(572\) 22.1936i 0.00162231i
\(573\) 45657.4i 3.32874i
\(574\) 0 0
\(575\) 14217.6 16369.5i 1.03115 1.18723i
\(576\) 27008.9 1.95377
\(577\) 16057.2i 1.15853i −0.815139 0.579265i \(-0.803340\pi\)
0.815139 0.579265i \(-0.196660\pi\)
\(578\) 6401.44i 0.460665i
\(579\) −25213.8 −1.80976
\(580\) 143.773 384.788i 0.0102929 0.0275474i
\(581\) 0 0
\(582\) 6244.07i 0.444717i
\(583\) 24160.0i 1.71630i
\(584\) −4476.76 −0.317208
\(585\) 2233.14 + 834.397i 0.157827 + 0.0589710i
\(586\) −16894.0 −1.19093
\(587\) 8605.63i 0.605098i −0.953134 0.302549i \(-0.902162\pi\)
0.953134 0.302549i \(-0.0978376\pi\)
\(588\) 0 0
\(589\) 4462.28 0.312165
\(590\) −11824.6 4418.16i −0.825101 0.308293i
\(591\) 27934.6 1.94429
\(592\) 16339.0i 1.13434i
\(593\) 20355.6i 1.40962i −0.709397 0.704809i \(-0.751033\pi\)
0.709397 0.704809i \(-0.248967\pi\)
\(594\) 25742.4 1.77815
\(595\) 0 0
\(596\) 96.5986 0.00663898
\(597\) 19286.2i 1.32216i
\(598\) 1962.70i 0.134215i
\(599\) −22635.7 −1.54402 −0.772010 0.635610i \(-0.780749\pi\)
−0.772010 + 0.635610i \(0.780749\pi\)
\(600\) 19010.9 + 16511.7i 1.29353 + 1.12348i
\(601\) 22553.8 1.53077 0.765383 0.643575i \(-0.222550\pi\)
0.765383 + 0.643575i \(0.222550\pi\)
\(602\) 0 0
\(603\) 14158.1i 0.956159i
\(604\) −36.3692 −0.00245007
\(605\) −277.101 + 741.620i −0.0186211 + 0.0498366i
\(606\) −39499.4 −2.64778
\(607\) 17534.2i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(608\) 175.481i 0.0117051i
\(609\) 0 0
\(610\) 1420.55 + 530.778i 0.0942892 + 0.0352304i
\(611\) −145.236 −0.00961641
\(612\) 415.743i 0.0274598i
\(613\) 10445.5i 0.688238i 0.938926 + 0.344119i \(0.111822\pi\)
−0.938926 + 0.344119i \(0.888178\pi\)
\(614\) −27001.5 −1.77474
\(615\) −4600.08 1718.78i −0.301615 0.112696i
\(616\) 0 0
\(617\) 13218.9i 0.862516i 0.902229 + 0.431258i \(0.141930\pi\)
−0.902229 + 0.431258i \(0.858070\pi\)
\(618\) 24341.8i 1.58442i
\(619\) 23438.9 1.52195 0.760976 0.648780i \(-0.224720\pi\)
0.760976 + 0.648780i \(0.224720\pi\)
\(620\) 100.700 269.510i 0.00652294 0.0174577i
\(621\) 41775.5 2.69951
\(622\) 21629.8i 1.39433i
\(623\) 0 0
\(624\) 2322.02 0.148967
\(625\) 2187.74 + 15471.1i 0.140015 + 0.990149i
\(626\) −26184.9 −1.67182
\(627\) 8727.23i 0.555873i
\(628\) 232.183i 0.0147534i
\(629\) −12955.6 −0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) 10614.7i 0.668089i
\(633\) 25504.6i 1.60145i
\(634\) −8786.72 −0.550419
\(635\) −5289.38 1976.34i −0.330555 0.123509i
\(636\) −867.410 −0.0540802
\(637\) 0 0
\(638\) 26258.8i 1.62946i
\(639\) 14426.4 0.893116
\(640\) 15578.0 + 5820.62i 0.962151 + 0.359500i
\(641\) 23977.0 1.47743 0.738715 0.674017i \(-0.235433\pi\)
0.738715 + 0.674017i \(0.235433\pi\)
\(642\) 22169.9i 1.36289i
\(643\) 27698.0i 1.69876i −0.527782 0.849380i \(-0.676976\pi\)
0.527782 0.849380i \(-0.323024\pi\)
\(644\) 0 0
\(645\) 5051.44 13519.4i 0.308372 0.825314i
\(646\) 3825.72 0.233004
\(647\) 10965.1i 0.666282i 0.942877 + 0.333141i \(0.108109\pi\)
−0.942877 + 0.333141i \(0.891891\pi\)
\(648\) 15965.6i 0.967881i
\(649\) 14807.6 0.895610
\(650\) 1067.87 + 927.488i 0.0644389 + 0.0559678i
\(651\) 0 0
\(652\) 381.894i 0.0229388i
\(653\) 12336.2i 0.739285i 0.929174 + 0.369642i \(0.120520\pi\)
−0.929174 + 0.369642i \(0.879480\pi\)
\(654\) 22743.0 1.35982
\(655\) 2633.32 7047.70i 0.157087 0.420422i
\(656\) −3184.72 −0.189547
\(657\) 10745.8i 0.638105i
\(658\) 0 0
\(659\) 25275.6 1.49408 0.747040 0.664779i \(-0.231474\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(660\) 527.102 + 196.947i 0.0310870 + 0.0116154i
\(661\) 4447.92 0.261731 0.130865 0.991400i \(-0.458224\pi\)
0.130865 + 0.991400i \(0.458224\pi\)
\(662\) 9233.67i 0.542110i
\(663\) 1841.19i 0.107852i
\(664\) 1629.34 0.0952270
\(665\) 0 0
\(666\) −38499.7 −2.23999
\(667\) 42613.6i 2.47377i
\(668\) 534.357i 0.0309505i
\(669\) 42618.5 2.46297
\(670\) 2940.14 7868.87i 0.169534 0.453733i
\(671\) −1778.92 −0.102347
\(672\) 0 0
\(673\) 30358.9i 1.73885i −0.494061 0.869427i \(-0.664488\pi\)
0.494061 0.869427i \(-0.335512\pi\)
\(674\) −10784.7 −0.616340
\(675\) −19741.4 + 22729.4i −1.12570 + 1.29608i
\(676\) −326.208 −0.0185599
\(677\) 6916.48i 0.392647i −0.980539 0.196324i \(-0.937100\pi\)
0.980539 0.196324i \(-0.0629003\pi\)
\(678\) 19654.5i 1.11331i
\(679\) 0 0
\(680\) −4532.11 + 12129.5i −0.255586 + 0.684039i
\(681\) −8636.14 −0.485958
\(682\) 18392.0i 1.03265i
\(683\) 4532.72i 0.253938i −0.991907 0.126969i \(-0.959475\pi\)
0.991907 0.126969i \(-0.0405249\pi\)
\(684\) 208.622 0.0116621
\(685\) −16257.3 6074.40i −0.906800 0.338819i
\(686\) 0 0
\(687\) 6687.56i 0.371392i
\(688\) 9359.77i 0.518660i
\(689\) 2557.72 0.141424
\(690\) 46614.4 + 17417.1i 2.57185 + 0.960954i
\(691\) −27235.2 −1.49939 −0.749694 0.661785i \(-0.769799\pi\)
−0.749694 + 0.661785i \(0.769799\pi\)
\(692\) 334.197i 0.0183587i
\(693\) 0 0
\(694\) −23534.7 −1.28727
\(695\) 4195.03 11227.4i 0.228959 0.612776i
\(696\) −49489.8 −2.69527
\(697\) 2525.24i 0.137231i
\(698\) 20479.3i 1.11053i
\(699\) 13937.3 0.754160
\(700\) 0 0
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) 2725.24i 0.146521i
\(703\) 6501.19i 0.348787i
\(704\) −18798.1 −1.00636
\(705\) 1288.84 3449.39i 0.0688516 0.184271i
\(706\) −11965.7 −0.637867
\(707\) 0 0
\(708\) 531.635i 0.0282204i
\(709\) −16724.1 −0.885877 −0.442939 0.896552i \(-0.646064\pi\)
−0.442939 + 0.896552i \(0.646064\pi\)
\(710\) 8017.98 + 2995.86i 0.423816 + 0.158356i
\(711\) 25479.2 1.34395
\(712\) 34787.4i 1.83106i
\(713\) 29847.0i 1.56771i
\(714\) 0 0
\(715\) −1554.26 580.737i −0.0812951 0.0303753i
\(716\) −273.753 −0.0142886
\(717\) 24943.3i 1.29920i
\(718\) 8953.30i 0.465368i
\(719\) 4308.66 0.223485 0.111743 0.993737i \(-0.464357\pi\)
0.111743 + 0.993737i \(0.464357\pi\)
\(720\) −13719.7 + 36718.9i −0.710145 + 1.90060i
\(721\) 0 0
\(722\) 17660.9i 0.910347i
\(723\) 22922.7i 1.17912i
\(724\) 364.481 0.0187097
\(725\) −23185.4 20137.4i −1.18770 1.03157i
\(726\) −1817.03 −0.0928875
\(727\) 29435.6i 1.50166i 0.660496 + 0.750830i \(0.270346\pi\)
−0.660496 + 0.750830i \(0.729654\pi\)
\(728\) 0 0
\(729\) 20127.8 1.02260
\(730\) 2231.53 5972.36i 0.113140 0.302804i
\(731\) 7421.58 0.375509
\(732\) 63.8683i 0.00322492i
\(733\) 6587.69i 0.331954i −0.986130 0.165977i \(-0.946922\pi\)
0.986130 0.165977i \(-0.0530777\pi\)
\(734\) −4919.57 −0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) 9854.01i 0.492506i
\(738\) 7504.16i 0.374298i
\(739\) −3684.46 −0.183404 −0.0917018 0.995787i \(-0.529231\pi\)
−0.0917018 + 0.995787i \(0.529231\pi\)
\(740\) −392.654 146.712i −0.0195058 0.00728818i
\(741\) −923.917 −0.0458042
\(742\) 0 0
\(743\) 12271.9i 0.605940i −0.953000 0.302970i \(-0.902022\pi\)
0.953000 0.302970i \(-0.0979783\pi\)
\(744\) −34663.2 −1.70808
\(745\) 2527.68 6764.98i 0.124305 0.332684i
\(746\) 8046.24 0.394898
\(747\) 3911.01i 0.191561i
\(748\) 289.355i 0.0141442i
\(749\) 0 0
\(750\) −31504.4 + 17131.5i −1.53384 + 0.834072i
\(751\) −30871.0 −1.50000 −0.749999 0.661439i \(-0.769946\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(752\) 2388.08i 0.115803i
\(753\) 26363.5i 1.27588i
\(754\) −2779.91 −0.134269
\(755\) −951.669 + 2547.00i −0.0458739 + 0.122775i
\(756\) 0 0
\(757\) 11442.1i 0.549368i 0.961535 + 0.274684i \(0.0885732\pi\)
−0.961535 + 0.274684i \(0.911427\pi\)
\(758\) 29878.1i 1.43169i
\(759\) −58374.2 −2.79163
\(760\) −6086.66 2274.24i −0.290509 0.108546i
\(761\) −14423.3 −0.687048 −0.343524 0.939144i \(-0.611621\pi\)
−0.343524 + 0.939144i \(0.611621\pi\)
\(762\) 12959.4i 0.616102i
\(763\) 0 0
\(764\) −759.630 −0.0359718
\(765\) −29115.3 10878.7i −1.37603 0.514144i
\(766\) 736.681 0.0347485
\(767\) 1567.63i 0.0737988i
\(768\) 2064.01i 0.0969775i
\(769\) 26772.8 1.25546 0.627731 0.778430i \(-0.283984\pi\)
0.627731 + 0.778430i \(0.283984\pi\)
\(770\) 0 0
\(771\) 24495.9 1.14423
\(772\) 419.496i 0.0195570i
\(773\) 27669.3i 1.28745i 0.765258 + 0.643724i \(0.222611\pi\)
−0.765258 + 0.643724i \(0.777389\pi\)
\(774\) 22054.4 1.02420
\(775\) −16239.3 14104.5i −0.752686 0.653739i
\(776\) 5453.45 0.252278
\(777\) 0 0
\(778\) 13057.2i 0.601702i
\(779\) 1267.18 0.0582816
\(780\) −20.8500 + 55.8021i −0.000957117 + 0.00256159i
\(781\) −10040.7 −0.460034
\(782\) 25589.2i 1.17017i
\(783\) 59169.8i 2.70058i
\(784\) 0 0
\(785\) −16260.2 6075.51i −0.739302 0.276235i
\(786\) 17267.4 0.783599
\(787\) 10934.5i 0.495263i 0.968854 + 0.247632i \(0.0796523\pi\)
−0.968854 + 0.247632i \(0.920348\pi\)
\(788\) 464.765i 0.0210109i
\(789\) 27210.8 1.22779
\(790\) 14160.9 + 5291.13i 0.637752 + 0.238291i
\(791\) 0 0
\(792\) 45138.2i 2.02515i
\(793\) 188.328i 0.00843343i
\(794\) 10347.2 0.462478
\(795\) −22697.4 + 60746.3i −1.01257 + 2.71000i
\(796\) 320.876 0.0142879
\(797\) 31967.3i 1.42075i 0.703823 + 0.710376i \(0.251475\pi\)
−0.703823 + 0.710376i \(0.748525\pi\)
\(798\) 0 0
\(799\) 1893.56 0.0838415
\(800\) −554.664 + 638.616i −0.0245129 + 0.0282231i
\(801\) 83502.3 3.68341
\(802\) 18151.4i 0.799186i
\(803\) 7479.06i 0.328680i
\(804\) 353.786 0.0155187
\(805\) 0 0
\(806\) −1947.08 −0.0850906
\(807\) 12965.7i 0.565568i
\(808\) 34498.1i 1.50203i
\(809\) 17924.8 0.778989 0.389495 0.921029i \(-0.372650\pi\)
0.389495 + 0.921029i \(0.372650\pi\)
\(810\) −21299.4 7958.35i −0.923931 0.345220i
\(811\) −28541.4 −1.23579 −0.617895 0.786261i \(-0.712014\pi\)
−0.617895 + 0.786261i \(0.712014\pi\)
\(812\) 0 0
\(813\) 58106.2i 2.50661i
\(814\) 26795.6 1.15379
\(815\) 26744.7 + 9992.97i 1.14948 + 0.429495i
\(816\) −30274.1 −1.29878
\(817\) 3724.19i 0.159477i
\(818\) 18659.7i 0.797580i
\(819\) 0 0
\(820\) 28.5964 76.5342i 0.00121784 0.00325938i
\(821\) 18878.6 0.802517 0.401259 0.915965i \(-0.368573\pi\)
0.401259 + 0.915965i \(0.368573\pi\)
\(822\) 39831.6i 1.69013i
\(823\) 46589.1i 1.97326i −0.162971 0.986631i \(-0.552108\pi\)
0.162971 0.986631i \(-0.447892\pi\)
\(824\) −21259.7 −0.898807
\(825\) 27585.2 31760.4i 1.16411 1.34031i
\(826\) 0 0
\(827\) 14649.8i 0.615989i 0.951388 + 0.307994i \(0.0996578\pi\)
−0.951388 + 0.307994i \(0.900342\pi\)
\(828\) 1395.42i 0.0585678i
\(829\) −34408.0 −1.44154 −0.720771 0.693173i \(-0.756212\pi\)
−0.720771 + 0.693173i \(0.756212\pi\)
\(830\) −812.178 + 2173.68i −0.0339652 + 0.0909029i
\(831\) 7879.51 0.328926
\(832\) 1990.07i 0.0829248i
\(833\) 0 0
\(834\) 27508.0 1.14212
\(835\) 37422.0 + 13982.5i 1.55095 + 0.579501i
\(836\) −145.200 −0.00600700
\(837\) 41443.2i 1.71145i
\(838\) 18080.7i 0.745331i
\(839\) 25934.2 1.06716 0.533580 0.845749i \(-0.320846\pi\)
0.533580 + 0.845749i \(0.320846\pi\)
\(840\) 0 0
\(841\) 35967.9 1.47476
\(842\) 23236.5i 0.951048i
\(843\) 56198.3i 2.29605i
\(844\) −424.335 −0.0173060
\(845\) −8535.84 + 22845.0i −0.347505 + 0.930048i
\(846\) 5627.02 0.228677
\(847\) 0 0
\(848\) 42055.9i 1.70307i
\(849\) 20224.9 0.817571
\(850\) −13922.7 12092.4i −0.561816 0.487960i
\(851\) 43484.8 1.75163
\(852\) 360.490i 0.0144955i
\(853\) 48456.3i 1.94503i −0.232836 0.972516i \(-0.574801\pi\)
0.232836 0.972516i \(-0.425199\pi\)
\(854\) 0 0
\(855\) 5458.99 14610.2i 0.218355 0.584395i
\(856\) −19362.7 −0.773136
\(857\) 36273.9i 1.44585i −0.690928 0.722924i \(-0.742798\pi\)
0.690928 0.722924i \(-0.257202\pi\)
\(858\) 3808.06i 0.151521i
\(859\) 28067.2 1.11483 0.557415 0.830234i \(-0.311793\pi\)
0.557415 + 0.830234i \(0.311793\pi\)
\(860\) 224.931 + 84.0437i 0.00891870 + 0.00333240i
\(861\) 0 0
\(862\) 41015.7i 1.62065i
\(863\) 8330.92i 0.328607i 0.986410 + 0.164303i \(0.0525376\pi\)
−0.986410 + 0.164303i \(0.947462\pi\)
\(864\) −1629.77 −0.0641736
\(865\) −23404.4 8744.88i −0.919970 0.343740i
\(866\) 23977.1 0.940849
\(867\) 20155.9i 0.789538i
\(868\) 0 0
\(869\) −17733.4 −0.692251
\(870\) 24669.2 66023.5i 0.961337 2.57288i
\(871\) −1043.20 −0.0405828
\(872\) 19863.3i 0.771395i
\(873\) 13090.3i 0.507489i
\(874\) −12840.8 −0.496965
\(875\) 0 0
\(876\) 268.519 0.0103566
\(877\) 16469.6i 0.634137i −0.948403 0.317068i \(-0.897302\pi\)
0.948403 0.317068i \(-0.102698\pi\)
\(878\) 50988.0i 1.95987i
\(879\) −53193.1 −2.04114
\(880\) 9548.88 25556.2i 0.365787 0.978977i
\(881\) 46635.9 1.78343 0.891715 0.452597i \(-0.149502\pi\)
0.891715 + 0.452597i \(0.149502\pi\)
\(882\) 0 0
\(883\) 14075.8i 0.536453i −0.963356 0.268227i \(-0.913562\pi\)
0.963356 0.268227i \(-0.0864376\pi\)
\(884\) −30.6329 −0.00116549
\(885\) −37231.4 13911.2i −1.41415 0.528385i
\(886\) 5428.48 0.205839
\(887\) 26222.9i 0.992649i −0.868137 0.496324i \(-0.834683\pi\)
0.868137 0.496324i \(-0.165317\pi\)
\(888\) 50501.5i 1.90847i
\(889\) 0 0
\(890\) 46409.2 + 17340.5i 1.74791 + 0.653094i
\(891\) 26672.8 1.00289
\(892\) 709.069i 0.0266159i
\(893\) 950.199i 0.0356072i
\(894\) 16574.8 0.620070
\(895\) −7163.27 + 19171.5i −0.267533 + 0.716012i
\(896\) 0 0
\(897\) 6179.84i 0.230032i
\(898\) 14803.8i 0.550121i
\(899\) 42274.6 1.56834
\(900\) −759.224 659.417i −0.0281194 0.0244228i
\(901\) −33347.1 −1.23302
\(902\) 5222.87i 0.192796i
\(903\) 0 0
\(904\) 17165.9 0.631558
\(905\) 9537.34 25525.3i 0.350312 0.937558i
\(906\) −6240.37 −0.228833
\(907\) 15373.0i 0.562793i −0.959592 0.281396i \(-0.909202\pi\)
0.959592 0.281396i \(-0.0907975\pi\)
\(908\) 143.685i 0.00525147i
\(909\) −82807.8 −3.02152
\(910\) 0 0
\(911\) −21189.3 −0.770619 −0.385310 0.922787i \(-0.625905\pi\)
−0.385310 + 0.922787i \(0.625905\pi\)
\(912\) 15191.7i 0.551587i
\(913\) 2722.05i 0.0986710i
\(914\) 31969.7 1.15696
\(915\) 4472.81 + 1671.23i 0.161603 + 0.0603817i
\(916\) −111.265 −0.00401342
\(917\) 0 0
\(918\) 35531.1i 1.27745i
\(919\) 18364.2 0.659172 0.329586 0.944126i \(-0.393091\pi\)
0.329586 + 0.944126i \(0.393091\pi\)
\(920\) 15211.8 40712.1i 0.545128 1.45896i
\(921\) −85018.2 −3.04174
\(922\) 49303.4i 1.76109i
\(923\) 1062.97i 0.0379070i
\(924\) 0 0
\(925\) −20549.1 + 23659.3i −0.730432 + 0.840988i
\(926\) 1100.96 0.0390710
\(927\) 51031.0i 1.80807i
\(928\) 1662.47i 0.0588073i
\(929\) 15460.6 0.546011 0.273006 0.962012i \(-0.411982\pi\)
0.273006 + 0.962012i \(0.411982\pi\)
\(930\) 17278.5 46243.5i 0.609232 1.63052i
\(931\) 0 0
\(932\) 231.883i 0.00814978i
\(933\) 68104.5i 2.38975i
\(934\) 14374.6 0.503589
\(935\) 20264.1 + 7571.53i 0.708778 + 0.264829i
\(936\) 4778.60 0.166873
\(937\) 28824.7i 1.00498i −0.864584 0.502488i \(-0.832418\pi\)
0.864584 0.502488i \(-0.167582\pi\)
\(938\) 0 0
\(939\) −82446.9 −2.86534
\(940\) 57.3895 + 21.4431i 0.00199132 + 0.000744040i
\(941\) −42172.5 −1.46098 −0.730492 0.682922i \(-0.760709\pi\)
−0.730492 + 0.682922i \(0.760709\pi\)
\(942\) 39838.9i 1.37794i
\(943\) 8475.83i 0.292695i
\(944\) −25776.0 −0.888705
\(945\) 0 0
\(946\) −15349.8 −0.527552
\(947\) 8926.33i 0.306301i 0.988203 + 0.153150i \(0.0489419\pi\)
−0.988203 + 0.153150i \(0.951058\pi\)
\(948\) 636.679i 0.0218126i
\(949\) −791.778 −0.0270835
\(950\) 6068.03 6986.47i 0.207235 0.238601i
\(951\) −27666.3 −0.943366
\(952\) 0 0
\(953\) 40420.6i 1.37392i 0.726693 + 0.686962i \(0.241056\pi\)
−0.726693 + 0.686962i \(0.758944\pi\)
\(954\) −99096.2 −3.36306
\(955\) −19877.1 + 53198.3i −0.673517 + 1.80257i
\(956\) 414.996 0.0140397
\(957\) 82679.8i 2.79274i
\(958\) 24784.8i 0.835868i
\(959\) 0 0
\(960\) 47264.6 + 17660.1i 1.58902 + 0.593725i
\(961\) −181.408 −0.00608935
\(962\) 2836.74i 0.0950730i
\(963\) 46477.6i 1.55526i
\(964\) −381.378 −0.0127421
\(965\) −29378.1 10976.9i −0.980016 0.366175i
\(966\) 0 0
\(967\) 33914.1i 1.12782i −0.825836 0.563910i \(-0.809296\pi\)
0.825836 0.563910i \(-0.190704\pi\)
\(968\) 1586.96i 0.0526930i
\(969\) 12045.8 0.399348
\(970\) −2718.38 + 7275.35i −0.0899813 + 0.240822i
\(971\) 59339.0 1.96115 0.980577 0.196136i \(-0.0628393\pi\)
0.980577 + 0.196136i \(0.0628393\pi\)
\(972\) 14.8585i 0.000490315i
\(973\) 0 0
\(974\) −2542.08 −0.0836277
\(975\) 3362.35 + 2920.33i 0.110442 + 0.0959236i
\(976\) 3096.62 0.101558
\(977\) 7032.14i 0.230274i 0.993350 + 0.115137i \(0.0367308\pi\)
−0.993350 + 0.115137i \(0.963269\pi\)
\(978\) 65526.8i 2.14245i
\(979\) −58117.3 −1.89728
\(980\) 0 0
\(981\) 47679.1 1.55176
\(982\) 4460.48i 0.144949i
\(983\) 1703.63i 0.0552772i −0.999618 0.0276386i \(-0.991201\pi\)
0.999618 0.0276386i \(-0.00879876\pi\)
\(984\) −9843.50 −0.318902
\(985\) 32548.4 + 12161.4i 1.05287 + 0.393397i
\(986\) 36244.0 1.17063
\(987\) 0 0
\(988\) 15.3718i 0.000494980i
\(989\) −24910.1 −0.800906
\(990\) 60218.1 + 22500.0i 1.93319 + 0.722321i
\(991\) 12740.3 0.408383 0.204192 0.978931i \(-0.434543\pi\)
0.204192 + 0.978931i \(0.434543\pi\)
\(992\) 1164.41i 0.0372682i
\(993\) 29073.6i 0.929126i
\(994\) 0 0
\(995\) 8396.32 22471.5i 0.267519 0.715975i
\(996\) −97.7290 −0.00310910
\(997\) 16609.6i 0.527615i 0.964575 + 0.263808i \(0.0849784\pi\)
−0.964575 + 0.263808i \(0.915022\pi\)
\(998\) 23506.9i 0.745589i
\(999\) −60379.4 −1.91223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.4.b.d.99.8 10
5.2 odd 4 1225.4.a.be.1.2 5
5.3 odd 4 1225.4.a.bh.1.4 5
5.4 even 2 inner 245.4.b.d.99.3 10
7.2 even 3 245.4.j.f.214.8 20
7.3 odd 6 245.4.j.e.79.3 20
7.4 even 3 245.4.j.f.79.3 20
7.5 odd 6 245.4.j.e.214.8 20
7.6 odd 2 35.4.b.a.29.8 yes 10
21.20 even 2 315.4.d.c.64.3 10
28.27 even 2 560.4.g.f.449.10 10
35.4 even 6 245.4.j.f.79.8 20
35.9 even 6 245.4.j.f.214.3 20
35.13 even 4 175.4.a.j.1.4 5
35.19 odd 6 245.4.j.e.214.3 20
35.24 odd 6 245.4.j.e.79.8 20
35.27 even 4 175.4.a.i.1.2 5
35.34 odd 2 35.4.b.a.29.3 10
105.62 odd 4 1575.4.a.bq.1.4 5
105.83 odd 4 1575.4.a.bn.1.2 5
105.104 even 2 315.4.d.c.64.8 10
140.139 even 2 560.4.g.f.449.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.3 10 35.34 odd 2
35.4.b.a.29.8 yes 10 7.6 odd 2
175.4.a.i.1.2 5 35.27 even 4
175.4.a.j.1.4 5 35.13 even 4
245.4.b.d.99.3 10 5.4 even 2 inner
245.4.b.d.99.8 10 1.1 even 1 trivial
245.4.j.e.79.3 20 7.3 odd 6
245.4.j.e.79.8 20 35.24 odd 6
245.4.j.e.214.3 20 35.19 odd 6
245.4.j.e.214.8 20 7.5 odd 6
245.4.j.f.79.3 20 7.4 even 3
245.4.j.f.79.8 20 35.4 even 6
245.4.j.f.214.3 20 35.9 even 6
245.4.j.f.214.8 20 7.2 even 3
315.4.d.c.64.3 10 21.20 even 2
315.4.d.c.64.8 10 105.104 even 2
560.4.g.f.449.1 10 140.139 even 2
560.4.g.f.449.10 10 28.27 even 2
1225.4.a.be.1.2 5 5.2 odd 4
1225.4.a.bh.1.4 5 5.3 odd 4
1575.4.a.bn.1.2 5 105.83 odd 4
1575.4.a.bq.1.4 5 105.62 odd 4