Properties

Label 245.4.j.e.214.8
Level $245$
Weight $4$
Character 245.214
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.8
Root \(1.60625 + 0.927371i\) of defining polynomial
Character \(\chi\) \(=\) 245.214
Dual form 245.4.j.e.79.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.47228 - 1.42737i) q^{2} +(7.78434 + 4.49429i) q^{3} +(0.0747741 - 0.129513i) q^{4} +(-11.0266 + 1.84763i) q^{5} +25.6601 q^{6} +22.4110i q^{8} +(26.8973 + 46.5874i) q^{9} +(-24.6236 + 20.3069i) q^{10} +(-18.7204 + 32.4247i) q^{11} +(1.16413 - 0.672113i) q^{12} -3.96370i q^{13} +(-94.1387 - 35.1742i) q^{15} +(32.5870 + 56.4424i) q^{16} +(-44.7544 - 25.8390i) q^{17} +(132.995 + 76.7847i) q^{18} +(12.9661 + 22.4580i) q^{19} +(-0.585214 + 1.56624i) q^{20} +106.884i q^{22} +(150.216 - 86.7272i) q^{23} +(-100.722 + 174.455i) q^{24} +(118.173 - 40.7463i) q^{25} +(-5.65768 - 9.79938i) q^{26} +240.845i q^{27} +245.676 q^{29} +(-282.944 + 47.4104i) q^{30} +(86.0372 - 149.021i) q^{31} +(5.86031 + 3.38345i) q^{32} +(-291.452 + 168.270i) q^{33} -147.527 q^{34} +8.04488 q^{36} +(-217.111 + 125.349i) q^{37} +(64.1118 + 37.0150i) q^{38} +(17.8140 - 30.8548i) q^{39} +(-41.4073 - 247.118i) q^{40} -48.8649 q^{41} +143.612i q^{43} +(2.79960 + 4.84905i) q^{44} +(-382.662 - 464.005i) q^{45} +(247.584 - 428.827i) q^{46} +(-31.7325 + 18.3208i) q^{47} +585.822i q^{48} +(233.995 - 269.412i) q^{50} +(-232.256 - 402.279i) q^{51} +(-0.513350 - 0.296383i) q^{52} +(558.834 + 322.643i) q^{53} +(343.775 + 595.435i) q^{54} +(146.514 - 392.123i) q^{55} +233.094i q^{57} +(607.380 - 350.671i) q^{58} +(197.748 - 342.509i) q^{59} +(-11.5946 + 9.56202i) q^{60} +(-23.7565 - 41.1475i) q^{61} -491.228i q^{62} -502.074 q^{64} +(7.32347 + 43.7062i) q^{65} +(-480.366 + 832.019i) q^{66} +(-227.929 - 131.595i) q^{67} +(-6.69295 + 3.86418i) q^{68} +1559.11 q^{69} -268.177 q^{71} +(-1044.07 + 602.795i) q^{72} +(172.995 + 99.8785i) q^{73} +(-357.840 + 619.797i) q^{74} +(1103.02 + 213.919i) q^{75} +3.87813 q^{76} -101.709i q^{78} +(236.820 + 410.184i) q^{79} +(-463.609 - 562.159i) q^{80} +(-356.199 + 616.955i) q^{81} +(-120.808 + 69.7484i) q^{82} +72.7028i q^{83} +(541.231 + 202.227i) q^{85} +(204.988 + 355.049i) q^{86} +(1912.43 + 1104.14i) q^{87} +(-726.669 - 419.543i) q^{88} +(-776.123 - 1344.28i) q^{89} +(-1608.36 - 600.950i) q^{90} -25.9398i q^{92} +(1339.48 - 773.352i) q^{93} +(-52.3011 + 90.5881i) q^{94} +(-184.467 - 223.679i) q^{95} +(30.4124 + 52.6758i) q^{96} +243.338i q^{97} -2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} - 6 q^{5} + 24 q^{6} + 46 q^{9} + 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} - 72 q^{19} - 136 q^{20} - 72 q^{24} + 362 q^{25} + 620 q^{26} + 176 q^{29} - 52 q^{30} - 120 q^{31} + 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.47228 1.42737i 0.874082 0.504652i 0.00537973 0.999986i \(-0.498288\pi\)
0.868703 + 0.495334i \(0.164954\pi\)
\(3\) 7.78434 + 4.49429i 1.49810 + 0.864926i 0.999998 0.00219412i \(-0.000698411\pi\)
0.498099 + 0.867120i \(0.334032\pi\)
\(4\) 0.0747741 0.129513i 0.00934677 0.0161891i
\(5\) −11.0266 + 1.84763i −0.986250 + 0.165257i
\(6\) 25.6601 1.74595
\(7\) 0 0
\(8\) 22.4110i 0.990436i
\(9\) 26.8973 + 46.5874i 0.996195 + 1.72546i
\(10\) −24.6236 + 20.3069i −0.778667 + 0.642162i
\(11\) −18.7204 + 32.4247i −0.513128 + 0.888764i 0.486756 + 0.873538i \(0.338180\pi\)
−0.999884 + 0.0152260i \(0.995153\pi\)
\(12\) 1.16413 0.672113i 0.0280047 0.0161685i
\(13\) 3.96370i 0.0845641i −0.999106 0.0422821i \(-0.986537\pi\)
0.999106 0.0422821i \(-0.0134628\pi\)
\(14\) 0 0
\(15\) −94.1387 35.1742i −1.62043 0.605463i
\(16\) 32.5870 + 56.4424i 0.509172 + 0.881912i
\(17\) −44.7544 25.8390i −0.638503 0.368640i 0.145535 0.989353i \(-0.453510\pi\)
−0.784038 + 0.620713i \(0.786843\pi\)
\(18\) 132.995 + 76.7847i 1.74151 + 1.00546i
\(19\) 12.9661 + 22.4580i 0.156560 + 0.271170i 0.933626 0.358249i \(-0.116626\pi\)
−0.777066 + 0.629419i \(0.783293\pi\)
\(20\) −0.585214 + 1.56624i −0.00654289 + 0.0175111i
\(21\) 0 0
\(22\) 106.884i 1.03580i
\(23\) 150.216 86.7272i 1.36183 0.786255i 0.371966 0.928246i \(-0.378684\pi\)
0.989868 + 0.141991i \(0.0453506\pi\)
\(24\) −100.722 + 174.455i −0.856654 + 1.48377i
\(25\) 118.173 40.7463i 0.945380 0.325970i
\(26\) −5.65768 9.79938i −0.0426754 0.0739160i
\(27\) 240.845i 1.71669i
\(28\) 0 0
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) −282.944 + 47.4104i −1.72194 + 0.288530i
\(31\) 86.0372 149.021i 0.498475 0.863385i −0.501523 0.865144i \(-0.667227\pi\)
0.999998 + 0.00175963i \(0.000560109\pi\)
\(32\) 5.86031 + 3.38345i 0.0323739 + 0.0186911i
\(33\) −291.452 + 168.270i −1.53743 + 0.887636i
\(34\) −147.527 −0.744139
\(35\) 0 0
\(36\) 8.04488 0.0372448
\(37\) −217.111 + 125.349i −0.964673 + 0.556954i −0.897608 0.440795i \(-0.854697\pi\)
−0.0670648 + 0.997749i \(0.521363\pi\)
\(38\) 64.1118 + 37.0150i 0.273692 + 0.158016i
\(39\) 17.8140 30.8548i 0.0731417 0.126685i
\(40\) −41.4073 247.118i −0.163677 0.976818i
\(41\) −48.8649 −0.186132 −0.0930661 0.995660i \(-0.529667\pi\)
−0.0930661 + 0.995660i \(0.529667\pi\)
\(42\) 0 0
\(43\) 143.612i 0.509317i 0.967031 + 0.254658i \(0.0819630\pi\)
−0.967031 + 0.254658i \(0.918037\pi\)
\(44\) 2.79960 + 4.84905i 0.00959218 + 0.0166141i
\(45\) −382.662 464.005i −1.26764 1.53711i
\(46\) 247.584 428.827i 0.793570 1.37450i
\(47\) −31.7325 + 18.3208i −0.0984821 + 0.0568587i −0.548432 0.836195i \(-0.684775\pi\)
0.449950 + 0.893054i \(0.351442\pi\)
\(48\) 585.822i 1.76159i
\(49\) 0 0
\(50\) 233.995 269.412i 0.661839 0.762012i
\(51\) −232.256 402.279i −0.637692 1.10452i
\(52\) −0.513350 0.296383i −0.00136902 0.000790401i
\(53\) 558.834 + 322.643i 1.44833 + 0.836196i 0.998382 0.0568566i \(-0.0181078\pi\)
0.449952 + 0.893053i \(0.351441\pi\)
\(54\) 343.775 + 595.435i 0.866330 + 1.50053i
\(55\) 146.514 392.123i 0.359198 0.961342i
\(56\) 0 0
\(57\) 233.094i 0.541651i
\(58\) 607.380 350.671i 1.37505 0.793886i
\(59\) 197.748 342.509i 0.436348 0.755777i −0.561056 0.827778i \(-0.689605\pi\)
0.997405 + 0.0720003i \(0.0229383\pi\)
\(60\) −11.5946 + 9.56202i −0.0249477 + 0.0205742i
\(61\) −23.7565 41.1475i −0.0498641 0.0863671i 0.840016 0.542562i \(-0.182545\pi\)
−0.889880 + 0.456194i \(0.849212\pi\)
\(62\) 491.228i 1.00623i
\(63\) 0 0
\(64\) −502.074 −0.980614
\(65\) 7.32347 + 43.7062i 0.0139748 + 0.0834014i
\(66\) −480.366 + 832.019i −0.895894 + 1.55173i
\(67\) −227.929 131.595i −0.415611 0.239953i 0.277587 0.960701i \(-0.410465\pi\)
−0.693198 + 0.720748i \(0.743799\pi\)
\(68\) −6.69295 + 3.86418i −0.0119359 + 0.00689118i
\(69\) 1559.11 2.72021
\(70\) 0 0
\(71\) −268.177 −0.448264 −0.224132 0.974559i \(-0.571955\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(72\) −1044.07 + 602.795i −1.70896 + 0.986667i
\(73\) 172.995 + 99.8785i 0.277363 + 0.160136i 0.632229 0.774782i \(-0.282140\pi\)
−0.354866 + 0.934917i \(0.615474\pi\)
\(74\) −357.840 + 619.797i −0.562136 + 0.973648i
\(75\) 1103.02 + 213.919i 1.69821 + 0.329349i
\(76\) 3.87813 0.00585331
\(77\) 0 0
\(78\) 101.709i 0.147644i
\(79\) 236.820 + 410.184i 0.337270 + 0.584169i 0.983918 0.178620i \(-0.0571632\pi\)
−0.646648 + 0.762788i \(0.723830\pi\)
\(80\) −463.609 562.159i −0.647914 0.785642i
\(81\) −356.199 + 616.955i −0.488614 + 0.846303i
\(82\) −120.808 + 69.7484i −0.162695 + 0.0939319i
\(83\) 72.7028i 0.0961466i 0.998844 + 0.0480733i \(0.0153081\pi\)
−0.998844 + 0.0480733i \(0.984692\pi\)
\(84\) 0 0
\(85\) 541.231 + 202.227i 0.690644 + 0.258054i
\(86\) 204.988 + 355.049i 0.257028 + 0.445185i
\(87\) 1912.43 + 1104.14i 2.35671 + 1.36065i
\(88\) −726.669 419.543i −0.880264 0.508221i
\(89\) −776.123 1344.28i −0.924369 1.60105i −0.792573 0.609777i \(-0.791259\pi\)
−0.131796 0.991277i \(-0.542074\pi\)
\(90\) −1608.36 600.950i −1.88373 0.703841i
\(91\) 0 0
\(92\) 25.9398i 0.0293958i
\(93\) 1339.48 773.352i 1.49353 0.862289i
\(94\) −52.3011 + 90.5881i −0.0573877 + 0.0993984i
\(95\) −184.467 223.679i −0.199220 0.241568i
\(96\) 30.4124 + 52.6758i 0.0323328 + 0.0560021i
\(97\) 243.338i 0.254714i 0.991857 + 0.127357i \(0.0406494\pi\)
−0.991857 + 0.127357i \(0.959351\pi\)
\(98\) 0 0
\(99\) −2014.11 −2.04470
\(100\) 3.55909 18.3516i 0.00355909 0.0183516i
\(101\) 769.668 1333.10i 0.758265 1.31335i −0.185469 0.982650i \(-0.559380\pi\)
0.943734 0.330704i \(-0.107286\pi\)
\(102\) −1148.40 663.030i −1.11479 0.643625i
\(103\) −821.536 + 474.314i −0.785906 + 0.453743i −0.838519 0.544872i \(-0.816578\pi\)
0.0526133 + 0.998615i \(0.483245\pi\)
\(104\) 88.8306 0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) 748.231 431.992i 0.676021 0.390301i −0.122333 0.992489i \(-0.539038\pi\)
0.798354 + 0.602188i \(0.205704\pi\)
\(108\) 31.1924 + 18.0089i 0.0277916 + 0.0160455i
\(109\) 443.159 767.575i 0.389422 0.674498i −0.602950 0.797779i \(-0.706008\pi\)
0.992372 + 0.123281i \(0.0393415\pi\)
\(110\) −197.482 1178.57i −0.171174 1.02156i
\(111\) −2253.42 −1.92690
\(112\) 0 0
\(113\) 765.957i 0.637657i −0.947812 0.318828i \(-0.896711\pi\)
0.947812 0.318828i \(-0.103289\pi\)
\(114\) 332.712 + 576.274i 0.273345 + 0.473448i
\(115\) −1496.13 + 1233.85i −1.21317 + 1.00050i
\(116\) 18.3702 31.8182i 0.0147037 0.0254676i
\(117\) 184.659 106.613i 0.145912 0.0842424i
\(118\) 1129.04i 0.880816i
\(119\) 0 0
\(120\) 788.289 2109.74i 0.599672 1.60494i
\(121\) −35.4058 61.3246i −0.0266009 0.0460741i
\(122\) −117.465 67.8187i −0.0871707 0.0503280i
\(123\) −380.381 219.613i −0.278844 0.160991i
\(124\) −12.8667 22.2858i −0.00931826 0.0161397i
\(125\) −1227.76 + 667.633i −0.878513 + 0.477719i
\(126\) 0 0
\(127\) 505.042i 0.352876i 0.984312 + 0.176438i \(0.0564575\pi\)
−0.984312 + 0.176438i \(0.943543\pi\)
\(128\) −1288.15 + 743.714i −0.889512 + 0.513560i
\(129\) −645.434 + 1117.92i −0.440521 + 0.763006i
\(130\) 80.4907 + 97.6007i 0.0543038 + 0.0658473i
\(131\) −336.465 582.775i −0.224405 0.388682i 0.731736 0.681589i \(-0.238711\pi\)
−0.956141 + 0.292907i \(0.905377\pi\)
\(132\) 50.3289i 0.0331861i
\(133\) 0 0
\(134\) −751.337 −0.484371
\(135\) −444.992 2655.70i −0.283695 1.69308i
\(136\) 579.078 1002.99i 0.365114 0.632396i
\(137\) −1344.31 776.141i −0.838340 0.484016i 0.0183597 0.999831i \(-0.494156\pi\)
−0.856700 + 0.515816i \(0.827489\pi\)
\(138\) 3854.55 2225.42i 2.37769 1.37276i
\(139\) 1072.02 0.654154 0.327077 0.944998i \(-0.393936\pi\)
0.327077 + 0.944998i \(0.393936\pi\)
\(140\) 0 0
\(141\) −329.355 −0.196714
\(142\) −663.008 + 382.788i −0.391820 + 0.226217i
\(143\) 128.522 + 74.2021i 0.0751576 + 0.0433922i
\(144\) −1753.00 + 3036.29i −1.01447 + 1.75711i
\(145\) −2708.98 + 453.920i −1.55151 + 0.259972i
\(146\) 570.255 0.323251
\(147\) 0 0
\(148\) 37.4915i 0.0208229i
\(149\) 322.968 + 559.397i 0.177574 + 0.307568i 0.941049 0.338270i \(-0.109842\pi\)
−0.763475 + 0.645838i \(0.776508\pi\)
\(150\) 3032.31 1045.55i 1.65058 0.569126i
\(151\) −121.597 + 210.612i −0.0655326 + 0.113506i −0.896930 0.442172i \(-0.854208\pi\)
0.831398 + 0.555678i \(0.187541\pi\)
\(152\) −503.307 + 290.584i −0.268576 + 0.155063i
\(153\) 2779.99i 1.46895i
\(154\) 0 0
\(155\) −673.363 + 1802.16i −0.348941 + 0.933890i
\(156\) −2.66406 4.61428i −0.00136728 0.00236819i
\(157\) 1344.56 + 776.281i 0.683487 + 0.394611i 0.801168 0.598440i \(-0.204213\pi\)
−0.117681 + 0.993052i \(0.537546\pi\)
\(158\) 1170.97 + 676.060i 0.589603 + 0.340408i
\(159\) 2900.10 + 5023.12i 1.44650 + 2.50540i
\(160\) −70.8707 26.4803i −0.0350176 0.0130841i
\(161\) 0 0
\(162\) 2033.71i 0.986319i
\(163\) −2211.53 + 1276.82i −1.06270 + 0.613550i −0.926178 0.377087i \(-0.876926\pi\)
−0.136522 + 0.990637i \(0.543592\pi\)
\(164\) −3.65383 + 6.32862i −0.00173973 + 0.00301331i
\(165\) 2902.82 2393.94i 1.36960 1.12950i
\(166\) 103.774 + 179.741i 0.0485205 + 0.0840400i
\(167\) 3573.14i 1.65568i 0.560966 + 0.827839i \(0.310430\pi\)
−0.560966 + 0.827839i \(0.689570\pi\)
\(168\) 0 0
\(169\) 2181.29 0.992849
\(170\) 1626.73 272.576i 0.733907 0.122974i
\(171\) −697.507 + 1208.12i −0.311928 + 0.540275i
\(172\) 18.5996 + 10.7385i 0.00824537 + 0.00476046i
\(173\) −1935.31 + 1117.35i −0.850515 + 0.491045i −0.860825 0.508902i \(-0.830052\pi\)
0.0103095 + 0.999947i \(0.496718\pi\)
\(174\) 6304.07 2.74661
\(175\) 0 0
\(176\) −2440.17 −1.04508
\(177\) 3078.67 1777.47i 1.30738 0.754818i
\(178\) −3837.58 2215.63i −1.61595 0.932969i
\(179\) −915.267 + 1585.29i −0.382180 + 0.661956i −0.991374 0.131066i \(-0.958160\pi\)
0.609193 + 0.793022i \(0.291493\pi\)
\(180\) −88.7078 + 14.8640i −0.0367327 + 0.00615497i
\(181\) 2437.22 1.00087 0.500433 0.865775i \(-0.333174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(182\) 0 0
\(183\) 427.075i 0.172515i
\(184\) 1943.64 + 3366.49i 0.778735 + 1.34881i
\(185\) 2162.40 1783.32i 0.859368 0.708715i
\(186\) 2207.72 3823.88i 0.870311 1.50742i
\(187\) 1675.64 967.432i 0.655267 0.378319i
\(188\) 5.47968i 0.00212578i
\(189\) 0 0
\(190\) −775.327 289.695i −0.296043 0.110614i
\(191\) −2539.75 4398.97i −0.962145 1.66648i −0.717098 0.696973i \(-0.754530\pi\)
−0.245047 0.969511i \(-0.578804\pi\)
\(192\) −3908.32 2256.47i −1.46905 0.848159i
\(193\) −2429.28 1402.55i −0.906028 0.523095i −0.0268769 0.999639i \(-0.508556\pi\)
−0.879151 + 0.476543i \(0.841890\pi\)
\(194\) 347.334 + 601.599i 0.128542 + 0.222641i
\(195\) −139.420 + 373.138i −0.0512004 + 0.137031i
\(196\) 0 0
\(197\) 3107.79i 1.12396i −0.827149 0.561982i \(-0.810039\pi\)
0.827149 0.561982i \(-0.189961\pi\)
\(198\) −4979.44 + 2874.88i −1.78724 + 1.03186i
\(199\) −1072.82 + 1858.17i −0.382161 + 0.661922i −0.991371 0.131087i \(-0.958153\pi\)
0.609210 + 0.793009i \(0.291487\pi\)
\(200\) 913.165 + 2648.37i 0.322853 + 0.936338i
\(201\) −1182.85 2048.75i −0.415083 0.718945i
\(202\) 4394.41i 1.53064i
\(203\) 0 0
\(204\) −69.4669 −0.0238414
\(205\) 538.815 90.2844i 0.183573 0.0307597i
\(206\) −1354.04 + 2345.27i −0.457964 + 0.793218i
\(207\) 8080.79 + 4665.45i 2.71330 + 1.56653i
\(208\) 223.721 129.165i 0.0745781 0.0430577i
\(209\) −970.925 −0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) 83.5726 48.2507i 0.0270745 0.0156315i
\(213\) −2087.58 1205.26i −0.671542 0.387715i
\(214\) 1233.22 2136.01i 0.393932 0.682310i
\(215\) −265.342 1583.55i −0.0841683 0.502314i
\(216\) −5397.57 −1.70027
\(217\) 0 0
\(218\) 2530.21i 0.786089i
\(219\) 897.766 + 1554.98i 0.277011 + 0.479797i
\(220\) −39.8294 48.2960i −0.0122059 0.0148005i
\(221\) −102.418 + 177.393i −0.0311737 + 0.0539944i
\(222\) −5571.09 + 3216.47i −1.68427 + 0.972412i
\(223\) 4741.40i 1.42380i 0.702280 + 0.711901i \(0.252166\pi\)
−0.702280 + 0.711901i \(0.747834\pi\)
\(224\) 0 0
\(225\) 5076.78 + 4409.39i 1.50423 + 1.30649i
\(226\) −1093.31 1893.66i −0.321795 0.557365i
\(227\) 832.069 + 480.395i 0.243288 + 0.140462i 0.616687 0.787208i \(-0.288474\pi\)
−0.373399 + 0.927671i \(0.621808\pi\)
\(228\) 30.1887 + 17.4294i 0.00876883 + 0.00506268i
\(229\) 372.003 + 644.328i 0.107348 + 0.185932i 0.914695 0.404145i \(-0.132431\pi\)
−0.807347 + 0.590077i \(0.799097\pi\)
\(230\) −1937.69 + 5185.96i −0.555512 + 1.48675i
\(231\) 0 0
\(232\) 5505.86i 1.55809i
\(233\) −1342.82 + 775.279i −0.377559 + 0.217984i −0.676756 0.736208i \(-0.736615\pi\)
0.299197 + 0.954191i \(0.403281\pi\)
\(234\) 304.352 527.153i 0.0850261 0.147270i
\(235\) 316.052 260.646i 0.0877318 0.0723518i
\(236\) −29.5728 51.2216i −0.00815689 0.0141281i
\(237\) 4257.35i 1.16685i
\(238\) 0 0
\(239\) −2775.00 −0.751045 −0.375523 0.926813i \(-0.622537\pi\)
−0.375523 + 0.926813i \(0.622537\pi\)
\(240\) −1082.38 6459.63i −0.291115 1.73736i
\(241\) 1275.10 2208.54i 0.340815 0.590309i −0.643769 0.765220i \(-0.722630\pi\)
0.984584 + 0.174911i \(0.0559636\pi\)
\(242\) −175.066 101.074i −0.0465028 0.0268484i
\(243\) 86.0446 49.6779i 0.0227151 0.0131146i
\(244\) −7.10549 −0.00186427
\(245\) 0 0
\(246\) −1253.88 −0.324977
\(247\) 89.0169 51.3939i 0.0229312 0.0132393i
\(248\) 3339.71 + 1928.18i 0.855127 + 0.493708i
\(249\) −326.747 + 565.943i −0.0831597 + 0.144037i
\(250\) −2082.40 + 3403.04i −0.526811 + 0.860909i
\(251\) −2933.00 −0.737568 −0.368784 0.929515i \(-0.620226\pi\)
−0.368784 + 0.929515i \(0.620226\pi\)
\(252\) 0 0
\(253\) 6494.26i 1.61380i
\(254\) 720.882 + 1248.60i 0.178079 + 0.308442i
\(255\) 3304.26 + 4006.65i 0.811454 + 0.983946i
\(256\) −114.813 + 198.862i −0.0280306 + 0.0485504i
\(257\) 2360.11 1362.61i 0.572840 0.330729i −0.185443 0.982655i \(-0.559372\pi\)
0.758283 + 0.651926i \(0.226039\pi\)
\(258\) 3685.09i 0.889240i
\(259\) 0 0
\(260\) 6.20811 + 2.31961i 0.00148081 + 0.000553294i
\(261\) 6608.02 + 11445.4i 1.56715 + 2.71438i
\(262\) −1663.67 960.521i −0.392298 0.226493i
\(263\) 2621.68 + 1513.63i 0.614676 + 0.354884i 0.774793 0.632214i \(-0.217854\pi\)
−0.160117 + 0.987098i \(0.551187\pi\)
\(264\) −3771.09 6531.72i −0.879147 1.52273i
\(265\) −6758.17 2525.14i −1.56661 0.585351i
\(266\) 0 0
\(267\) 13952.5i 3.19804i
\(268\) −34.0863 + 19.6798i −0.00776923 + 0.00448557i
\(269\) −721.231 + 1249.21i −0.163473 + 0.283144i −0.936112 0.351702i \(-0.885603\pi\)
0.772639 + 0.634846i \(0.218936\pi\)
\(270\) −4890.82 5930.46i −1.10239 1.33673i
\(271\) 3232.23 + 5598.38i 0.724516 + 1.25490i 0.959173 + 0.282820i \(0.0912700\pi\)
−0.234657 + 0.972078i \(0.575397\pi\)
\(272\) 3368.06i 0.750804i
\(273\) 0 0
\(274\) −4431.36 −0.977038
\(275\) −891.051 + 4594.49i −0.195391 + 1.00748i
\(276\) 116.581 201.924i 0.0254252 0.0440377i
\(277\) 759.170 + 438.307i 0.164672 + 0.0950733i 0.580071 0.814566i \(-0.303025\pi\)
−0.415399 + 0.909639i \(0.636358\pi\)
\(278\) 2650.33 1530.17i 0.571784 0.330120i
\(279\) 9256.66 1.98631
\(280\) 0 0
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) −814.258 + 470.112i −0.171945 + 0.0992722i
\(283\) −1948.62 1125.04i −0.409305 0.236312i 0.281186 0.959653i \(-0.409272\pi\)
−0.690491 + 0.723341i \(0.742606\pi\)
\(284\) −20.0527 + 34.7323i −0.00418982 + 0.00725698i
\(285\) −430.673 2570.24i −0.0895117 0.534203i
\(286\) 423.655 0.0875919
\(287\) 0 0
\(288\) 364.022i 0.0744799i
\(289\) −1121.19 1941.96i −0.228210 0.395271i
\(290\) −6049.44 + 4988.93i −1.22495 + 1.01021i
\(291\) −1093.63 + 1894.23i −0.220309 + 0.381586i
\(292\) 25.8710 14.9367i 0.00518489 0.00299350i
\(293\) 5917.86i 1.17995i −0.807422 0.589975i \(-0.799138\pi\)
0.807422 0.589975i \(-0.200862\pi\)
\(294\) 0 0
\(295\) −1547.66 + 4142.08i −0.305451 + 0.817495i
\(296\) −2809.20 4865.69i −0.551627 0.955447i
\(297\) −7809.31 4508.70i −1.52573 0.880881i
\(298\) 1596.93 + 921.990i 0.310429 + 0.179226i
\(299\) −343.761 595.411i −0.0664890 0.115162i
\(300\) 110.183 126.859i 0.0212046 0.0244141i
\(301\) 0 0
\(302\) 694.256i 0.132284i
\(303\) 11982.7 6918.22i 2.27191 1.31169i
\(304\) −845.056 + 1463.68i −0.159432 + 0.276144i
\(305\) 337.979 + 409.824i 0.0634513 + 0.0769392i
\(306\) −3968.08 6872.91i −0.741307 1.28398i
\(307\) 9458.47i 1.75838i −0.476469 0.879191i \(-0.658084\pi\)
0.476469 0.879191i \(-0.341916\pi\)
\(308\) 0 0
\(309\) −8526.81 −1.56982
\(310\) 907.609 + 5416.58i 0.166286 + 0.992391i
\(311\) 3788.39 6561.69i 0.690739 1.19640i −0.280857 0.959750i \(-0.590619\pi\)
0.971596 0.236646i \(-0.0760481\pi\)
\(312\) 691.487 + 399.230i 0.125474 + 0.0724422i
\(313\) −7943.54 + 4586.21i −1.43449 + 0.828204i −0.997459 0.0712425i \(-0.977304\pi\)
−0.437032 + 0.899446i \(0.643970\pi\)
\(314\) 4432.16 0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) 2665.57 1538.97i 0.472283 0.272672i −0.244912 0.969545i \(-0.578759\pi\)
0.717195 + 0.696873i \(0.245426\pi\)
\(318\) 14339.7 + 8279.04i 2.52871 + 1.45995i
\(319\) −4599.16 + 7965.97i −0.807221 + 1.39815i
\(320\) 5536.18 927.649i 0.967131 0.162054i
\(321\) 7765.98 1.35033
\(322\) 0 0
\(323\) 1340.13i 0.230857i
\(324\) 53.2690 + 92.2646i 0.00913391 + 0.0158204i
\(325\) −161.506 468.401i −0.0275654 0.0799452i
\(326\) −3645.00 + 6313.33i −0.619258 + 1.07259i
\(327\) 6899.40 3983.37i 1.16678 0.673642i
\(328\) 1095.11i 0.184352i
\(329\) 0 0
\(330\) 3759.55 10061.9i 0.627141 1.67845i
\(331\) −1617.25 2801.16i −0.268557 0.465154i 0.699933 0.714209i \(-0.253213\pi\)
−0.968489 + 0.249055i \(0.919880\pi\)
\(332\) 9.41592 + 5.43629i 0.00155652 + 0.000898659i
\(333\) −11679.4 6743.11i −1.92200 1.10967i
\(334\) 5100.20 + 8833.80i 0.835540 + 1.44720i
\(335\) 2756.42 + 1029.92i 0.449550 + 0.167971i
\(336\) 0 0
\(337\) 3777.84i 0.610658i 0.952247 + 0.305329i \(0.0987665\pi\)
−0.952247 + 0.305329i \(0.901234\pi\)
\(338\) 5392.75 3113.51i 0.867832 0.501043i
\(339\) 3442.43 5962.47i 0.551526 0.955271i
\(340\) 66.6610 54.9749i 0.0106329 0.00876892i
\(341\) 3221.30 + 5579.45i 0.511563 + 0.886054i
\(342\) 3982.41i 0.629660i
\(343\) 0 0
\(344\) −3218.49 −0.504446
\(345\) −17191.7 + 2880.66i −2.68281 + 0.449535i
\(346\) −3189.75 + 5524.82i −0.495614 + 0.858428i
\(347\) −7139.58 4122.04i −1.10453 0.637702i −0.167125 0.985936i \(-0.553448\pi\)
−0.937408 + 0.348234i \(0.886782\pi\)
\(348\) 286.000 165.122i 0.0440552 0.0254353i
\(349\) −7173.78 −1.10030 −0.550148 0.835067i \(-0.685429\pi\)
−0.550148 + 0.835067i \(0.685429\pi\)
\(350\) 0 0
\(351\) 954.637 0.145170
\(352\) −219.414 + 126.679i −0.0332239 + 0.0191819i
\(353\) 3629.95 + 2095.76i 0.547317 + 0.315994i 0.748039 0.663655i \(-0.230995\pi\)
−0.200722 + 0.979648i \(0.564329\pi\)
\(354\) 5074.22 8788.80i 0.761840 1.31955i
\(355\) 2957.08 495.492i 0.442100 0.0740789i
\(356\) −232.136 −0.0345594
\(357\) 0 0
\(358\) 5225.70i 0.771472i
\(359\) −1568.15 2716.11i −0.230539 0.399306i 0.727428 0.686184i \(-0.240716\pi\)
−0.957967 + 0.286879i \(0.907382\pi\)
\(360\) 10398.8 8575.85i 1.52241 1.25552i
\(361\) 3093.26 5357.68i 0.450978 0.781117i
\(362\) 6025.48 3478.81i 0.874840 0.505089i
\(363\) 636.496i 0.0920313i
\(364\) 0 0
\(365\) −2092.08 781.691i −0.300013 0.112098i
\(366\) −609.594 1055.85i −0.0870600 0.150792i
\(367\) 1492.42 + 861.649i 0.212272 + 0.122555i 0.602367 0.798220i \(-0.294225\pi\)
−0.390095 + 0.920775i \(0.627558\pi\)
\(368\) 9790.17 + 5652.36i 1.38682 + 0.800678i
\(369\) −1314.33 2276.49i −0.185424 0.321164i
\(370\) 2800.61 7495.42i 0.393504 1.05316i
\(371\) 0 0
\(372\) 231.307i 0.0322384i
\(373\) −2440.94 + 1409.28i −0.338839 + 0.195629i −0.659759 0.751478i \(-0.729341\pi\)
0.320919 + 0.947106i \(0.396008\pi\)
\(374\) 2761.77 4783.52i 0.381838 0.661364i
\(375\) −12557.8 320.824i −1.72929 0.0441794i
\(376\) −410.587 711.157i −0.0563149 0.0975403i
\(377\) 973.788i 0.133031i
\(378\) 0 0
\(379\) 10466.1 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(380\) −42.7626 + 7.16535i −0.00577283 + 0.000967303i
\(381\) −2269.80 + 3931.42i −0.305211 + 0.528642i
\(382\) −12557.9 7250.32i −1.68199 0.971096i
\(383\) 223.482 129.028i 0.0298157 0.0172141i −0.485018 0.874504i \(-0.661187\pi\)
0.514834 + 0.857290i \(0.327854\pi\)
\(384\) −13369.9 −1.77677
\(385\) 0 0
\(386\) −8007.81 −1.05592
\(387\) −6690.51 + 3862.77i −0.878806 + 0.507379i
\(388\) 31.5153 + 18.1954i 0.00412358 + 0.00238075i
\(389\) 2286.94 3961.09i 0.298078 0.516286i −0.677618 0.735414i \(-0.736988\pi\)
0.975696 + 0.219128i \(0.0703211\pi\)
\(390\) 187.921 + 1121.50i 0.0243993 + 0.145614i
\(391\) −8963.77 −1.15938
\(392\) 0 0
\(393\) 6048.69i 0.776376i
\(394\) −4435.97 7683.33i −0.567211 0.982438i
\(395\) −3369.19 4085.39i −0.429171 0.520400i
\(396\) −150.603 + 260.852i −0.0191114 + 0.0331018i
\(397\) 3138.96 1812.28i 0.396825 0.229107i −0.288288 0.957544i \(-0.593086\pi\)
0.685113 + 0.728437i \(0.259753\pi\)
\(398\) 6125.23i 0.771432i
\(399\) 0 0
\(400\) 6150.70 + 5342.14i 0.768838 + 0.667767i
\(401\) −3179.16 5506.47i −0.395910 0.685736i 0.597307 0.802013i \(-0.296237\pi\)
−0.993217 + 0.116277i \(0.962904\pi\)
\(402\) −5848.66 3376.73i −0.725634 0.418945i
\(403\) −590.674 341.026i −0.0730114 0.0421531i
\(404\) −115.102 199.363i −0.0141747 0.0245512i
\(405\) 2787.77 7461.05i 0.342038 0.915414i
\(406\) 0 0
\(407\) 9386.35i 1.14316i
\(408\) 9015.47 5205.09i 1.09395 0.631593i
\(409\) −3268.19 + 5660.68i −0.395114 + 0.684358i −0.993116 0.117137i \(-0.962628\pi\)
0.598002 + 0.801495i \(0.295962\pi\)
\(410\) 1203.23 992.297i 0.144935 0.119527i
\(411\) −6976.40 12083.5i −0.837276 1.45020i
\(412\) 141.866i 0.0169641i
\(413\) 0 0
\(414\) 26637.3 3.16220
\(415\) −134.328 801.665i −0.0158889 0.0948246i
\(416\) 13.4110 23.2285i 0.00158060 0.00273767i
\(417\) 8344.95 + 4817.96i 0.979985 + 0.565795i
\(418\) −2400.40 + 1385.87i −0.280879 + 0.162165i
\(419\) −6333.56 −0.738460 −0.369230 0.929338i \(-0.620379\pi\)
−0.369230 + 0.929338i \(0.620379\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 7014.96 4050.09i 0.809201 0.467193i
\(423\) −1707.03 985.557i −0.196215 0.113285i
\(424\) −7230.75 + 12524.0i −0.828199 + 1.43448i
\(425\) −6341.59 1229.88i −0.723793 0.140372i
\(426\) −6881.43 −0.782645
\(427\) 0 0
\(428\) 129.207i 0.0145922i
\(429\) 666.971 + 1155.23i 0.0750622 + 0.130011i
\(430\) −2916.32 3536.25i −0.327064 0.396588i
\(431\) 7183.79 12442.7i 0.802856 1.39059i −0.114873 0.993380i \(-0.536646\pi\)
0.917729 0.397208i \(-0.130021\pi\)
\(432\) −13593.8 + 7848.41i −1.51397 + 0.874089i
\(433\) 8399.05i 0.932176i 0.884738 + 0.466088i \(0.154337\pi\)
−0.884738 + 0.466088i \(0.845663\pi\)
\(434\) 0 0
\(435\) −23127.6 8641.47i −2.54916 0.952475i
\(436\) −66.2737 114.789i −0.00727967 0.0126088i
\(437\) 3895.44 + 2249.03i 0.426417 + 0.246192i
\(438\) 4439.05 + 2562.89i 0.484261 + 0.279588i
\(439\) −8930.41 15467.9i −0.970901 1.68165i −0.692848 0.721084i \(-0.743644\pi\)
−0.278053 0.960566i \(-0.589689\pi\)
\(440\) 8787.87 + 3283.52i 0.952148 + 0.355763i
\(441\) 0 0
\(442\) 584.754i 0.0629274i
\(443\) −1646.80 + 950.783i −0.176619 + 0.101971i −0.585703 0.810526i \(-0.699181\pi\)
0.409084 + 0.912497i \(0.365848\pi\)
\(444\) −168.498 + 291.847i −0.0180103 + 0.0311947i
\(445\) 11041.7 + 13388.9i 1.17625 + 1.42628i
\(446\) 6767.74 + 11722.1i 0.718524 + 1.24452i
\(447\) 5806.05i 0.614355i
\(448\) 0 0
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) 18845.0 + 3654.79i 1.97414 + 0.382863i
\(451\) 914.770 1584.43i 0.0955096 0.165428i
\(452\) −99.2011 57.2738i −0.0103231 0.00596003i
\(453\) −1893.10 + 1092.98i −0.196348 + 0.113362i
\(454\) 2742.81 0.283538
\(455\) 0 0
\(456\) −5223.88 −0.536471
\(457\) −9698.45 + 5599.41i −0.992723 + 0.573149i −0.906087 0.423091i \(-0.860945\pi\)
−0.0866361 + 0.996240i \(0.527612\pi\)
\(458\) 1839.39 + 1061.97i 0.187662 + 0.108347i
\(459\) 6223.18 10778.9i 0.632839 1.09611i
\(460\) 47.9272 + 286.028i 0.00485786 + 0.0289916i
\(461\) 17270.7 1.74485 0.872427 0.488744i \(-0.162545\pi\)
0.872427 + 0.488744i \(0.162545\pi\)
\(462\) 0 0
\(463\) 385.660i 0.0387109i −0.999813 0.0193554i \(-0.993839\pi\)
0.999813 0.0193554i \(-0.00616141\pi\)
\(464\) 8005.86 + 13866.6i 0.800997 + 1.38737i
\(465\) −13341.1 + 11002.3i −1.33049 + 1.09725i
\(466\) −2213.22 + 3833.41i −0.220012 + 0.381072i
\(467\) 4360.75 2517.68i 0.432101 0.249474i −0.268140 0.963380i \(-0.586409\pi\)
0.700241 + 0.713906i \(0.253076\pi\)
\(468\) 31.8875i 0.00314957i
\(469\) 0 0
\(470\) 409.330 1095.51i 0.0401723 0.107515i
\(471\) 6977.66 + 12085.7i 0.682620 + 1.18233i
\(472\) 7675.97 + 4431.72i 0.748549 + 0.432175i
\(473\) −4656.57 2688.47i −0.452662 0.261345i
\(474\) 6076.81 + 10525.4i 0.588855 + 1.01993i
\(475\) 2447.32 + 2125.60i 0.236402 + 0.205324i
\(476\) 0 0
\(477\) 34712.8i 3.33206i
\(478\) −6860.57 + 3960.95i −0.656475 + 0.379016i
\(479\) −4341.00 + 7518.83i −0.414082 + 0.717211i −0.995332 0.0965145i \(-0.969231\pi\)
0.581250 + 0.813725i \(0.302564\pi\)
\(480\) −432.671 524.645i −0.0411430 0.0498889i
\(481\) 496.848 + 860.565i 0.0470983 + 0.0815767i
\(482\) 7280.16i 0.687972i
\(483\) 0 0
\(484\) −10.5898 −0.000994530
\(485\) −449.599 2683.20i −0.0420933 0.251212i
\(486\) 141.817 245.635i 0.0132366 0.0229264i
\(487\) −771.174 445.238i −0.0717562 0.0414284i 0.463693 0.885996i \(-0.346524\pi\)
−0.535449 + 0.844568i \(0.679858\pi\)
\(488\) 922.157 532.407i 0.0855411 0.0493872i
\(489\) −22953.7 −2.12270
\(490\) 0 0
\(491\) 1562.48 0.143613 0.0718063 0.997419i \(-0.477124\pi\)
0.0718063 + 0.997419i \(0.477124\pi\)
\(492\) −56.8853 + 32.8428i −0.00521258 + 0.00300948i
\(493\) −10995.1 6348.03i −1.00445 0.579921i
\(494\) 146.716 254.120i 0.0133625 0.0231446i
\(495\) 22208.8 3721.33i 2.01659 0.337902i
\(496\) 11214.8 1.01524
\(497\) 0 0
\(498\) 1865.56i 0.167867i
\(499\) 4117.17 + 7131.14i 0.369358 + 0.639747i 0.989465 0.144770i \(-0.0462443\pi\)
−0.620107 + 0.784517i \(0.712911\pi\)
\(500\) −5.33773 + 208.932i −0.000477421 + 0.0186874i
\(501\) −16058.7 + 27814.5i −1.43204 + 2.48036i
\(502\) −7251.20 + 4186.48i −0.644695 + 0.372215i
\(503\) 72.5340i 0.00642969i −0.999995 0.00321484i \(-0.998977\pi\)
0.999995 0.00321484i \(-0.00102332\pi\)
\(504\) 0 0
\(505\) −6023.75 + 16121.7i −0.530798 + 1.42061i
\(506\) 9269.72 + 16055.6i 0.814406 + 1.41059i
\(507\) 16979.9 + 9803.34i 1.48738 + 0.858741i
\(508\) 65.4093 + 37.7641i 0.00571273 + 0.00329825i
\(509\) 3896.72 + 6749.32i 0.339330 + 0.587737i 0.984307 0.176465i \(-0.0564663\pi\)
−0.644977 + 0.764202i \(0.723133\pi\)
\(510\) 13888.0 + 5189.15i 1.20583 + 0.450548i
\(511\) 0 0
\(512\) 11243.9i 0.970537i
\(513\) −5408.89 + 3122.83i −0.465514 + 0.268764i
\(514\) 3889.91 6737.51i 0.333806 0.578169i
\(515\) 8182.40 6747.97i 0.700116 0.577381i
\(516\) 96.5235 + 167.184i 0.00823490 + 0.0142633i
\(517\) 1371.89i 0.116703i
\(518\) 0 0
\(519\) −20086.8 −1.69887
\(520\) −979.501 + 164.126i −0.0826038 + 0.0138412i
\(521\) −2322.71 + 4023.05i −0.195316 + 0.338298i −0.947004 0.321221i \(-0.895907\pi\)
0.751688 + 0.659519i \(0.229240\pi\)
\(522\) 32673.7 + 18864.2i 2.73964 + 1.58173i
\(523\) −7607.06 + 4391.94i −0.636011 + 0.367201i −0.783076 0.621926i \(-0.786351\pi\)
0.147065 + 0.989127i \(0.453017\pi\)
\(524\) −100.636 −0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) −7701.09 + 4446.23i −0.636556 + 0.367516i
\(528\) −18995.1 10966.8i −1.56563 0.903919i
\(529\) 8959.70 15518.7i 0.736394 1.27547i
\(530\) −20312.4 + 3403.57i −1.66474 + 0.278946i
\(531\) 21275.5 1.73875
\(532\) 0 0
\(533\) 193.686i 0.0157401i
\(534\) −19915.4 34494.4i −1.61390 2.79535i
\(535\) −7452.30 + 6145.86i −0.602226 + 0.496652i
\(536\) 2949.17 5108.11i 0.237658 0.411636i
\(537\) −14249.5 + 8226.95i −1.14509 + 0.661116i
\(538\) 4117.86i 0.329988i
\(539\) 0 0
\(540\) −377.221 140.946i −0.0300611 0.0112321i
\(541\) 3527.07 + 6109.06i 0.280296 + 0.485488i 0.971458 0.237213i \(-0.0762339\pi\)
−0.691161 + 0.722701i \(0.742901\pi\)
\(542\) 15981.9 + 9227.17i 1.26657 + 0.731256i
\(543\) 18972.1 + 10953.6i 1.49939 + 0.865676i
\(544\) −174.850 302.849i −0.0137806 0.0238686i
\(545\) −3468.35 + 9282.55i −0.272602 + 0.729579i
\(546\) 0 0
\(547\) 5776.83i 0.451553i −0.974179 0.225776i \(-0.927508\pi\)
0.974179 0.225776i \(-0.0724919\pi\)
\(548\) −201.040 + 116.070i −0.0156715 + 0.00904796i
\(549\) 1277.97 2213.51i 0.0993487 0.172077i
\(550\) 4355.11 + 12630.7i 0.337641 + 0.979228i
\(551\) 3185.47 + 5517.40i 0.246290 + 0.426587i
\(552\) 34941.2i 2.69419i
\(553\) 0 0
\(554\) 2502.51 0.191916
\(555\) 24847.6 4163.50i 1.90040 0.318434i
\(556\) 80.1592 138.840i 0.00611422 0.0105901i
\(557\) −17807.8 10281.3i −1.35465 0.782106i −0.365751 0.930713i \(-0.619188\pi\)
−0.988896 + 0.148607i \(0.952521\pi\)
\(558\) 22885.0 13212.7i 1.73620 1.00240i
\(559\) 569.235 0.0430699
\(560\) 0 0
\(561\) 17391.7 1.30887
\(562\) 15457.2 8924.19i 1.16018 0.669830i
\(563\) −20792.8 12004.8i −1.55651 0.898650i −0.997587 0.0694291i \(-0.977882\pi\)
−0.558921 0.829221i \(-0.688784\pi\)
\(564\) −24.6273 + 42.6557i −0.00183864 + 0.00318462i
\(565\) 1415.21 + 8445.92i 0.105377 + 0.628889i
\(566\) −6423.37 −0.477022
\(567\) 0 0
\(568\) 6010.11i 0.443977i
\(569\) −12078.7 20921.0i −0.889925 1.54140i −0.839963 0.542644i \(-0.817423\pi\)
−0.0499623 0.998751i \(-0.515910\pi\)
\(570\) −4733.43 5739.62i −0.347827 0.421766i
\(571\) 353.497 612.274i 0.0259078 0.0448737i −0.852781 0.522269i \(-0.825086\pi\)
0.878689 + 0.477395i \(0.158419\pi\)
\(572\) 19.2202 11.0968i 0.00140496 0.000811154i
\(573\) 45657.4i 3.32874i
\(574\) 0 0
\(575\) 14217.6 16369.5i 1.03115 1.18723i
\(576\) −13504.4 23390.4i −0.976883 1.69201i
\(577\) −13906.0 8028.62i −1.00332 0.579265i −0.0940886 0.995564i \(-0.529994\pi\)
−0.909228 + 0.416299i \(0.863327\pi\)
\(578\) −5543.81 3200.72i −0.398948 0.230333i
\(579\) −12606.9 21835.8i −0.904878 1.56729i
\(580\) −143.773 + 384.788i −0.0102929 + 0.0275474i
\(581\) 0 0
\(582\) 6244.07i 0.444717i
\(583\) −20923.2 + 12080.0i −1.48636 + 0.858152i
\(584\) −2238.38 + 3876.98i −0.158604 + 0.274710i
\(585\) −1839.18 + 1516.76i −0.129984 + 0.107197i
\(586\) −8446.98 14630.6i −0.595463 1.03137i
\(587\) 8605.63i 0.605098i 0.953134 + 0.302549i \(0.0978376\pi\)
−0.953134 + 0.302549i \(0.902162\pi\)
\(588\) 0 0
\(589\) 4462.28 0.312165
\(590\) 2086.04 + 12449.5i 0.145561 + 0.868705i
\(591\) 13967.3 24192.1i 0.972147 1.68381i
\(592\) −14150.0 8169.52i −0.982369 0.567171i
\(593\) 17628.5 10177.8i 1.22077 0.704809i 0.255684 0.966760i \(-0.417699\pi\)
0.965081 + 0.261951i \(0.0843659\pi\)
\(594\) −25742.4 −1.77815
\(595\) 0 0
\(596\) 96.5986 0.00663898
\(597\) −16702.3 + 9643.10i −1.14503 + 0.661082i
\(598\) −1699.75 981.348i −0.116234 0.0671076i
\(599\) 11317.8 19603.1i 0.772010 1.33716i −0.164449 0.986386i \(-0.552585\pi\)
0.936460 0.350776i \(-0.114082\pi\)
\(600\) −4794.13 + 24719.8i −0.326200 + 1.68197i
\(601\) −22553.8 −1.53077 −0.765383 0.643575i \(-0.777450\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(602\) 0 0
\(603\) 14158.1i 0.956159i
\(604\) 18.1846 + 31.4967i 0.00122504 + 0.00212182i
\(605\) 503.712 + 610.786i 0.0338492 + 0.0410446i
\(606\) 19749.7 34207.5i 1.32389 2.29305i
\(607\) −15185.1 + 8767.12i −1.01539 + 0.586238i −0.912767 0.408482i \(-0.866058\pi\)
−0.102628 + 0.994720i \(0.532725\pi\)
\(608\) 175.481i 0.0117051i
\(609\) 0 0
\(610\) 1420.55 + 530.778i 0.0942892 + 0.0352304i
\(611\) 72.6181 + 125.778i 0.00480821 + 0.00832806i
\(612\) −360.044 207.871i −0.0237809 0.0137299i
\(613\) −9046.07 5222.75i −0.596031 0.344119i 0.171447 0.985193i \(-0.445156\pi\)
−0.767479 + 0.641074i \(0.778489\pi\)
\(614\) −13500.7 23384.0i −0.887371 1.53697i
\(615\) 4600.08 + 1718.78i 0.301615 + 0.112696i
\(616\) 0 0
\(617\) 13218.9i 0.862516i 0.902229 + 0.431258i \(0.141930\pi\)
−0.902229 + 0.431258i \(0.858070\pi\)
\(618\) −21080.7 + 12170.9i −1.37215 + 0.792211i
\(619\) 11719.4 20298.7i 0.760976 1.31805i −0.181372 0.983415i \(-0.558054\pi\)
0.942348 0.334635i \(-0.108613\pi\)
\(620\) 183.052 + 221.964i 0.0118573 + 0.0143779i
\(621\) 20887.8 + 36178.7i 1.34975 + 2.33784i
\(622\) 21629.8i 1.39433i
\(623\) 0 0
\(624\) 2322.02 0.148967
\(625\) 12304.5 9630.18i 0.787487 0.616331i
\(626\) −13092.4 + 22676.8i −0.835909 + 1.44784i
\(627\) −7558.00 4363.62i −0.481400 0.277936i
\(628\) 201.076 116.092i 0.0127768 0.00737668i
\(629\) 12955.6 0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) −9192.64 + 5307.37i −0.578582 + 0.334044i
\(633\) 22087.6 + 12752.3i 1.38690 + 0.800725i
\(634\) 4393.36 7609.53i 0.275209 0.476676i
\(635\) −933.132 5568.90i −0.0583153 0.348024i
\(636\) 867.410 0.0540802
\(637\) 0 0
\(638\) 26258.8i 1.62946i
\(639\) −7213.22 12493.7i −0.446558 0.773461i
\(640\) 12829.8 10580.7i 0.792412 0.653497i
\(641\) −11988.5 + 20764.7i −0.738715 + 1.27949i 0.214359 + 0.976755i \(0.431234\pi\)
−0.953074 + 0.302738i \(0.902099\pi\)
\(642\) 19199.7 11084.9i 1.18030 0.681444i
\(643\) 27698.0i 1.69876i 0.527782 + 0.849380i \(0.323024\pi\)
−0.527782 + 0.849380i \(0.676976\pi\)
\(644\) 0 0
\(645\) 5051.44 13519.4i 0.308372 0.825314i
\(646\) −1912.86 3313.17i −0.116502 0.201788i
\(647\) 9496.10 + 5482.57i 0.577017 + 0.333141i 0.759947 0.649985i \(-0.225225\pi\)
−0.182930 + 0.983126i \(0.558558\pi\)
\(648\) −13826.6 7982.79i −0.838209 0.483940i
\(649\) 7403.82 + 12823.8i 0.447805 + 0.775621i
\(650\) −1067.87 927.488i −0.0644389 0.0559678i
\(651\) 0 0
\(652\) 381.894i 0.0229388i
\(653\) 10683.5 6168.10i 0.640239 0.369642i −0.144467 0.989510i \(-0.546147\pi\)
0.784707 + 0.619867i \(0.212814\pi\)
\(654\) 11371.5 19696.0i 0.679909 1.17764i
\(655\) 4786.83 + 5804.37i 0.285552 + 0.346253i
\(656\) −1592.36 2758.05i −0.0947733 0.164152i
\(657\) 10745.8i 0.638105i
\(658\) 0 0
\(659\) 25275.6 1.49408 0.747040 0.664779i \(-0.231474\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(660\) −92.9893 554.957i −0.00548424 0.0327298i
\(661\) 2223.96 3852.01i 0.130865 0.226666i −0.793145 0.609033i \(-0.791558\pi\)
0.924010 + 0.382367i \(0.124891\pi\)
\(662\) −7996.60 4616.84i −0.469481 0.271055i
\(663\) −1594.51 + 920.593i −0.0934024 + 0.0539259i
\(664\) −1629.34 −0.0952270
\(665\) 0 0
\(666\) −38499.7 −2.23999
\(667\) 36904.5 21306.8i 2.14235 1.23689i
\(668\) 462.767 + 267.179i 0.0268039 + 0.0154752i
\(669\) −21309.2 + 36908.7i −1.23148 + 2.13299i
\(670\) 8284.71 1388.20i 0.477711 0.0800458i
\(671\) 1778.92 0.102347
\(672\) 0 0
\(673\) 30358.9i 1.73885i −0.494061 0.869427i \(-0.664488\pi\)
0.494061 0.869427i \(-0.335512\pi\)
\(674\) 5392.37 + 9339.86i 0.308170 + 0.533766i
\(675\) 9813.52 + 28461.2i 0.559589 + 1.62292i
\(676\) 163.104 282.504i 0.00927993 0.0160733i
\(677\) 5989.85 3458.24i 0.340042 0.196324i −0.320248 0.947334i \(-0.603766\pi\)
0.660291 + 0.751010i \(0.270433\pi\)
\(678\) 19654.5i 1.11331i
\(679\) 0 0
\(680\) −4532.11 + 12129.5i −0.255586 + 0.684039i
\(681\) 4318.07 + 7479.11i 0.242979 + 0.420852i
\(682\) 15927.9 + 9195.98i 0.894297 + 0.516323i
\(683\) 3925.45 + 2266.36i 0.219917 + 0.126969i 0.605912 0.795532i \(-0.292808\pi\)
−0.385995 + 0.922501i \(0.626142\pi\)
\(684\) 104.311 + 180.672i 0.00583104 + 0.0100997i
\(685\) 16257.3 + 6074.40i 0.906800 + 0.338819i
\(686\) 0 0
\(687\) 6687.56i 0.371392i
\(688\) −8105.80 + 4679.88i −0.449172 + 0.259330i
\(689\) 1278.86 2215.05i 0.0707122 0.122477i
\(690\) −38390.9 + 31660.7i −2.11814 + 1.74681i
\(691\) −13617.6 23586.4i −0.749694 1.29851i −0.947969 0.318361i \(-0.896868\pi\)
0.198276 0.980146i \(-0.436466\pi\)
\(692\) 334.197i 0.0183587i
\(693\) 0 0
\(694\) −23534.7 −1.28727
\(695\) −11820.7 + 1980.69i −0.645159 + 0.108104i
\(696\) −24744.9 + 42859.4i −1.34763 + 2.33417i
\(697\) 2186.92 + 1262.62i 0.118846 + 0.0686157i
\(698\) −17735.6 + 10239.6i −0.961750 + 0.555267i
\(699\) −13937.3 −0.754160
\(700\) 0 0
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) 2360.13 1362.62i 0.126891 0.0732604i
\(703\) −5630.19 3250.59i −0.302058 0.174393i
\(704\) 9399.03 16279.6i 0.503181 0.871534i
\(705\) 3631.67 608.528i 0.194010 0.0325085i
\(706\) 11965.7 0.637867
\(707\) 0 0
\(708\) 531.635i 0.0282204i
\(709\) 8362.05 + 14483.5i 0.442939 + 0.767192i 0.997906 0.0646799i \(-0.0206026\pi\)
−0.554967 + 0.831872i \(0.687269\pi\)
\(710\) 6603.48 5445.85i 0.349048 0.287858i
\(711\) −12739.6 + 22065.7i −0.671973 + 1.16389i
\(712\) 30126.8 17393.7i 1.58574 0.915528i
\(713\) 29847.0i 1.56771i
\(714\) 0 0
\(715\) −1554.26 580.737i −0.0812951 0.0303753i
\(716\) 136.877 + 237.077i 0.00714430 + 0.0123743i
\(717\) −21601.5 12471.7i −1.12514 0.649599i
\(718\) −7753.79 4476.65i −0.403021 0.232684i
\(719\) 2154.33 + 3731.41i 0.111743 + 0.193544i 0.916473 0.400097i \(-0.131023\pi\)
−0.804730 + 0.593641i \(0.797690\pi\)
\(720\) 13719.7 36718.9i 0.710145 1.90060i
\(721\) 0 0
\(722\) 17660.9i 0.910347i
\(723\) 19851.6 11461.3i 1.02115 0.589560i
\(724\) 182.241 315.650i 0.00935487 0.0162031i
\(725\) 29032.2 10010.4i 1.48721 0.512796i
\(726\) −908.515 1573.59i −0.0464437 0.0804429i
\(727\) 29435.6i 1.50166i −0.660496 0.750830i \(-0.729654\pi\)
0.660496 0.750830i \(-0.270346\pi\)
\(728\) 0 0
\(729\) 20127.8 1.02260
\(730\) −6287.98 + 1053.62i −0.318806 + 0.0534195i
\(731\) 3710.79 6427.27i 0.187754 0.325200i
\(732\) −55.3115 31.9341i −0.00279286 0.00161246i
\(733\) 5705.11 3293.85i 0.287480 0.165977i −0.349325 0.937002i \(-0.613589\pi\)
0.636805 + 0.771025i \(0.280256\pi\)
\(734\) 4919.57 0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) 8533.82 4927.01i 0.426523 0.246253i
\(738\) −6498.79 3752.08i −0.324152 0.187149i
\(739\) 1842.23 3190.84i 0.0917018 0.158832i −0.816526 0.577309i \(-0.804103\pi\)
0.908227 + 0.418477i \(0.137436\pi\)
\(740\) −69.2706 413.405i −0.00344113 0.0205366i
\(741\) 923.917 0.0458042
\(742\) 0 0
\(743\) 12271.9i 0.605940i −0.953000 0.302970i \(-0.902022\pi\)
0.953000 0.302970i \(-0.0979783\pi\)
\(744\) 17331.6 + 30019.2i 0.854042 + 1.47924i
\(745\) −4594.80 5571.53i −0.225961 0.273993i
\(746\) −4023.12 + 6968.25i −0.197449 + 0.341992i
\(747\) −3387.03 + 1955.51i −0.165897 + 0.0957807i
\(748\) 289.355i 0.0141442i
\(749\) 0 0
\(750\) −31504.4 + 17131.5i −1.53384 + 0.834072i
\(751\) 15435.5 + 26735.1i 0.749999 + 1.29904i 0.947823 + 0.318798i \(0.103279\pi\)
−0.197824 + 0.980238i \(0.563387\pi\)
\(752\) −2068.13 1194.04i −0.100289 0.0579017i
\(753\) −22831.5 13181.8i −1.10495 0.637942i
\(754\) −1389.96 2407.48i −0.0671343 0.116280i
\(755\) 951.669 2547.00i 0.0458739 0.122775i
\(756\) 0 0
\(757\) 11442.1i 0.549368i 0.961535 + 0.274684i \(0.0885732\pi\)
−0.961535 + 0.274684i \(0.911427\pi\)
\(758\) 25875.2 14939.0i 1.23988 0.715844i
\(759\) −29187.1 + 50553.5i −1.39582 + 2.41762i
\(760\) 5012.88 4134.09i 0.239258 0.197315i
\(761\) −7211.64 12490.9i −0.343524 0.595001i 0.641560 0.767073i \(-0.278287\pi\)
−0.985085 + 0.172071i \(0.944954\pi\)
\(762\) 12959.4i 0.616102i
\(763\) 0 0
\(764\) −759.630 −0.0359718
\(765\) 5136.40 + 30653.9i 0.242754 + 1.44875i
\(766\) 368.341 637.985i 0.0173743 0.0300931i
\(767\) −1357.60 783.813i −0.0639116 0.0368994i
\(768\) −1787.49 + 1032.01i −0.0839850 + 0.0484887i
\(769\) −26772.8 −1.25546 −0.627731 0.778430i \(-0.716016\pi\)
−0.627731 + 0.778430i \(0.716016\pi\)
\(770\) 0 0
\(771\) 24495.9 1.14423
\(772\) −363.295 + 209.748i −0.0169369 + 0.00977850i
\(773\) 23962.4 + 13834.7i 1.11496 + 0.643724i 0.940110 0.340871i \(-0.110722\pi\)
0.174852 + 0.984595i \(0.444055\pi\)
\(774\) −11027.2 + 19099.7i −0.512099 + 0.886982i
\(775\) 4095.19 21115.9i 0.189811 0.978715i
\(776\) −5453.45 −0.252278
\(777\) 0 0
\(778\) 13057.2i 0.601702i
\(779\) −633.589 1097.41i −0.0291408 0.0504734i
\(780\) 37.9010 + 45.9577i 0.00173984 + 0.00210968i
\(781\) 5020.37 8695.54i 0.230017 0.398401i
\(782\) −22160.9 + 12794.6i −1.01339 + 0.585083i
\(783\) 59169.8i 2.70058i
\(784\) 0 0
\(785\) −16260.2 6075.51i −0.739302 0.276235i
\(786\) −8633.72 14954.0i −0.391800 0.678617i
\(787\) 9469.54 + 5467.24i 0.428911 + 0.247632i 0.698882 0.715237i \(-0.253681\pi\)
−0.269972 + 0.962868i \(0.587014\pi\)
\(788\) −402.498 232.382i −0.0181959 0.0105054i
\(789\) 13605.4 + 23565.2i 0.613896 + 1.06330i
\(790\) −14160.9 5291.13i −0.637752 0.238291i
\(791\) 0 0
\(792\) 45138.2i 2.02515i
\(793\) −163.096 + 94.1638i −0.00730356 + 0.00421671i
\(794\) 5173.58 8960.91i 0.231239 0.400517i
\(795\) −41259.2 50029.7i −1.84064 2.23191i
\(796\) 160.438 + 277.887i 0.00714393 + 0.0123737i
\(797\) 31967.3i 1.42075i −0.703823 0.710376i \(-0.748525\pi\)
0.703823 0.710376i \(-0.251475\pi\)
\(798\) 0 0
\(799\) 1893.56 0.0838415
\(800\) 830.390 + 161.045i 0.0366984 + 0.00711726i
\(801\) 41751.1 72315.1i 1.84170 3.18992i
\(802\) −15719.5 9075.68i −0.692115 0.399593i
\(803\) −6477.05 + 3739.53i −0.284645 + 0.164340i
\(804\) −353.786 −0.0155187
\(805\) 0 0
\(806\) −1947.08 −0.0850906
\(807\) −11228.6 + 6482.84i −0.489797 + 0.282784i
\(808\) 29876.2 + 17249.0i 1.30079 + 0.751013i
\(809\) −8962.40 + 15523.3i −0.389495 + 0.674624i −0.992382 0.123202i \(-0.960684\pi\)
0.602887 + 0.797827i \(0.294017\pi\)
\(810\) −3757.56 22425.0i −0.162996 0.972757i
\(811\) 28541.4 1.23579 0.617895 0.786261i \(-0.287986\pi\)
0.617895 + 0.786261i \(0.287986\pi\)
\(812\) 0 0
\(813\) 58106.2i 2.50661i
\(814\) −13397.8 23205.7i −0.576895 0.999212i
\(815\) 22026.5 18165.1i 0.946694 0.780733i
\(816\) 15137.0 26218.1i 0.649390 1.12478i
\(817\) −3225.24 + 1862.09i −0.138111 + 0.0797385i
\(818\) 18659.7i 0.797580i
\(819\) 0 0
\(820\) 28.5964 76.5342i 0.00121784 0.00325938i
\(821\) −9439.29 16349.3i −0.401259 0.695000i 0.592619 0.805483i \(-0.298094\pi\)
−0.993878 + 0.110482i \(0.964760\pi\)
\(822\) −34495.2 19915.8i −1.46370 0.845065i
\(823\) 40347.4 + 23294.6i 1.70889 + 0.986631i 0.935933 + 0.352178i \(0.114559\pi\)
0.772962 + 0.634453i \(0.218774\pi\)
\(824\) −10629.9 18411.4i −0.449403 0.778390i
\(825\) −27585.2 + 31760.4i −1.16411 + 1.34031i
\(826\) 0 0
\(827\) 14649.8i 0.615989i 0.951388 + 0.307994i \(0.0996578\pi\)
−0.951388 + 0.307994i \(0.900342\pi\)
\(828\) 1208.47 697.709i 0.0507212 0.0292839i
\(829\) −17204.0 + 29798.2i −0.720771 + 1.24841i 0.239920 + 0.970793i \(0.422879\pi\)
−0.960691 + 0.277619i \(0.910455\pi\)
\(830\) −1476.37 1790.20i −0.0617416 0.0748661i
\(831\) 3939.76 + 6823.86i 0.164463 + 0.284858i
\(832\) 1990.07i 0.0829248i
\(833\) 0 0
\(834\) 27508.0 1.14212
\(835\) −6601.86 39399.7i −0.273613 1.63291i
\(836\) −72.6001 + 125.747i −0.00300350 + 0.00520221i
\(837\) 35890.9 + 20721.6i 1.48216 + 0.855727i
\(838\) −15658.3 + 9040.34i −0.645475 + 0.372665i
\(839\) −25934.2 −1.06716 −0.533580 0.845749i \(-0.679154\pi\)
−0.533580 + 0.845749i \(0.679154\pi\)
\(840\) 0 0
\(841\) 35967.9 1.47476
\(842\) −20123.4 + 11618.3i −0.823632 + 0.475524i
\(843\) 48669.1 + 28099.1i 1.98844 + 1.14803i
\(844\) 212.168 367.485i 0.00865298 0.0149874i
\(845\) −24052.2 + 4030.22i −0.979198 + 0.164076i
\(846\) −5627.02 −0.228677
\(847\) 0 0
\(848\) 42055.9i 1.70307i
\(849\) −10112.5 17515.3i −0.408786 0.708038i
\(850\) −17433.7 + 6011.18i −0.703494 + 0.242567i
\(851\) −21742.4 + 37658.9i −0.875816 + 1.51696i
\(852\) −312.194 + 180.245i −0.0125535 + 0.00724777i
\(853\) 48456.3i 1.94503i 0.232836 + 0.972516i \(0.425199\pi\)
−0.232836 + 0.972516i \(0.574801\pi\)
\(854\) 0 0
\(855\) 5458.99 14610.2i 0.218355 0.584395i
\(856\) 9681.37 + 16768.6i 0.386568 + 0.669556i
\(857\) −31414.1 18136.9i −1.25214 0.722924i −0.280607 0.959823i \(-0.590536\pi\)
−0.971534 + 0.236899i \(0.923869\pi\)
\(858\) 3297.88 + 1904.03i 0.131221 + 0.0757605i
\(859\) 14033.6 + 24306.9i 0.557415 + 0.965471i 0.997711 + 0.0676188i \(0.0215402\pi\)
−0.440296 + 0.897853i \(0.645127\pi\)
\(860\) −224.931 84.0437i −0.00891870 0.00333240i
\(861\) 0 0
\(862\) 41015.7i 1.62065i
\(863\) 7214.79 4165.46i 0.284582 0.164303i −0.350914 0.936408i \(-0.614129\pi\)
0.635496 + 0.772104i \(0.280796\pi\)
\(864\) −814.886 + 1411.42i −0.0320868 + 0.0555759i
\(865\) 19275.5 15896.4i 0.757672 0.624847i
\(866\) 11988.6 + 20764.8i 0.470424 + 0.814799i
\(867\) 20155.9i 0.789538i
\(868\) 0 0
\(869\) −17733.4 −0.692251
\(870\) −69512.6 + 11647.6i −2.70885 + 0.453898i
\(871\) −521.602 + 903.442i −0.0202914 + 0.0351458i
\(872\) 17202.1 + 9931.65i 0.668047 + 0.385697i
\(873\) −11336.5 + 6545.13i −0.439498 + 0.253745i
\(874\) 12840.8 0.496965
\(875\) 0 0
\(876\) 268.519 0.0103566
\(877\) −14263.1 + 8234.79i −0.549178 + 0.317068i −0.748791 0.662807i \(-0.769365\pi\)
0.199612 + 0.979875i \(0.436032\pi\)
\(878\) −44156.9 25494.0i −1.69729 0.979934i
\(879\) 26596.6 46066.6i 1.02057 1.76768i
\(880\) 26906.8 4508.53i 1.03071 0.172707i
\(881\) −46635.9 −1.78343 −0.891715 0.452597i \(-0.850498\pi\)
−0.891715 + 0.452597i \(0.850498\pi\)
\(882\) 0 0
\(883\) 14075.8i 0.536453i −0.963356 0.268227i \(-0.913562\pi\)
0.963356 0.268227i \(-0.0864376\pi\)
\(884\) 15.3164 + 26.5289i 0.000582746 + 0.00100935i
\(885\) −30663.2 + 25287.7i −1.16467 + 0.960494i
\(886\) −2714.24 + 4701.20i −0.102919 + 0.178262i
\(887\) 22709.7 13111.5i 0.859659 0.496324i −0.00423914 0.999991i \(-0.501349\pi\)
0.863898 + 0.503667i \(0.168016\pi\)
\(888\) 50501.5i 1.90847i
\(889\) 0 0
\(890\) 46409.2 + 17340.5i 1.74791 + 0.653094i
\(891\) −13336.4 23099.3i −0.501443 0.868524i
\(892\) 614.072 + 354.534i 0.0230500 + 0.0133079i
\(893\) −822.896 475.099i −0.0308367 0.0178036i
\(894\) 8287.38 + 14354.2i 0.310035 + 0.536997i
\(895\) 7163.27 19171.5i 0.267533 0.716012i
\(896\) 0 0
\(897\) 6179.84i 0.230032i
\(898\) 12820.5 7401.89i 0.476419 0.275061i
\(899\) 21137.3 36610.9i 0.784170 1.35822i
\(900\) 950.683 327.799i 0.0352105 0.0121407i
\(901\) −16673.5 28879.4i −0.616510 1.06783i
\(902\) 5222.87i 0.192796i
\(903\) 0 0
\(904\) 17165.9 0.631558
\(905\) −26874.2 + 4503.08i −0.987105 + 0.165400i
\(906\) −3120.18 + 5404.32i −0.114416 + 0.198175i
\(907\) 13313.4 + 7686.51i 0.487393 + 0.281396i 0.723492 0.690333i \(-0.242536\pi\)
−0.236100 + 0.971729i \(0.575869\pi\)
\(908\) 124.434 71.8423i 0.00454791 0.00262574i
\(909\) 82807.8 3.02152
\(910\) 0 0
\(911\) −21189.3 −0.770619 −0.385310 0.922787i \(-0.625905\pi\)
−0.385310 + 0.922787i \(0.625905\pi\)
\(912\) −13156.4 + 7595.85i −0.477688 + 0.275793i
\(913\) −2357.36 1361.02i −0.0854516 0.0493355i
\(914\) −15984.9 + 27686.6i −0.578481 + 1.00196i
\(915\) 789.077 + 4709.19i 0.0285094 + 0.170143i
\(916\) 111.265 0.00401342
\(917\) 0 0
\(918\) 35531.1i 1.27745i
\(919\) −9182.10 15903.9i −0.329586 0.570860i 0.652844 0.757493i \(-0.273576\pi\)
−0.982430 + 0.186633i \(0.940242\pi\)
\(920\) −27651.8 33529.8i −0.990929 1.20157i
\(921\) 42509.1 73627.9i 1.52087 2.63423i
\(922\) 42698.0 24651.7i 1.52515 0.880544i
\(923\) 1062.97i 0.0379070i
\(924\) 0 0
\(925\) −20549.1 + 23659.3i −0.730432 + 0.840988i
\(926\) −550.480 953.459i −0.0195355 0.0338365i
\(927\) −44194.1 25515.5i −1.56583 0.904033i
\(928\) 1439.74 + 831.234i 0.0509286 + 0.0294036i
\(929\) 7730.28 + 13389.2i 0.273006 + 0.472860i 0.969630 0.244576i \(-0.0786489\pi\)
−0.696624 + 0.717436i \(0.745316\pi\)
\(930\) −17278.5 + 46243.5i −0.609232 + 1.63052i
\(931\) 0 0
\(932\) 231.883i 0.00814978i
\(933\) 58980.2 34052.2i 2.06959 1.19488i
\(934\) 7187.32 12448.8i 0.251795 0.436121i
\(935\) −16689.2 + 13763.5i −0.583738 + 0.481405i
\(936\) 2389.30 + 4138.39i 0.0834367 + 0.144517i
\(937\) 28824.7i 1.00498i 0.864584 + 0.502488i \(0.167582\pi\)
−0.864584 + 0.502488i \(0.832418\pi\)
\(938\) 0 0
\(939\) −82446.9 −2.86534
\(940\) −10.1244 60.4223i −0.000351301 0.00209655i
\(941\) −21086.3 + 36522.5i −0.730492 + 1.26525i 0.226182 + 0.974085i \(0.427376\pi\)
−0.956673 + 0.291164i \(0.905958\pi\)
\(942\) 34501.5 + 19919.4i 1.19333 + 0.688970i
\(943\) −7340.29 + 4237.92i −0.253481 + 0.146347i
\(944\) 25776.0 0.888705
\(945\) 0 0
\(946\) −15349.8 −0.527552
\(947\) 7730.43 4463.17i 0.265264 0.153150i −0.361469 0.932384i \(-0.617725\pi\)
0.626734 + 0.779234i \(0.284391\pi\)
\(948\) 551.380 + 318.340i 0.0188903 + 0.0109063i
\(949\) 395.889 685.700i 0.0135417 0.0234550i
\(950\) 9084.48 + 1761.84i 0.310252 + 0.0601700i
\(951\) 27666.3 0.943366
\(952\) 0 0
\(953\) 40420.6i 1.37392i 0.726693 + 0.686962i \(0.241056\pi\)
−0.726693 + 0.686962i \(0.758944\pi\)
\(954\) 49548.1 + 85819.8i 1.68153 + 2.91249i
\(955\) 36132.5 + 43813.3i 1.22431 + 1.48457i
\(956\) −207.498 + 359.397i −0.00701984 + 0.0121587i
\(957\) −71602.8 + 41339.9i −2.41859 + 1.39637i
\(958\) 24784.8i 0.835868i
\(959\) 0 0
\(960\) 47264.6 + 17660.1i 1.58902 + 0.593725i
\(961\) 90.7039 + 157.104i 0.00304467 + 0.00527353i
\(962\) 2456.69 + 1418.37i 0.0823357 + 0.0475365i
\(963\) 40250.7 + 23238.8i 1.34690 + 0.777631i
\(964\) −190.689 330.283i −0.00637104 0.0110350i
\(965\) 29378.1 + 10976.9i 0.980016 + 0.366175i
\(966\) 0 0
\(967\) 33914.1i 1.12782i −0.825836 0.563910i \(-0.809296\pi\)
0.825836 0.563910i \(-0.190704\pi\)
\(968\) 1374.35 793.480i 0.0456335 0.0263465i
\(969\) 6022.92 10432.0i 0.199674 0.345846i
\(970\) −4941.45 5991.86i −0.163567 0.198337i
\(971\) 29669.5 + 51389.1i 0.980577 + 1.69841i 0.660147 + 0.751137i \(0.270494\pi\)
0.320430 + 0.947272i \(0.396173\pi\)
\(972\) 14.8585i 0.000490315i
\(973\) 0 0
\(974\) −2542.08 −0.0836277
\(975\) 847.910 4372.05i 0.0278511 0.143608i
\(976\) 1548.31 2681.75i 0.0507788 0.0879515i
\(977\) −6090.01 3516.07i −0.199423 0.115137i 0.396963 0.917835i \(-0.370064\pi\)
−0.596387 + 0.802697i \(0.703397\pi\)
\(978\) −56747.9 + 32763.4i −1.85542 + 1.07123i
\(979\) 58117.3 1.89728
\(980\) 0 0
\(981\) 47679.1 1.55176
\(982\) 3862.89 2230.24i 0.125529 0.0724744i
\(983\) −1475.39 851.817i −0.0478714 0.0276386i 0.475873 0.879514i \(-0.342132\pi\)
−0.523745 + 0.851875i \(0.675465\pi\)
\(984\) 4921.75 8524.72i 0.159451 0.276177i
\(985\) 5742.06 + 34268.4i 0.185743 + 1.10851i
\(986\) −36244.0 −1.17063
\(987\) 0 0
\(988\) 15.3718i 0.000494980i
\(989\) 12455.1 + 21572.8i 0.400453 + 0.693605i
\(990\) 49594.6 40900.4i 1.59214 1.31303i
\(991\) −6370.13 + 11033.4i −0.204192 + 0.353670i −0.949875 0.312630i \(-0.898790\pi\)
0.745683 + 0.666301i \(0.232123\pi\)
\(992\) 1008.41 582.205i 0.0322752 0.0186341i
\(993\) 29073.6i 0.929126i
\(994\) 0 0
\(995\) 8396.32 22471.5i 0.267519 0.715975i
\(996\) 48.8645 + 84.6358i 0.00155455 + 0.00269256i
\(997\) 14384.4 + 8304.81i 0.456928 + 0.263808i 0.710752 0.703443i \(-0.248355\pi\)
−0.253824 + 0.967251i \(0.581688\pi\)
\(998\) 20357.6 + 11753.4i 0.645699 + 0.372794i
\(999\) −30189.7 52290.1i −0.956116 1.65604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.4.j.e.214.8 20
5.4 even 2 inner 245.4.j.e.214.3 20
7.2 even 3 inner 245.4.j.e.79.3 20
7.3 odd 6 245.4.b.d.99.8 10
7.4 even 3 35.4.b.a.29.8 yes 10
7.5 odd 6 245.4.j.f.79.3 20
7.6 odd 2 245.4.j.f.214.8 20
21.11 odd 6 315.4.d.c.64.3 10
28.11 odd 6 560.4.g.f.449.10 10
35.3 even 12 1225.4.a.bh.1.4 5
35.4 even 6 35.4.b.a.29.3 10
35.9 even 6 inner 245.4.j.e.79.8 20
35.17 even 12 1225.4.a.be.1.2 5
35.18 odd 12 175.4.a.j.1.4 5
35.19 odd 6 245.4.j.f.79.8 20
35.24 odd 6 245.4.b.d.99.3 10
35.32 odd 12 175.4.a.i.1.2 5
35.34 odd 2 245.4.j.f.214.3 20
105.32 even 12 1575.4.a.bq.1.4 5
105.53 even 12 1575.4.a.bn.1.2 5
105.74 odd 6 315.4.d.c.64.8 10
140.39 odd 6 560.4.g.f.449.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.3 10 35.4 even 6
35.4.b.a.29.8 yes 10 7.4 even 3
175.4.a.i.1.2 5 35.32 odd 12
175.4.a.j.1.4 5 35.18 odd 12
245.4.b.d.99.3 10 35.24 odd 6
245.4.b.d.99.8 10 7.3 odd 6
245.4.j.e.79.3 20 7.2 even 3 inner
245.4.j.e.79.8 20 35.9 even 6 inner
245.4.j.e.214.3 20 5.4 even 2 inner
245.4.j.e.214.8 20 1.1 even 1 trivial
245.4.j.f.79.3 20 7.5 odd 6
245.4.j.f.79.8 20 35.19 odd 6
245.4.j.f.214.3 20 35.34 odd 2
245.4.j.f.214.8 20 7.6 odd 2
315.4.d.c.64.3 10 21.11 odd 6
315.4.d.c.64.8 10 105.74 odd 6
560.4.g.f.449.1 10 140.39 odd 6
560.4.g.f.449.10 10 28.11 odd 6
1225.4.a.be.1.2 5 35.17 even 12
1225.4.a.bh.1.4 5 35.3 even 12
1575.4.a.bn.1.2 5 105.53 even 12
1575.4.a.bq.1.4 5 105.32 even 12