Properties

Label 2475.2.c.k.199.2
Level $2475$
Weight $2$
Character 2475.199
Analytic conductor $19.763$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,2,Mod(199,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 275)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(-1.30278i\) of defining polynomial
Character \(\chi\) \(=\) 2475.199
Dual form 2475.2.c.k.199.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30278i q^{2} +0.302776 q^{4} -0.697224i q^{7} -3.00000i q^{8} +1.00000 q^{11} +5.00000i q^{13} -0.908327 q^{14} -3.30278 q^{16} +6.90833i q^{17} +1.00000 q^{19} -1.30278i q^{22} +7.30278i q^{23} +6.51388 q^{26} -0.211103i q^{28} +0.908327 q^{29} +10.2111 q^{31} -1.69722i q^{32} +9.00000 q^{34} -2.39445i q^{37} -1.30278i q^{38} +5.60555 q^{41} +7.21110i q^{43} +0.302776 q^{44} +9.51388 q^{46} -3.00000i q^{47} +6.51388 q^{49} +1.51388i q^{52} +1.30278i q^{53} -2.09167 q^{56} -1.18335i q^{58} -14.2111 q^{59} -7.90833 q^{61} -13.3028i q^{62} -8.81665 q^{64} +4.00000i q^{67} +2.09167i q^{68} +2.60555 q^{71} -7.90833i q^{73} -3.11943 q^{74} +0.302776 q^{76} -0.697224i q^{77} +10.9083 q^{79} -7.30278i q^{82} +3.51388i q^{83} +9.39445 q^{86} -3.00000i q^{88} +1.69722 q^{89} +3.48612 q^{91} +2.21110i q^{92} -3.90833 q^{94} -15.3028i q^{97} -8.48612i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} + 4 q^{11} + 18 q^{14} - 6 q^{16} + 4 q^{19} - 10 q^{26} - 18 q^{29} + 12 q^{31} + 36 q^{34} + 8 q^{41} - 6 q^{44} + 2 q^{46} - 10 q^{49} - 30 q^{56} - 28 q^{59} - 10 q^{61} + 8 q^{64} - 4 q^{71}+ \cdots + 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2475\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2026\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.30278i − 0.921201i −0.887607 0.460601i \(-0.847634\pi\)
0.887607 0.460601i \(-0.152366\pi\)
\(3\) 0 0
\(4\) 0.302776 0.151388
\(5\) 0 0
\(6\) 0 0
\(7\) − 0.697224i − 0.263526i −0.991281 0.131763i \(-0.957936\pi\)
0.991281 0.131763i \(-0.0420638\pi\)
\(8\) − 3.00000i − 1.06066i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 5.00000i 1.38675i 0.720577 + 0.693375i \(0.243877\pi\)
−0.720577 + 0.693375i \(0.756123\pi\)
\(14\) −0.908327 −0.242761
\(15\) 0 0
\(16\) −3.30278 −0.825694
\(17\) 6.90833i 1.67552i 0.546042 + 0.837758i \(0.316134\pi\)
−0.546042 + 0.837758i \(0.683866\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 1.30278i − 0.277753i
\(23\) 7.30278i 1.52273i 0.648321 + 0.761367i \(0.275471\pi\)
−0.648321 + 0.761367i \(0.724529\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 6.51388 1.27748
\(27\) 0 0
\(28\) − 0.211103i − 0.0398946i
\(29\) 0.908327 0.168672 0.0843360 0.996437i \(-0.473123\pi\)
0.0843360 + 0.996437i \(0.473123\pi\)
\(30\) 0 0
\(31\) 10.2111 1.83397 0.916984 0.398924i \(-0.130616\pi\)
0.916984 + 0.398924i \(0.130616\pi\)
\(32\) − 1.69722i − 0.300030i
\(33\) 0 0
\(34\) 9.00000 1.54349
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.39445i − 0.393645i −0.980439 0.196822i \(-0.936938\pi\)
0.980439 0.196822i \(-0.0630623\pi\)
\(38\) − 1.30278i − 0.211338i
\(39\) 0 0
\(40\) 0 0
\(41\) 5.60555 0.875440 0.437720 0.899111i \(-0.355786\pi\)
0.437720 + 0.899111i \(0.355786\pi\)
\(42\) 0 0
\(43\) 7.21110i 1.09968i 0.835269 + 0.549841i \(0.185312\pi\)
−0.835269 + 0.549841i \(0.814688\pi\)
\(44\) 0.302776 0.0456451
\(45\) 0 0
\(46\) 9.51388 1.40274
\(47\) − 3.00000i − 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) 0 0
\(49\) 6.51388 0.930554
\(50\) 0 0
\(51\) 0 0
\(52\) 1.51388i 0.209937i
\(53\) 1.30278i 0.178950i 0.995989 + 0.0894750i \(0.0285189\pi\)
−0.995989 + 0.0894750i \(0.971481\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.09167 −0.279512
\(57\) 0 0
\(58\) − 1.18335i − 0.155381i
\(59\) −14.2111 −1.85013 −0.925064 0.379811i \(-0.875989\pi\)
−0.925064 + 0.379811i \(0.875989\pi\)
\(60\) 0 0
\(61\) −7.90833 −1.01256 −0.506279 0.862370i \(-0.668979\pi\)
−0.506279 + 0.862370i \(0.668979\pi\)
\(62\) − 13.3028i − 1.68945i
\(63\) 0 0
\(64\) −8.81665 −1.10208
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 2.09167i 0.253653i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.60555 0.309222 0.154611 0.987975i \(-0.450588\pi\)
0.154611 + 0.987975i \(0.450588\pi\)
\(72\) 0 0
\(73\) − 7.90833i − 0.925600i −0.886463 0.462800i \(-0.846845\pi\)
0.886463 0.462800i \(-0.153155\pi\)
\(74\) −3.11943 −0.362626
\(75\) 0 0
\(76\) 0.302776 0.0347307
\(77\) − 0.697224i − 0.0794561i
\(78\) 0 0
\(79\) 10.9083 1.22728 0.613641 0.789585i \(-0.289704\pi\)
0.613641 + 0.789585i \(0.289704\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 7.30278i − 0.806457i
\(83\) 3.51388i 0.385698i 0.981228 + 0.192849i \(0.0617728\pi\)
−0.981228 + 0.192849i \(0.938227\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.39445 1.01303
\(87\) 0 0
\(88\) − 3.00000i − 0.319801i
\(89\) 1.69722 0.179905 0.0899527 0.995946i \(-0.471328\pi\)
0.0899527 + 0.995946i \(0.471328\pi\)
\(90\) 0 0
\(91\) 3.48612 0.365445
\(92\) 2.21110i 0.230523i
\(93\) 0 0
\(94\) −3.90833 −0.403113
\(95\) 0 0
\(96\) 0 0
\(97\) − 15.3028i − 1.55376i −0.629648 0.776881i \(-0.716801\pi\)
0.629648 0.776881i \(-0.283199\pi\)
\(98\) − 8.48612i − 0.857228i
\(99\) 0 0
\(100\) 0 0
\(101\) 0.513878 0.0511328 0.0255664 0.999673i \(-0.491861\pi\)
0.0255664 + 0.999673i \(0.491861\pi\)
\(102\) 0 0
\(103\) 2.90833i 0.286566i 0.989682 + 0.143283i \(0.0457659\pi\)
−0.989682 + 0.143283i \(0.954234\pi\)
\(104\) 15.0000 1.47087
\(105\) 0 0
\(106\) 1.69722 0.164849
\(107\) − 3.00000i − 0.290021i −0.989430 0.145010i \(-0.953678\pi\)
0.989430 0.145010i \(-0.0463216\pi\)
\(108\) 0 0
\(109\) −11.5139 −1.10283 −0.551415 0.834231i \(-0.685912\pi\)
−0.551415 + 0.834231i \(0.685912\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.30278i 0.217592i
\(113\) 10.8167i 1.01755i 0.860901 + 0.508773i \(0.169901\pi\)
−0.860901 + 0.508773i \(0.830099\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.275019 0.0255349
\(117\) 0 0
\(118\) 18.5139i 1.70434i
\(119\) 4.81665 0.441542
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 10.3028i 0.932769i
\(123\) 0 0
\(124\) 3.09167 0.277640
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.11943i − 0.720483i −0.932859 0.360241i \(-0.882694\pi\)
0.932859 0.360241i \(-0.117306\pi\)
\(128\) 8.09167i 0.715210i
\(129\) 0 0
\(130\) 0 0
\(131\) 9.90833 0.865695 0.432847 0.901467i \(-0.357509\pi\)
0.432847 + 0.901467i \(0.357509\pi\)
\(132\) 0 0
\(133\) − 0.697224i − 0.0604570i
\(134\) 5.21110 0.450171
\(135\) 0 0
\(136\) 20.7250 1.77715
\(137\) − 12.9083i − 1.10283i −0.834230 0.551416i \(-0.814088\pi\)
0.834230 0.551416i \(-0.185912\pi\)
\(138\) 0 0
\(139\) 6.21110 0.526819 0.263409 0.964684i \(-0.415153\pi\)
0.263409 + 0.964684i \(0.415153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 3.39445i − 0.284856i
\(143\) 5.00000i 0.418121i
\(144\) 0 0
\(145\) 0 0
\(146\) −10.3028 −0.852664
\(147\) 0 0
\(148\) − 0.724981i − 0.0595930i
\(149\) 17.2111 1.40999 0.704994 0.709213i \(-0.250950\pi\)
0.704994 + 0.709213i \(0.250950\pi\)
\(150\) 0 0
\(151\) 0.816654 0.0664583 0.0332292 0.999448i \(-0.489421\pi\)
0.0332292 + 0.999448i \(0.489421\pi\)
\(152\) − 3.00000i − 0.243332i
\(153\) 0 0
\(154\) −0.908327 −0.0731951
\(155\) 0 0
\(156\) 0 0
\(157\) − 19.2111i − 1.53321i −0.642117 0.766606i \(-0.721944\pi\)
0.642117 0.766606i \(-0.278056\pi\)
\(158\) − 14.2111i − 1.13057i
\(159\) 0 0
\(160\) 0 0
\(161\) 5.09167 0.401280
\(162\) 0 0
\(163\) 9.30278i 0.728650i 0.931272 + 0.364325i \(0.118700\pi\)
−0.931272 + 0.364325i \(0.881300\pi\)
\(164\) 1.69722 0.132531
\(165\) 0 0
\(166\) 4.57779 0.355306
\(167\) 13.4222i 1.03864i 0.854579 + 0.519321i \(0.173815\pi\)
−0.854579 + 0.519321i \(0.826185\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 2.18335i 0.166479i
\(173\) 4.81665i 0.366203i 0.983094 + 0.183102i \(0.0586138\pi\)
−0.983094 + 0.183102i \(0.941386\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.30278 −0.248956
\(177\) 0 0
\(178\) − 2.21110i − 0.165729i
\(179\) 12.5139 0.935331 0.467666 0.883905i \(-0.345095\pi\)
0.467666 + 0.883905i \(0.345095\pi\)
\(180\) 0 0
\(181\) −19.9083 −1.47977 −0.739887 0.672731i \(-0.765121\pi\)
−0.739887 + 0.672731i \(0.765121\pi\)
\(182\) − 4.54163i − 0.336648i
\(183\) 0 0
\(184\) 21.9083 1.61510
\(185\) 0 0
\(186\) 0 0
\(187\) 6.90833i 0.505187i
\(188\) − 0.908327i − 0.0662465i
\(189\) 0 0
\(190\) 0 0
\(191\) −10.3028 −0.745483 −0.372741 0.927935i \(-0.621582\pi\)
−0.372741 + 0.927935i \(0.621582\pi\)
\(192\) 0 0
\(193\) 13.2111i 0.950956i 0.879728 + 0.475478i \(0.157725\pi\)
−0.879728 + 0.475478i \(0.842275\pi\)
\(194\) −19.9361 −1.43133
\(195\) 0 0
\(196\) 1.97224 0.140875
\(197\) 13.3028i 0.947784i 0.880583 + 0.473892i \(0.157151\pi\)
−0.880583 + 0.473892i \(0.842849\pi\)
\(198\) 0 0
\(199\) 6.48612 0.459789 0.229894 0.973216i \(-0.426162\pi\)
0.229894 + 0.973216i \(0.426162\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 0.669468i − 0.0471036i
\(203\) − 0.633308i − 0.0444495i
\(204\) 0 0
\(205\) 0 0
\(206\) 3.78890 0.263985
\(207\) 0 0
\(208\) − 16.5139i − 1.14503i
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −25.2389 −1.73751 −0.868757 0.495238i \(-0.835081\pi\)
−0.868757 + 0.495238i \(0.835081\pi\)
\(212\) 0.394449i 0.0270908i
\(213\) 0 0
\(214\) −3.90833 −0.267168
\(215\) 0 0
\(216\) 0 0
\(217\) − 7.11943i − 0.483298i
\(218\) 15.0000i 1.01593i
\(219\) 0 0
\(220\) 0 0
\(221\) −34.5416 −2.32352
\(222\) 0 0
\(223\) − 22.6333i − 1.51564i −0.652465 0.757819i \(-0.726265\pi\)
0.652465 0.757819i \(-0.273735\pi\)
\(224\) −1.18335 −0.0790656
\(225\) 0 0
\(226\) 14.0917 0.937364
\(227\) 1.69722i 0.112649i 0.998413 + 0.0563244i \(0.0179381\pi\)
−0.998413 + 0.0563244i \(0.982062\pi\)
\(228\) 0 0
\(229\) 18.7250 1.23738 0.618691 0.785635i \(-0.287663\pi\)
0.618691 + 0.785635i \(0.287663\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 2.72498i − 0.178904i
\(233\) − 15.9083i − 1.04219i −0.853499 0.521095i \(-0.825524\pi\)
0.853499 0.521095i \(-0.174476\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.30278 −0.280087
\(237\) 0 0
\(238\) − 6.27502i − 0.406749i
\(239\) 21.1194 1.36610 0.683051 0.730371i \(-0.260653\pi\)
0.683051 + 0.730371i \(0.260653\pi\)
\(240\) 0 0
\(241\) 21.9361 1.41303 0.706514 0.707699i \(-0.250267\pi\)
0.706514 + 0.707699i \(0.250267\pi\)
\(242\) − 1.30278i − 0.0837456i
\(243\) 0 0
\(244\) −2.39445 −0.153289
\(245\) 0 0
\(246\) 0 0
\(247\) 5.00000i 0.318142i
\(248\) − 30.6333i − 1.94522i
\(249\) 0 0
\(250\) 0 0
\(251\) −6.90833 −0.436050 −0.218025 0.975943i \(-0.569961\pi\)
−0.218025 + 0.975943i \(0.569961\pi\)
\(252\) 0 0
\(253\) 7.30278i 0.459122i
\(254\) −10.5778 −0.663710
\(255\) 0 0
\(256\) −7.09167 −0.443230
\(257\) − 18.0000i − 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) −1.66947 −0.103736
\(260\) 0 0
\(261\) 0 0
\(262\) − 12.9083i − 0.797479i
\(263\) 22.8167i 1.40694i 0.710727 + 0.703468i \(0.248366\pi\)
−0.710727 + 0.703468i \(0.751634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.908327 −0.0556931
\(267\) 0 0
\(268\) 1.21110i 0.0739799i
\(269\) 8.72498 0.531971 0.265986 0.963977i \(-0.414303\pi\)
0.265986 + 0.963977i \(0.414303\pi\)
\(270\) 0 0
\(271\) −0.211103 −0.0128236 −0.00641178 0.999979i \(-0.502041\pi\)
−0.00641178 + 0.999979i \(0.502041\pi\)
\(272\) − 22.8167i − 1.38346i
\(273\) 0 0
\(274\) −16.8167 −1.01593
\(275\) 0 0
\(276\) 0 0
\(277\) − 14.3944i − 0.864879i −0.901663 0.432439i \(-0.857653\pi\)
0.901663 0.432439i \(-0.142347\pi\)
\(278\) − 8.09167i − 0.485306i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.18335 0.0705925 0.0352963 0.999377i \(-0.488763\pi\)
0.0352963 + 0.999377i \(0.488763\pi\)
\(282\) 0 0
\(283\) 6.30278i 0.374661i 0.982297 + 0.187331i \(0.0599836\pi\)
−0.982297 + 0.187331i \(0.940016\pi\)
\(284\) 0.788897 0.0468125
\(285\) 0 0
\(286\) 6.51388 0.385174
\(287\) − 3.90833i − 0.230701i
\(288\) 0 0
\(289\) −30.7250 −1.80735
\(290\) 0 0
\(291\) 0 0
\(292\) − 2.39445i − 0.140125i
\(293\) − 0.788897i − 0.0460879i −0.999734 0.0230439i \(-0.992664\pi\)
0.999734 0.0230439i \(-0.00733576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −7.18335 −0.417524
\(297\) 0 0
\(298\) − 22.4222i − 1.29888i
\(299\) −36.5139 −2.11165
\(300\) 0 0
\(301\) 5.02776 0.289795
\(302\) − 1.06392i − 0.0612215i
\(303\) 0 0
\(304\) −3.30278 −0.189427
\(305\) 0 0
\(306\) 0 0
\(307\) 16.9083i 0.965009i 0.875893 + 0.482505i \(0.160273\pi\)
−0.875893 + 0.482505i \(0.839727\pi\)
\(308\) − 0.211103i − 0.0120287i
\(309\) 0 0
\(310\) 0 0
\(311\) −4.81665 −0.273127 −0.136564 0.990631i \(-0.543606\pi\)
−0.136564 + 0.990631i \(0.543606\pi\)
\(312\) 0 0
\(313\) 0.183346i 0.0103633i 0.999987 + 0.00518167i \(0.00164938\pi\)
−0.999987 + 0.00518167i \(0.998351\pi\)
\(314\) −25.0278 −1.41240
\(315\) 0 0
\(316\) 3.30278 0.185796
\(317\) − 0.908327i − 0.0510167i −0.999675 0.0255084i \(-0.991880\pi\)
0.999675 0.0255084i \(-0.00812044\pi\)
\(318\) 0 0
\(319\) 0.908327 0.0508565
\(320\) 0 0
\(321\) 0 0
\(322\) − 6.63331i − 0.369660i
\(323\) 6.90833i 0.384390i
\(324\) 0 0
\(325\) 0 0
\(326\) 12.1194 0.671233
\(327\) 0 0
\(328\) − 16.8167i − 0.928544i
\(329\) −2.09167 −0.115318
\(330\) 0 0
\(331\) −21.6056 −1.18755 −0.593774 0.804632i \(-0.702363\pi\)
−0.593774 + 0.804632i \(0.702363\pi\)
\(332\) 1.06392i 0.0583900i
\(333\) 0 0
\(334\) 17.4861 0.956798
\(335\) 0 0
\(336\) 0 0
\(337\) 30.8444i 1.68020i 0.542430 + 0.840101i \(0.317504\pi\)
−0.542430 + 0.840101i \(0.682496\pi\)
\(338\) 15.6333i 0.850340i
\(339\) 0 0
\(340\) 0 0
\(341\) 10.2111 0.552962
\(342\) 0 0
\(343\) − 9.42221i − 0.508751i
\(344\) 21.6333 1.16639
\(345\) 0 0
\(346\) 6.27502 0.337347
\(347\) − 12.5139i − 0.671780i −0.941901 0.335890i \(-0.890963\pi\)
0.941901 0.335890i \(-0.109037\pi\)
\(348\) 0 0
\(349\) 5.18335 0.277458 0.138729 0.990330i \(-0.455698\pi\)
0.138729 + 0.990330i \(0.455698\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 1.69722i − 0.0904624i
\(353\) − 18.6333i − 0.991751i −0.868394 0.495875i \(-0.834847\pi\)
0.868394 0.495875i \(-0.165153\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.513878 0.0272355
\(357\) 0 0
\(358\) − 16.3028i − 0.861628i
\(359\) 0.788897 0.0416364 0.0208182 0.999783i \(-0.493373\pi\)
0.0208182 + 0.999783i \(0.493373\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 25.9361i 1.36317i
\(363\) 0 0
\(364\) 1.05551 0.0553239
\(365\) 0 0
\(366\) 0 0
\(367\) 20.6972i 1.08039i 0.841541 + 0.540193i \(0.181649\pi\)
−0.841541 + 0.540193i \(0.818351\pi\)
\(368\) − 24.1194i − 1.25731i
\(369\) 0 0
\(370\) 0 0
\(371\) 0.908327 0.0471580
\(372\) 0 0
\(373\) 27.4222i 1.41987i 0.704268 + 0.709934i \(0.251275\pi\)
−0.704268 + 0.709934i \(0.748725\pi\)
\(374\) 9.00000 0.465379
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) 4.54163i 0.233906i
\(378\) 0 0
\(379\) −3.18335 −0.163518 −0.0817588 0.996652i \(-0.526054\pi\)
−0.0817588 + 0.996652i \(0.526054\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 13.4222i 0.686740i
\(383\) − 21.6333i − 1.10541i −0.833377 0.552705i \(-0.813596\pi\)
0.833377 0.552705i \(-0.186404\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.2111 0.876022
\(387\) 0 0
\(388\) − 4.63331i − 0.235221i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −50.4500 −2.55136
\(392\) − 19.5416i − 0.987002i
\(393\) 0 0
\(394\) 17.3305 0.873100
\(395\) 0 0
\(396\) 0 0
\(397\) − 21.6972i − 1.08895i −0.838776 0.544476i \(-0.816728\pi\)
0.838776 0.544476i \(-0.183272\pi\)
\(398\) − 8.44996i − 0.423558i
\(399\) 0 0
\(400\) 0 0
\(401\) 12.7889 0.638647 0.319324 0.947646i \(-0.396544\pi\)
0.319324 + 0.947646i \(0.396544\pi\)
\(402\) 0 0
\(403\) 51.0555i 2.54326i
\(404\) 0.155590 0.00774088
\(405\) 0 0
\(406\) −0.825058 −0.0409469
\(407\) − 2.39445i − 0.118688i
\(408\) 0 0
\(409\) 6.21110 0.307119 0.153560 0.988139i \(-0.450926\pi\)
0.153560 + 0.988139i \(0.450926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.880571i 0.0433826i
\(413\) 9.90833i 0.487557i
\(414\) 0 0
\(415\) 0 0
\(416\) 8.48612 0.416066
\(417\) 0 0
\(418\) − 1.30278i − 0.0637208i
\(419\) 6.39445 0.312389 0.156195 0.987726i \(-0.450077\pi\)
0.156195 + 0.987726i \(0.450077\pi\)
\(420\) 0 0
\(421\) 0.697224 0.0339806 0.0169903 0.999856i \(-0.494592\pi\)
0.0169903 + 0.999856i \(0.494592\pi\)
\(422\) 32.8806i 1.60060i
\(423\) 0 0
\(424\) 3.90833 0.189805
\(425\) 0 0
\(426\) 0 0
\(427\) 5.51388i 0.266835i
\(428\) − 0.908327i − 0.0439056i
\(429\) 0 0
\(430\) 0 0
\(431\) −33.0000 −1.58955 −0.794777 0.606902i \(-0.792412\pi\)
−0.794777 + 0.606902i \(0.792412\pi\)
\(432\) 0 0
\(433\) 5.00000i 0.240285i 0.992757 + 0.120142i \(0.0383351\pi\)
−0.992757 + 0.120142i \(0.961665\pi\)
\(434\) −9.27502 −0.445215
\(435\) 0 0
\(436\) −3.48612 −0.166955
\(437\) 7.30278i 0.349339i
\(438\) 0 0
\(439\) −24.3028 −1.15991 −0.579954 0.814649i \(-0.696930\pi\)
−0.579954 + 0.814649i \(0.696930\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 45.0000i 2.14043i
\(443\) 8.60555i 0.408862i 0.978881 + 0.204431i \(0.0655344\pi\)
−0.978881 + 0.204431i \(0.934466\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −29.4861 −1.39621
\(447\) 0 0
\(448\) 6.14719i 0.290427i
\(449\) 23.4861 1.10838 0.554189 0.832391i \(-0.313028\pi\)
0.554189 + 0.832391i \(0.313028\pi\)
\(450\) 0 0
\(451\) 5.60555 0.263955
\(452\) 3.27502i 0.154044i
\(453\) 0 0
\(454\) 2.21110 0.103772
\(455\) 0 0
\(456\) 0 0
\(457\) 20.6972i 0.968175i 0.875020 + 0.484088i \(0.160848\pi\)
−0.875020 + 0.484088i \(0.839152\pi\)
\(458\) − 24.3944i − 1.13988i
\(459\) 0 0
\(460\) 0 0
\(461\) −32.2111 −1.50022 −0.750110 0.661313i \(-0.770000\pi\)
−0.750110 + 0.661313i \(0.770000\pi\)
\(462\) 0 0
\(463\) 11.7889i 0.547877i 0.961747 + 0.273938i \(0.0883264\pi\)
−0.961747 + 0.273938i \(0.911674\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −20.7250 −0.960066
\(467\) − 18.6333i − 0.862247i −0.902293 0.431123i \(-0.858117\pi\)
0.902293 0.431123i \(-0.141883\pi\)
\(468\) 0 0
\(469\) 2.78890 0.128779
\(470\) 0 0
\(471\) 0 0
\(472\) 42.6333i 1.96236i
\(473\) 7.21110i 0.331567i
\(474\) 0 0
\(475\) 0 0
\(476\) 1.45837 0.0668441
\(477\) 0 0
\(478\) − 27.5139i − 1.25846i
\(479\) −34.8167 −1.59081 −0.795407 0.606076i \(-0.792743\pi\)
−0.795407 + 0.606076i \(0.792743\pi\)
\(480\) 0 0
\(481\) 11.9722 0.545887
\(482\) − 28.5778i − 1.30168i
\(483\) 0 0
\(484\) 0.302776 0.0137625
\(485\) 0 0
\(486\) 0 0
\(487\) − 4.21110i − 0.190823i −0.995438 0.0954116i \(-0.969583\pi\)
0.995438 0.0954116i \(-0.0304167\pi\)
\(488\) 23.7250i 1.07398i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.78890 0.441767 0.220883 0.975300i \(-0.429106\pi\)
0.220883 + 0.975300i \(0.429106\pi\)
\(492\) 0 0
\(493\) 6.27502i 0.282613i
\(494\) 6.51388 0.293073
\(495\) 0 0
\(496\) −33.7250 −1.51430
\(497\) − 1.81665i − 0.0814881i
\(498\) 0 0
\(499\) 3.48612 0.156060 0.0780301 0.996951i \(-0.475137\pi\)
0.0780301 + 0.996951i \(0.475137\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.00000i 0.401690i
\(503\) − 9.39445i − 0.418878i −0.977822 0.209439i \(-0.932836\pi\)
0.977822 0.209439i \(-0.0671637\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.51388 0.422943
\(507\) 0 0
\(508\) − 2.45837i − 0.109072i
\(509\) −22.6972 −1.00604 −0.503018 0.864276i \(-0.667777\pi\)
−0.503018 + 0.864276i \(0.667777\pi\)
\(510\) 0 0
\(511\) −5.51388 −0.243920
\(512\) 25.4222i 1.12351i
\(513\) 0 0
\(514\) −23.4500 −1.03433
\(515\) 0 0
\(516\) 0 0
\(517\) − 3.00000i − 0.131940i
\(518\) 2.17494i 0.0955615i
\(519\) 0 0
\(520\) 0 0
\(521\) 41.4500 1.81596 0.907978 0.419018i \(-0.137626\pi\)
0.907978 + 0.419018i \(0.137626\pi\)
\(522\) 0 0
\(523\) − 32.4222i − 1.41772i −0.705347 0.708862i \(-0.749209\pi\)
0.705347 0.708862i \(-0.250791\pi\)
\(524\) 3.00000 0.131056
\(525\) 0 0
\(526\) 29.7250 1.29607
\(527\) 70.5416i 3.07284i
\(528\) 0 0
\(529\) −30.3305 −1.31872
\(530\) 0 0
\(531\) 0 0
\(532\) − 0.211103i − 0.00915246i
\(533\) 28.0278i 1.21402i
\(534\) 0 0
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) − 11.3667i − 0.490053i
\(539\) 6.51388 0.280573
\(540\) 0 0
\(541\) 25.7250 1.10600 0.553002 0.833180i \(-0.313482\pi\)
0.553002 + 0.833180i \(0.313482\pi\)
\(542\) 0.275019i 0.0118131i
\(543\) 0 0
\(544\) 11.7250 0.502704
\(545\) 0 0
\(546\) 0 0
\(547\) 7.11943i 0.304405i 0.988349 + 0.152202i \(0.0486366\pi\)
−0.988349 + 0.152202i \(0.951363\pi\)
\(548\) − 3.90833i − 0.166955i
\(549\) 0 0
\(550\) 0 0
\(551\) 0.908327 0.0386960
\(552\) 0 0
\(553\) − 7.60555i − 0.323421i
\(554\) −18.7527 −0.796727
\(555\) 0 0
\(556\) 1.88057 0.0797540
\(557\) 19.4222i 0.822945i 0.911422 + 0.411473i \(0.134985\pi\)
−0.911422 + 0.411473i \(0.865015\pi\)
\(558\) 0 0
\(559\) −36.0555 −1.52499
\(560\) 0 0
\(561\) 0 0
\(562\) − 1.54163i − 0.0650299i
\(563\) − 8.09167i − 0.341023i −0.985356 0.170512i \(-0.945458\pi\)
0.985356 0.170512i \(-0.0545421\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 8.21110 0.345138
\(567\) 0 0
\(568\) − 7.81665i − 0.327980i
\(569\) −46.1472 −1.93459 −0.967295 0.253653i \(-0.918368\pi\)
−0.967295 + 0.253653i \(0.918368\pi\)
\(570\) 0 0
\(571\) 22.3305 0.934504 0.467252 0.884124i \(-0.345244\pi\)
0.467252 + 0.884124i \(0.345244\pi\)
\(572\) 1.51388i 0.0632984i
\(573\) 0 0
\(574\) −5.09167 −0.212522
\(575\) 0 0
\(576\) 0 0
\(577\) − 44.3583i − 1.84666i −0.384008 0.923330i \(-0.625456\pi\)
0.384008 0.923330i \(-0.374544\pi\)
\(578\) 40.0278i 1.66494i
\(579\) 0 0
\(580\) 0 0
\(581\) 2.44996 0.101642
\(582\) 0 0
\(583\) 1.30278i 0.0539555i
\(584\) −23.7250 −0.981747
\(585\) 0 0
\(586\) −1.02776 −0.0424562
\(587\) 16.5416i 0.682746i 0.939928 + 0.341373i \(0.110892\pi\)
−0.939928 + 0.341373i \(0.889108\pi\)
\(588\) 0 0
\(589\) 10.2111 0.420741
\(590\) 0 0
\(591\) 0 0
\(592\) 7.90833i 0.325030i
\(593\) 6.39445i 0.262589i 0.991343 + 0.131294i \(0.0419133\pi\)
−0.991343 + 0.131294i \(0.958087\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.21110 0.213455
\(597\) 0 0
\(598\) 47.5694i 1.94526i
\(599\) −24.9083 −1.01773 −0.508863 0.860847i \(-0.669934\pi\)
−0.508863 + 0.860847i \(0.669934\pi\)
\(600\) 0 0
\(601\) −1.90833 −0.0778423 −0.0389211 0.999242i \(-0.512392\pi\)
−0.0389211 + 0.999242i \(0.512392\pi\)
\(602\) − 6.55004i − 0.266960i
\(603\) 0 0
\(604\) 0.247263 0.0100610
\(605\) 0 0
\(606\) 0 0
\(607\) − 7.21110i − 0.292690i −0.989234 0.146345i \(-0.953249\pi\)
0.989234 0.146345i \(-0.0467509\pi\)
\(608\) − 1.69722i − 0.0688315i
\(609\) 0 0
\(610\) 0 0
\(611\) 15.0000 0.606835
\(612\) 0 0
\(613\) − 15.8806i − 0.641410i −0.947179 0.320705i \(-0.896080\pi\)
0.947179 0.320705i \(-0.103920\pi\)
\(614\) 22.0278 0.888968
\(615\) 0 0
\(616\) −2.09167 −0.0842759
\(617\) 3.39445i 0.136655i 0.997663 + 0.0683277i \(0.0217663\pi\)
−0.997663 + 0.0683277i \(0.978234\pi\)
\(618\) 0 0
\(619\) 11.4222 0.459097 0.229549 0.973297i \(-0.426275\pi\)
0.229549 + 0.973297i \(0.426275\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.27502i 0.251605i
\(623\) − 1.18335i − 0.0474098i
\(624\) 0 0
\(625\) 0 0
\(626\) 0.238859 0.00954672
\(627\) 0 0
\(628\) − 5.81665i − 0.232110i
\(629\) 16.5416 0.659558
\(630\) 0 0
\(631\) 6.93608 0.276121 0.138061 0.990424i \(-0.455913\pi\)
0.138061 + 0.990424i \(0.455913\pi\)
\(632\) − 32.7250i − 1.30173i
\(633\) 0 0
\(634\) −1.18335 −0.0469967
\(635\) 0 0
\(636\) 0 0
\(637\) 32.5694i 1.29045i
\(638\) − 1.18335i − 0.0468491i
\(639\) 0 0
\(640\) 0 0
\(641\) −27.7889 −1.09760 −0.548798 0.835955i \(-0.684914\pi\)
−0.548798 + 0.835955i \(0.684914\pi\)
\(642\) 0 0
\(643\) − 22.0000i − 0.867595i −0.901010 0.433798i \(-0.857173\pi\)
0.901010 0.433798i \(-0.142827\pi\)
\(644\) 1.54163 0.0607489
\(645\) 0 0
\(646\) 9.00000 0.354100
\(647\) − 33.2389i − 1.30675i −0.757033 0.653377i \(-0.773352\pi\)
0.757033 0.653377i \(-0.226648\pi\)
\(648\) 0 0
\(649\) −14.2111 −0.557835
\(650\) 0 0
\(651\) 0 0
\(652\) 2.81665i 0.110309i
\(653\) − 6.11943i − 0.239472i −0.992806 0.119736i \(-0.961795\pi\)
0.992806 0.119736i \(-0.0382048\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −18.5139 −0.722846
\(657\) 0 0
\(658\) 2.72498i 0.106231i
\(659\) −30.9083 −1.20402 −0.602009 0.798489i \(-0.705633\pi\)
−0.602009 + 0.798489i \(0.705633\pi\)
\(660\) 0 0
\(661\) −8.81665 −0.342928 −0.171464 0.985190i \(-0.554850\pi\)
−0.171464 + 0.985190i \(0.554850\pi\)
\(662\) 28.1472i 1.09397i
\(663\) 0 0
\(664\) 10.5416 0.409095
\(665\) 0 0
\(666\) 0 0
\(667\) 6.63331i 0.256843i
\(668\) 4.06392i 0.157238i
\(669\) 0 0
\(670\) 0 0
\(671\) −7.90833 −0.305298
\(672\) 0 0
\(673\) 30.0278i 1.15748i 0.815510 + 0.578742i \(0.196456\pi\)
−0.815510 + 0.578742i \(0.803544\pi\)
\(674\) 40.1833 1.54780
\(675\) 0 0
\(676\) −3.63331 −0.139743
\(677\) 24.2389i 0.931575i 0.884897 + 0.465788i \(0.154229\pi\)
−0.884897 + 0.465788i \(0.845771\pi\)
\(678\) 0 0
\(679\) −10.6695 −0.409457
\(680\) 0 0
\(681\) 0 0
\(682\) − 13.3028i − 0.509390i
\(683\) − 47.8444i − 1.83072i −0.402642 0.915358i \(-0.631908\pi\)
0.402642 0.915358i \(-0.368092\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −12.2750 −0.468662
\(687\) 0 0
\(688\) − 23.8167i − 0.908001i
\(689\) −6.51388 −0.248159
\(690\) 0 0
\(691\) 27.5416 1.04773 0.523867 0.851800i \(-0.324489\pi\)
0.523867 + 0.851800i \(0.324489\pi\)
\(692\) 1.45837i 0.0554387i
\(693\) 0 0
\(694\) −16.3028 −0.618845
\(695\) 0 0
\(696\) 0 0
\(697\) 38.7250i 1.46681i
\(698\) − 6.75274i − 0.255595i
\(699\) 0 0
\(700\) 0 0
\(701\) 41.2111 1.55652 0.778261 0.627941i \(-0.216102\pi\)
0.778261 + 0.627941i \(0.216102\pi\)
\(702\) 0 0
\(703\) − 2.39445i − 0.0903083i
\(704\) −8.81665 −0.332290
\(705\) 0 0
\(706\) −24.2750 −0.913602
\(707\) − 0.358288i − 0.0134748i
\(708\) 0 0
\(709\) 31.6333 1.18801 0.594007 0.804460i \(-0.297545\pi\)
0.594007 + 0.804460i \(0.297545\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 5.09167i − 0.190819i
\(713\) 74.5694i 2.79265i
\(714\) 0 0
\(715\) 0 0
\(716\) 3.78890 0.141598
\(717\) 0 0
\(718\) − 1.02776i − 0.0383555i
\(719\) 7.18335 0.267894 0.133947 0.990989i \(-0.457235\pi\)
0.133947 + 0.990989i \(0.457235\pi\)
\(720\) 0 0
\(721\) 2.02776 0.0755176
\(722\) 23.4500i 0.872717i
\(723\) 0 0
\(724\) −6.02776 −0.224020
\(725\) 0 0
\(726\) 0 0
\(727\) 39.3305i 1.45869i 0.684147 + 0.729344i \(0.260175\pi\)
−0.684147 + 0.729344i \(0.739825\pi\)
\(728\) − 10.4584i − 0.387613i
\(729\) 0 0
\(730\) 0 0
\(731\) −49.8167 −1.84254
\(732\) 0 0
\(733\) 19.6056i 0.724148i 0.932149 + 0.362074i \(0.117931\pi\)
−0.932149 + 0.362074i \(0.882069\pi\)
\(734\) 26.9638 0.995253
\(735\) 0 0
\(736\) 12.3944 0.456865
\(737\) 4.00000i 0.147342i
\(738\) 0 0
\(739\) −35.1194 −1.29189 −0.645945 0.763384i \(-0.723536\pi\)
−0.645945 + 0.763384i \(0.723536\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 1.18335i − 0.0434420i
\(743\) − 40.6972i − 1.49304i −0.665365 0.746518i \(-0.731724\pi\)
0.665365 0.746518i \(-0.268276\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 35.7250 1.30798
\(747\) 0 0
\(748\) 2.09167i 0.0764791i
\(749\) −2.09167 −0.0764281
\(750\) 0 0
\(751\) −45.3305 −1.65413 −0.827067 0.562103i \(-0.809992\pi\)
−0.827067 + 0.562103i \(0.809992\pi\)
\(752\) 9.90833i 0.361320i
\(753\) 0 0
\(754\) 5.91673 0.215475
\(755\) 0 0
\(756\) 0 0
\(757\) − 49.0555i − 1.78295i −0.453067 0.891476i \(-0.649670\pi\)
0.453067 0.891476i \(-0.350330\pi\)
\(758\) 4.14719i 0.150633i
\(759\) 0 0
\(760\) 0 0
\(761\) 13.5778 0.492195 0.246097 0.969245i \(-0.420852\pi\)
0.246097 + 0.969245i \(0.420852\pi\)
\(762\) 0 0
\(763\) 8.02776i 0.290624i
\(764\) −3.11943 −0.112857
\(765\) 0 0
\(766\) −28.1833 −1.01831
\(767\) − 71.0555i − 2.56567i
\(768\) 0 0
\(769\) 5.18335 0.186916 0.0934581 0.995623i \(-0.470208\pi\)
0.0934581 + 0.995623i \(0.470208\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) − 3.11943i − 0.112198i −0.998425 0.0560990i \(-0.982134\pi\)
0.998425 0.0560990i \(-0.0178663\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −45.9083 −1.64801
\(777\) 0 0
\(778\) − 15.6333i − 0.560481i
\(779\) 5.60555 0.200840
\(780\) 0 0
\(781\) 2.60555 0.0932340
\(782\) 65.7250i 2.35032i
\(783\) 0 0
\(784\) −21.5139 −0.768353
\(785\) 0 0
\(786\) 0 0
\(787\) − 10.2111i − 0.363986i −0.983300 0.181993i \(-0.941745\pi\)
0.983300 0.181993i \(-0.0582549\pi\)
\(788\) 4.02776i 0.143483i
\(789\) 0 0
\(790\) 0 0
\(791\) 7.54163 0.268150
\(792\) 0 0
\(793\) − 39.5416i − 1.40416i
\(794\) −28.2666 −1.00314
\(795\) 0 0
\(796\) 1.96384 0.0696065
\(797\) 3.51388i 0.124468i 0.998062 + 0.0622340i \(0.0198225\pi\)
−0.998062 + 0.0622340i \(0.980178\pi\)
\(798\) 0 0
\(799\) 20.7250 0.733197
\(800\) 0 0
\(801\) 0 0
\(802\) − 16.6611i − 0.588323i
\(803\) − 7.90833i − 0.279079i
\(804\) 0 0
\(805\) 0 0
\(806\) 66.5139 2.34285
\(807\) 0 0
\(808\) − 1.54163i − 0.0542345i
\(809\) 39.6333 1.39343 0.696716 0.717347i \(-0.254644\pi\)
0.696716 + 0.717347i \(0.254644\pi\)
\(810\) 0 0
\(811\) 38.8722 1.36499 0.682493 0.730892i \(-0.260896\pi\)
0.682493 + 0.730892i \(0.260896\pi\)
\(812\) − 0.191750i − 0.00672911i
\(813\) 0 0
\(814\) −3.11943 −0.109336
\(815\) 0 0
\(816\) 0 0
\(817\) 7.21110i 0.252285i
\(818\) − 8.09167i − 0.282919i
\(819\) 0 0
\(820\) 0 0
\(821\) −12.0000 −0.418803 −0.209401 0.977830i \(-0.567152\pi\)
−0.209401 + 0.977830i \(0.567152\pi\)
\(822\) 0 0
\(823\) 18.4222i 0.642158i 0.947052 + 0.321079i \(0.104045\pi\)
−0.947052 + 0.321079i \(0.895955\pi\)
\(824\) 8.72498 0.303949
\(825\) 0 0
\(826\) 12.9083 0.449138
\(827\) 13.8167i 0.480452i 0.970717 + 0.240226i \(0.0772216\pi\)
−0.970717 + 0.240226i \(0.922778\pi\)
\(828\) 0 0
\(829\) −29.7527 −1.03336 −0.516678 0.856180i \(-0.672831\pi\)
−0.516678 + 0.856180i \(0.672831\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 44.0833i − 1.52831i
\(833\) 45.0000i 1.55916i
\(834\) 0 0
\(835\) 0 0
\(836\) 0.302776 0.0104717
\(837\) 0 0
\(838\) − 8.33053i − 0.287773i
\(839\) −9.11943 −0.314838 −0.157419 0.987532i \(-0.550317\pi\)
−0.157419 + 0.987532i \(0.550317\pi\)
\(840\) 0 0
\(841\) −28.1749 −0.971550
\(842\) − 0.908327i − 0.0313030i
\(843\) 0 0
\(844\) −7.64171 −0.263039
\(845\) 0 0
\(846\) 0 0
\(847\) − 0.697224i − 0.0239569i
\(848\) − 4.30278i − 0.147758i
\(849\) 0 0
\(850\) 0 0
\(851\) 17.4861 0.599417
\(852\) 0 0
\(853\) − 12.7250i − 0.435695i −0.975983 0.217848i \(-0.930096\pi\)
0.975983 0.217848i \(-0.0699035\pi\)
\(854\) 7.18335 0.245809
\(855\) 0 0
\(856\) −9.00000 −0.307614
\(857\) − 3.00000i − 0.102478i −0.998686 0.0512390i \(-0.983683\pi\)
0.998686 0.0512390i \(-0.0163170\pi\)
\(858\) 0 0
\(859\) −41.3944 −1.41236 −0.706180 0.708032i \(-0.749583\pi\)
−0.706180 + 0.708032i \(0.749583\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 42.9916i 1.46430i
\(863\) 12.3944i 0.421912i 0.977496 + 0.210956i \(0.0676577\pi\)
−0.977496 + 0.210956i \(0.932342\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.51388 0.221351
\(867\) 0 0
\(868\) − 2.15559i − 0.0731655i
\(869\) 10.9083 0.370040
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 34.5416i 1.16973i
\(873\) 0 0
\(874\) 9.51388 0.321812
\(875\) 0 0
\(876\) 0 0
\(877\) − 20.0000i − 0.675352i −0.941262 0.337676i \(-0.890359\pi\)
0.941262 0.337676i \(-0.109641\pi\)
\(878\) 31.6611i 1.06851i
\(879\) 0 0
\(880\) 0 0
\(881\) −19.5416 −0.658374 −0.329187 0.944265i \(-0.606775\pi\)
−0.329187 + 0.944265i \(0.606775\pi\)
\(882\) 0 0
\(883\) 52.4500i 1.76508i 0.470236 + 0.882541i \(0.344169\pi\)
−0.470236 + 0.882541i \(0.655831\pi\)
\(884\) −10.4584 −0.351753
\(885\) 0 0
\(886\) 11.2111 0.376644
\(887\) − 3.23886i − 0.108750i −0.998521 0.0543751i \(-0.982683\pi\)
0.998521 0.0543751i \(-0.0173167\pi\)
\(888\) 0 0
\(889\) −5.66106 −0.189866
\(890\) 0 0
\(891\) 0 0
\(892\) − 6.85281i − 0.229449i
\(893\) − 3.00000i − 0.100391i
\(894\) 0 0
\(895\) 0 0
\(896\) 5.64171 0.188476
\(897\) 0 0
\(898\) − 30.5971i − 1.02104i
\(899\) 9.27502 0.309339
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) − 7.30278i − 0.243156i
\(903\) 0 0
\(904\) 32.4500 1.07927
\(905\) 0 0
\(906\) 0 0
\(907\) 4.00000i 0.132818i 0.997792 + 0.0664089i \(0.0211542\pi\)
−0.997792 + 0.0664089i \(0.978846\pi\)
\(908\) 0.513878i 0.0170536i
\(909\) 0 0
\(910\) 0 0
\(911\) 24.7889 0.821293 0.410646 0.911795i \(-0.365303\pi\)
0.410646 + 0.911795i \(0.365303\pi\)
\(912\) 0 0
\(913\) 3.51388i 0.116292i
\(914\) 26.9638 0.891885
\(915\) 0 0
\(916\) 5.66947 0.187324
\(917\) − 6.90833i − 0.228133i
\(918\) 0 0
\(919\) −26.7889 −0.883684 −0.441842 0.897093i \(-0.645675\pi\)
−0.441842 + 0.897093i \(0.645675\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 41.9638i 1.38201i
\(923\) 13.0278i 0.428814i
\(924\) 0 0
\(925\) 0 0
\(926\) 15.3583 0.504705
\(927\) 0 0
\(928\) − 1.54163i − 0.0506066i
\(929\) 53.6056 1.75874 0.879371 0.476138i \(-0.157964\pi\)
0.879371 + 0.476138i \(0.157964\pi\)
\(930\) 0 0
\(931\) 6.51388 0.213484
\(932\) − 4.81665i − 0.157775i
\(933\) 0 0
\(934\) −24.2750 −0.794303
\(935\) 0 0
\(936\) 0 0
\(937\) 9.21110i 0.300914i 0.988617 + 0.150457i \(0.0480744\pi\)
−0.988617 + 0.150457i \(0.951926\pi\)
\(938\) − 3.63331i − 0.118632i
\(939\) 0 0
\(940\) 0 0
\(941\) −59.6056 −1.94309 −0.971543 0.236864i \(-0.923880\pi\)
−0.971543 + 0.236864i \(0.923880\pi\)
\(942\) 0 0
\(943\) 40.9361i 1.33306i
\(944\) 46.9361 1.52764
\(945\) 0 0
\(946\) 9.39445 0.305440
\(947\) 6.63331i 0.215554i 0.994175 + 0.107777i \(0.0343732\pi\)
−0.994175 + 0.107777i \(0.965627\pi\)
\(948\) 0 0
\(949\) 39.5416 1.28358
\(950\) 0 0
\(951\) 0 0
\(952\) − 14.4500i − 0.468326i
\(953\) − 37.2666i − 1.20718i −0.797293 0.603592i \(-0.793736\pi\)
0.797293 0.603592i \(-0.206264\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.39445 0.206811
\(957\) 0 0
\(958\) 45.3583i 1.46546i
\(959\) −9.00000 −0.290625
\(960\) 0 0
\(961\) 73.2666 2.36344
\(962\) − 15.5971i − 0.502872i
\(963\) 0 0
\(964\) 6.64171 0.213915
\(965\) 0 0
\(966\) 0 0
\(967\) − 14.9083i − 0.479419i −0.970845 0.239710i \(-0.922948\pi\)
0.970845 0.239710i \(-0.0770523\pi\)
\(968\) − 3.00000i − 0.0964237i
\(969\) 0 0
\(970\) 0 0
\(971\) −45.3583 −1.45562 −0.727808 0.685781i \(-0.759461\pi\)
−0.727808 + 0.685781i \(0.759461\pi\)
\(972\) 0 0
\(973\) − 4.33053i − 0.138830i
\(974\) −5.48612 −0.175787
\(975\) 0 0
\(976\) 26.1194 0.836063
\(977\) − 52.0278i − 1.66452i −0.554389 0.832258i \(-0.687048\pi\)
0.554389 0.832258i \(-0.312952\pi\)
\(978\) 0 0
\(979\) 1.69722 0.0542435
\(980\) 0 0
\(981\) 0 0
\(982\) − 12.7527i − 0.406956i
\(983\) − 8.84441i − 0.282093i −0.990003 0.141046i \(-0.954953\pi\)
0.990003 0.141046i \(-0.0450467\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 8.17494 0.260343
\(987\) 0 0
\(988\) 1.51388i 0.0481629i
\(989\) −52.6611 −1.67452
\(990\) 0 0
\(991\) −16.9083 −0.537111 −0.268555 0.963264i \(-0.586546\pi\)
−0.268555 + 0.963264i \(0.586546\pi\)
\(992\) − 17.3305i − 0.550245i
\(993\) 0 0
\(994\) −2.36669 −0.0750669
\(995\) 0 0
\(996\) 0 0
\(997\) − 46.7250i − 1.47979i −0.672720 0.739897i \(-0.734874\pi\)
0.672720 0.739897i \(-0.265126\pi\)
\(998\) − 4.54163i − 0.143763i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.c.k.199.2 4
3.2 odd 2 275.2.b.c.199.3 4
5.2 odd 4 2475.2.a.o.1.2 2
5.3 odd 4 2475.2.a.t.1.1 2
5.4 even 2 inner 2475.2.c.k.199.3 4
12.11 even 2 4400.2.b.y.4049.1 4
15.2 even 4 275.2.a.f.1.1 yes 2
15.8 even 4 275.2.a.e.1.2 2
15.14 odd 2 275.2.b.c.199.2 4
60.23 odd 4 4400.2.a.bs.1.2 2
60.47 odd 4 4400.2.a.bh.1.1 2
60.59 even 2 4400.2.b.y.4049.4 4
165.32 odd 4 3025.2.a.h.1.2 2
165.98 odd 4 3025.2.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.a.e.1.2 2 15.8 even 4
275.2.a.f.1.1 yes 2 15.2 even 4
275.2.b.c.199.2 4 15.14 odd 2
275.2.b.c.199.3 4 3.2 odd 2
2475.2.a.o.1.2 2 5.2 odd 4
2475.2.a.t.1.1 2 5.3 odd 4
2475.2.c.k.199.2 4 1.1 even 1 trivial
2475.2.c.k.199.3 4 5.4 even 2 inner
3025.2.a.h.1.2 2 165.32 odd 4
3025.2.a.n.1.1 2 165.98 odd 4
4400.2.a.bh.1.1 2 60.47 odd 4
4400.2.a.bs.1.2 2 60.23 odd 4
4400.2.b.y.4049.1 4 12.11 even 2
4400.2.b.y.4049.4 4 60.59 even 2