Properties

Label 3025.2.a.h.1.2
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 275)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30278 q^{2} +2.30278 q^{3} -0.302776 q^{4} +3.00000 q^{6} -0.697224 q^{7} -3.00000 q^{8} +2.30278 q^{9} -0.697224 q^{12} -5.00000 q^{13} -0.908327 q^{14} -3.30278 q^{16} -6.90833 q^{17} +3.00000 q^{18} +1.00000 q^{19} -1.60555 q^{21} -7.30278 q^{23} -6.90833 q^{24} -6.51388 q^{26} -1.60555 q^{27} +0.211103 q^{28} -0.908327 q^{29} +10.2111 q^{31} +1.69722 q^{32} -9.00000 q^{34} -0.697224 q^{36} +2.39445 q^{37} +1.30278 q^{38} -11.5139 q^{39} +5.60555 q^{41} -2.09167 q^{42} -7.21110 q^{43} -9.51388 q^{46} -3.00000 q^{47} -7.60555 q^{48} -6.51388 q^{49} -15.9083 q^{51} +1.51388 q^{52} -1.30278 q^{53} -2.09167 q^{54} +2.09167 q^{56} +2.30278 q^{57} -1.18335 q^{58} -14.2111 q^{59} +7.90833 q^{61} +13.3028 q^{62} -1.60555 q^{63} +8.81665 q^{64} -4.00000 q^{67} +2.09167 q^{68} -16.8167 q^{69} -2.60555 q^{71} -6.90833 q^{72} +7.90833 q^{73} +3.11943 q^{74} -0.302776 q^{76} -15.0000 q^{78} +10.9083 q^{79} -10.6056 q^{81} +7.30278 q^{82} +3.51388 q^{83} +0.486122 q^{84} -9.39445 q^{86} -2.09167 q^{87} +1.69722 q^{89} +3.48612 q^{91} +2.21110 q^{92} +23.5139 q^{93} -3.90833 q^{94} +3.90833 q^{96} +15.3028 q^{97} -8.48612 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{3} + 3 q^{4} + 6 q^{6} - 5 q^{7} - 6 q^{8} + q^{9} - 5 q^{12} - 10 q^{13} + 9 q^{14} - 3 q^{16} - 3 q^{17} + 6 q^{18} + 2 q^{19} + 4 q^{21} - 11 q^{23} - 3 q^{24} + 5 q^{26} + 4 q^{27}+ \cdots - 35 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30278 0.921201 0.460601 0.887607i \(-0.347634\pi\)
0.460601 + 0.887607i \(0.347634\pi\)
\(3\) 2.30278 1.32951 0.664754 0.747062i \(-0.268536\pi\)
0.664754 + 0.747062i \(0.268536\pi\)
\(4\) −0.302776 −0.151388
\(5\) 0 0
\(6\) 3.00000 1.22474
\(7\) −0.697224 −0.263526 −0.131763 0.991281i \(-0.542064\pi\)
−0.131763 + 0.991281i \(0.542064\pi\)
\(8\) −3.00000 −1.06066
\(9\) 2.30278 0.767592
\(10\) 0 0
\(11\) 0 0
\(12\) −0.697224 −0.201271
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) −0.908327 −0.242761
\(15\) 0 0
\(16\) −3.30278 −0.825694
\(17\) −6.90833 −1.67552 −0.837758 0.546042i \(-0.816134\pi\)
−0.837758 + 0.546042i \(0.816134\pi\)
\(18\) 3.00000 0.707107
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) −1.60555 −0.350360
\(22\) 0 0
\(23\) −7.30278 −1.52273 −0.761367 0.648321i \(-0.775471\pi\)
−0.761367 + 0.648321i \(0.775471\pi\)
\(24\) −6.90833 −1.41016
\(25\) 0 0
\(26\) −6.51388 −1.27748
\(27\) −1.60555 −0.308988
\(28\) 0.211103 0.0398946
\(29\) −0.908327 −0.168672 −0.0843360 0.996437i \(-0.526877\pi\)
−0.0843360 + 0.996437i \(0.526877\pi\)
\(30\) 0 0
\(31\) 10.2111 1.83397 0.916984 0.398924i \(-0.130616\pi\)
0.916984 + 0.398924i \(0.130616\pi\)
\(32\) 1.69722 0.300030
\(33\) 0 0
\(34\) −9.00000 −1.54349
\(35\) 0 0
\(36\) −0.697224 −0.116204
\(37\) 2.39445 0.393645 0.196822 0.980439i \(-0.436938\pi\)
0.196822 + 0.980439i \(0.436938\pi\)
\(38\) 1.30278 0.211338
\(39\) −11.5139 −1.84370
\(40\) 0 0
\(41\) 5.60555 0.875440 0.437720 0.899111i \(-0.355786\pi\)
0.437720 + 0.899111i \(0.355786\pi\)
\(42\) −2.09167 −0.322752
\(43\) −7.21110 −1.09968 −0.549841 0.835269i \(-0.685312\pi\)
−0.549841 + 0.835269i \(0.685312\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −9.51388 −1.40274
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) −7.60555 −1.09777
\(49\) −6.51388 −0.930554
\(50\) 0 0
\(51\) −15.9083 −2.22761
\(52\) 1.51388 0.209937
\(53\) −1.30278 −0.178950 −0.0894750 0.995989i \(-0.528519\pi\)
−0.0894750 + 0.995989i \(0.528519\pi\)
\(54\) −2.09167 −0.284641
\(55\) 0 0
\(56\) 2.09167 0.279512
\(57\) 2.30278 0.305010
\(58\) −1.18335 −0.155381
\(59\) −14.2111 −1.85013 −0.925064 0.379811i \(-0.875989\pi\)
−0.925064 + 0.379811i \(0.875989\pi\)
\(60\) 0 0
\(61\) 7.90833 1.01256 0.506279 0.862370i \(-0.331021\pi\)
0.506279 + 0.862370i \(0.331021\pi\)
\(62\) 13.3028 1.68945
\(63\) −1.60555 −0.202280
\(64\) 8.81665 1.10208
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 2.09167 0.253653
\(69\) −16.8167 −2.02449
\(70\) 0 0
\(71\) −2.60555 −0.309222 −0.154611 0.987975i \(-0.549412\pi\)
−0.154611 + 0.987975i \(0.549412\pi\)
\(72\) −6.90833 −0.814154
\(73\) 7.90833 0.925600 0.462800 0.886463i \(-0.346845\pi\)
0.462800 + 0.886463i \(0.346845\pi\)
\(74\) 3.11943 0.362626
\(75\) 0 0
\(76\) −0.302776 −0.0347307
\(77\) 0 0
\(78\) −15.0000 −1.69842
\(79\) 10.9083 1.22728 0.613641 0.789585i \(-0.289704\pi\)
0.613641 + 0.789585i \(0.289704\pi\)
\(80\) 0 0
\(81\) −10.6056 −1.17839
\(82\) 7.30278 0.806457
\(83\) 3.51388 0.385698 0.192849 0.981228i \(-0.438227\pi\)
0.192849 + 0.981228i \(0.438227\pi\)
\(84\) 0.486122 0.0530402
\(85\) 0 0
\(86\) −9.39445 −1.01303
\(87\) −2.09167 −0.224251
\(88\) 0 0
\(89\) 1.69722 0.179905 0.0899527 0.995946i \(-0.471328\pi\)
0.0899527 + 0.995946i \(0.471328\pi\)
\(90\) 0 0
\(91\) 3.48612 0.365445
\(92\) 2.21110 0.230523
\(93\) 23.5139 2.43828
\(94\) −3.90833 −0.403113
\(95\) 0 0
\(96\) 3.90833 0.398892
\(97\) 15.3028 1.55376 0.776881 0.629648i \(-0.216801\pi\)
0.776881 + 0.629648i \(0.216801\pi\)
\(98\) −8.48612 −0.857228
\(99\) 0 0
\(100\) 0 0
\(101\) 0.513878 0.0511328 0.0255664 0.999673i \(-0.491861\pi\)
0.0255664 + 0.999673i \(0.491861\pi\)
\(102\) −20.7250 −2.05208
\(103\) 2.90833 0.286566 0.143283 0.989682i \(-0.454234\pi\)
0.143283 + 0.989682i \(0.454234\pi\)
\(104\) 15.0000 1.47087
\(105\) 0 0
\(106\) −1.69722 −0.164849
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 0.486122 0.0467771
\(109\) −11.5139 −1.10283 −0.551415 0.834231i \(-0.685912\pi\)
−0.551415 + 0.834231i \(0.685912\pi\)
\(110\) 0 0
\(111\) 5.51388 0.523354
\(112\) 2.30278 0.217592
\(113\) −10.8167 −1.01755 −0.508773 0.860901i \(-0.669901\pi\)
−0.508773 + 0.860901i \(0.669901\pi\)
\(114\) 3.00000 0.280976
\(115\) 0 0
\(116\) 0.275019 0.0255349
\(117\) −11.5139 −1.06446
\(118\) −18.5139 −1.70434
\(119\) 4.81665 0.441542
\(120\) 0 0
\(121\) 0 0
\(122\) 10.3028 0.932769
\(123\) 12.9083 1.16390
\(124\) −3.09167 −0.277640
\(125\) 0 0
\(126\) −2.09167 −0.186341
\(127\) −8.11943 −0.720483 −0.360241 0.932859i \(-0.617306\pi\)
−0.360241 + 0.932859i \(0.617306\pi\)
\(128\) 8.09167 0.715210
\(129\) −16.6056 −1.46204
\(130\) 0 0
\(131\) 9.90833 0.865695 0.432847 0.901467i \(-0.357509\pi\)
0.432847 + 0.901467i \(0.357509\pi\)
\(132\) 0 0
\(133\) −0.697224 −0.0604570
\(134\) −5.21110 −0.450171
\(135\) 0 0
\(136\) 20.7250 1.77715
\(137\) −12.9083 −1.10283 −0.551416 0.834230i \(-0.685912\pi\)
−0.551416 + 0.834230i \(0.685912\pi\)
\(138\) −21.9083 −1.86496
\(139\) 6.21110 0.526819 0.263409 0.964684i \(-0.415153\pi\)
0.263409 + 0.964684i \(0.415153\pi\)
\(140\) 0 0
\(141\) −6.90833 −0.581786
\(142\) −3.39445 −0.284856
\(143\) 0 0
\(144\) −7.60555 −0.633796
\(145\) 0 0
\(146\) 10.3028 0.852664
\(147\) −15.0000 −1.23718
\(148\) −0.724981 −0.0595930
\(149\) −17.2111 −1.40999 −0.704994 0.709213i \(-0.749050\pi\)
−0.704994 + 0.709213i \(0.749050\pi\)
\(150\) 0 0
\(151\) −0.816654 −0.0664583 −0.0332292 0.999448i \(-0.510579\pi\)
−0.0332292 + 0.999448i \(0.510579\pi\)
\(152\) −3.00000 −0.243332
\(153\) −15.9083 −1.28611
\(154\) 0 0
\(155\) 0 0
\(156\) 3.48612 0.279113
\(157\) 19.2111 1.53321 0.766606 0.642117i \(-0.221944\pi\)
0.766606 + 0.642117i \(0.221944\pi\)
\(158\) 14.2111 1.13057
\(159\) −3.00000 −0.237915
\(160\) 0 0
\(161\) 5.09167 0.401280
\(162\) −13.8167 −1.08554
\(163\) 9.30278 0.728650 0.364325 0.931272i \(-0.381300\pi\)
0.364325 + 0.931272i \(0.381300\pi\)
\(164\) −1.69722 −0.132531
\(165\) 0 0
\(166\) 4.57779 0.355306
\(167\) −13.4222 −1.03864 −0.519321 0.854579i \(-0.673815\pi\)
−0.519321 + 0.854579i \(0.673815\pi\)
\(168\) 4.81665 0.371613
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 2.30278 0.176098
\(172\) 2.18335 0.166479
\(173\) 4.81665 0.366203 0.183102 0.983094i \(-0.441386\pi\)
0.183102 + 0.983094i \(0.441386\pi\)
\(174\) −2.72498 −0.206580
\(175\) 0 0
\(176\) 0 0
\(177\) −32.7250 −2.45976
\(178\) 2.21110 0.165729
\(179\) 12.5139 0.935331 0.467666 0.883905i \(-0.345095\pi\)
0.467666 + 0.883905i \(0.345095\pi\)
\(180\) 0 0
\(181\) −19.9083 −1.47977 −0.739887 0.672731i \(-0.765121\pi\)
−0.739887 + 0.672731i \(0.765121\pi\)
\(182\) 4.54163 0.336648
\(183\) 18.2111 1.34620
\(184\) 21.9083 1.61510
\(185\) 0 0
\(186\) 30.6333 2.24614
\(187\) 0 0
\(188\) 0.908327 0.0662465
\(189\) 1.11943 0.0814265
\(190\) 0 0
\(191\) 10.3028 0.745483 0.372741 0.927935i \(-0.378418\pi\)
0.372741 + 0.927935i \(0.378418\pi\)
\(192\) 20.3028 1.46523
\(193\) −13.2111 −0.950956 −0.475478 0.879728i \(-0.657725\pi\)
−0.475478 + 0.879728i \(0.657725\pi\)
\(194\) 19.9361 1.43133
\(195\) 0 0
\(196\) 1.97224 0.140875
\(197\) −13.3028 −0.947784 −0.473892 0.880583i \(-0.657151\pi\)
−0.473892 + 0.880583i \(0.657151\pi\)
\(198\) 0 0
\(199\) −6.48612 −0.459789 −0.229894 0.973216i \(-0.573838\pi\)
−0.229894 + 0.973216i \(0.573838\pi\)
\(200\) 0 0
\(201\) −9.21110 −0.649701
\(202\) 0.669468 0.0471036
\(203\) 0.633308 0.0444495
\(204\) 4.81665 0.337233
\(205\) 0 0
\(206\) 3.78890 0.263985
\(207\) −16.8167 −1.16884
\(208\) 16.5139 1.14503
\(209\) 0 0
\(210\) 0 0
\(211\) 25.2389 1.73751 0.868757 0.495238i \(-0.164919\pi\)
0.868757 + 0.495238i \(0.164919\pi\)
\(212\) 0.394449 0.0270908
\(213\) −6.00000 −0.411113
\(214\) 3.90833 0.267168
\(215\) 0 0
\(216\) 4.81665 0.327732
\(217\) −7.11943 −0.483298
\(218\) −15.0000 −1.01593
\(219\) 18.2111 1.23059
\(220\) 0 0
\(221\) 34.5416 2.32352
\(222\) 7.18335 0.482115
\(223\) −22.6333 −1.51564 −0.757819 0.652465i \(-0.773735\pi\)
−0.757819 + 0.652465i \(0.773735\pi\)
\(224\) −1.18335 −0.0790656
\(225\) 0 0
\(226\) −14.0917 −0.937364
\(227\) −1.69722 −0.112649 −0.0563244 0.998413i \(-0.517938\pi\)
−0.0563244 + 0.998413i \(0.517938\pi\)
\(228\) −0.697224 −0.0461748
\(229\) −18.7250 −1.23738 −0.618691 0.785635i \(-0.712337\pi\)
−0.618691 + 0.785635i \(0.712337\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.72498 0.178904
\(233\) −15.9083 −1.04219 −0.521095 0.853499i \(-0.674476\pi\)
−0.521095 + 0.853499i \(0.674476\pi\)
\(234\) −15.0000 −0.980581
\(235\) 0 0
\(236\) 4.30278 0.280087
\(237\) 25.1194 1.63168
\(238\) 6.27502 0.406749
\(239\) −21.1194 −1.36610 −0.683051 0.730371i \(-0.739347\pi\)
−0.683051 + 0.730371i \(0.739347\pi\)
\(240\) 0 0
\(241\) −21.9361 −1.41303 −0.706514 0.707699i \(-0.749733\pi\)
−0.706514 + 0.707699i \(0.749733\pi\)
\(242\) 0 0
\(243\) −19.6056 −1.25770
\(244\) −2.39445 −0.153289
\(245\) 0 0
\(246\) 16.8167 1.07219
\(247\) −5.00000 −0.318142
\(248\) −30.6333 −1.94522
\(249\) 8.09167 0.512789
\(250\) 0 0
\(251\) 6.90833 0.436050 0.218025 0.975943i \(-0.430039\pi\)
0.218025 + 0.975943i \(0.430039\pi\)
\(252\) 0.486122 0.0306228
\(253\) 0 0
\(254\) −10.5778 −0.663710
\(255\) 0 0
\(256\) −7.09167 −0.443230
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) −21.6333 −1.34683
\(259\) −1.66947 −0.103736
\(260\) 0 0
\(261\) −2.09167 −0.129471
\(262\) 12.9083 0.797479
\(263\) 22.8167 1.40694 0.703468 0.710727i \(-0.251634\pi\)
0.703468 + 0.710727i \(0.251634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.908327 −0.0556931
\(267\) 3.90833 0.239186
\(268\) 1.21110 0.0739799
\(269\) 8.72498 0.531971 0.265986 0.963977i \(-0.414303\pi\)
0.265986 + 0.963977i \(0.414303\pi\)
\(270\) 0 0
\(271\) 0.211103 0.0128236 0.00641178 0.999979i \(-0.497959\pi\)
0.00641178 + 0.999979i \(0.497959\pi\)
\(272\) 22.8167 1.38346
\(273\) 8.02776 0.485862
\(274\) −16.8167 −1.01593
\(275\) 0 0
\(276\) 5.09167 0.306483
\(277\) −14.3944 −0.864879 −0.432439 0.901663i \(-0.642347\pi\)
−0.432439 + 0.901663i \(0.642347\pi\)
\(278\) 8.09167 0.485306
\(279\) 23.5139 1.40774
\(280\) 0 0
\(281\) 1.18335 0.0705925 0.0352963 0.999377i \(-0.488763\pi\)
0.0352963 + 0.999377i \(0.488763\pi\)
\(282\) −9.00000 −0.535942
\(283\) −6.30278 −0.374661 −0.187331 0.982297i \(-0.559984\pi\)
−0.187331 + 0.982297i \(0.559984\pi\)
\(284\) 0.788897 0.0468125
\(285\) 0 0
\(286\) 0 0
\(287\) −3.90833 −0.230701
\(288\) 3.90833 0.230300
\(289\) 30.7250 1.80735
\(290\) 0 0
\(291\) 35.2389 2.06574
\(292\) −2.39445 −0.140125
\(293\) −0.788897 −0.0460879 −0.0230439 0.999734i \(-0.507336\pi\)
−0.0230439 + 0.999734i \(0.507336\pi\)
\(294\) −19.5416 −1.13969
\(295\) 0 0
\(296\) −7.18335 −0.417524
\(297\) 0 0
\(298\) −22.4222 −1.29888
\(299\) 36.5139 2.11165
\(300\) 0 0
\(301\) 5.02776 0.289795
\(302\) −1.06392 −0.0612215
\(303\) 1.18335 0.0679815
\(304\) −3.30278 −0.189427
\(305\) 0 0
\(306\) −20.7250 −1.18477
\(307\) 16.9083 0.965009 0.482505 0.875893i \(-0.339727\pi\)
0.482505 + 0.875893i \(0.339727\pi\)
\(308\) 0 0
\(309\) 6.69722 0.380992
\(310\) 0 0
\(311\) 4.81665 0.273127 0.136564 0.990631i \(-0.456394\pi\)
0.136564 + 0.990631i \(0.456394\pi\)
\(312\) 34.5416 1.95553
\(313\) 0.183346 0.0103633 0.00518167 0.999987i \(-0.498351\pi\)
0.00518167 + 0.999987i \(0.498351\pi\)
\(314\) 25.0278 1.41240
\(315\) 0 0
\(316\) −3.30278 −0.185796
\(317\) −0.908327 −0.0510167 −0.0255084 0.999675i \(-0.508120\pi\)
−0.0255084 + 0.999675i \(0.508120\pi\)
\(318\) −3.90833 −0.219168
\(319\) 0 0
\(320\) 0 0
\(321\) 6.90833 0.385585
\(322\) 6.63331 0.369660
\(323\) −6.90833 −0.384390
\(324\) 3.21110 0.178395
\(325\) 0 0
\(326\) 12.1194 0.671233
\(327\) −26.5139 −1.46622
\(328\) −16.8167 −0.928544
\(329\) 2.09167 0.115318
\(330\) 0 0
\(331\) −21.6056 −1.18755 −0.593774 0.804632i \(-0.702363\pi\)
−0.593774 + 0.804632i \(0.702363\pi\)
\(332\) −1.06392 −0.0583900
\(333\) 5.51388 0.302159
\(334\) −17.4861 −0.956798
\(335\) 0 0
\(336\) 5.30278 0.289290
\(337\) 30.8444 1.68020 0.840101 0.542430i \(-0.182496\pi\)
0.840101 + 0.542430i \(0.182496\pi\)
\(338\) 15.6333 0.850340
\(339\) −24.9083 −1.35283
\(340\) 0 0
\(341\) 0 0
\(342\) 3.00000 0.162221
\(343\) 9.42221 0.508751
\(344\) 21.6333 1.16639
\(345\) 0 0
\(346\) 6.27502 0.337347
\(347\) 12.5139 0.671780 0.335890 0.941901i \(-0.390963\pi\)
0.335890 + 0.941901i \(0.390963\pi\)
\(348\) 0.633308 0.0339489
\(349\) 5.18335 0.277458 0.138729 0.990330i \(-0.455698\pi\)
0.138729 + 0.990330i \(0.455698\pi\)
\(350\) 0 0
\(351\) 8.02776 0.428490
\(352\) 0 0
\(353\) 18.6333 0.991751 0.495875 0.868394i \(-0.334847\pi\)
0.495875 + 0.868394i \(0.334847\pi\)
\(354\) −42.6333 −2.26593
\(355\) 0 0
\(356\) −0.513878 −0.0272355
\(357\) 11.0917 0.587034
\(358\) 16.3028 0.861628
\(359\) −0.788897 −0.0416364 −0.0208182 0.999783i \(-0.506627\pi\)
−0.0208182 + 0.999783i \(0.506627\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −25.9361 −1.36317
\(363\) 0 0
\(364\) −1.05551 −0.0553239
\(365\) 0 0
\(366\) 23.7250 1.24012
\(367\) −20.6972 −1.08039 −0.540193 0.841541i \(-0.681649\pi\)
−0.540193 + 0.841541i \(0.681649\pi\)
\(368\) 24.1194 1.25731
\(369\) 12.9083 0.671981
\(370\) 0 0
\(371\) 0.908327 0.0471580
\(372\) −7.11943 −0.369125
\(373\) −27.4222 −1.41987 −0.709934 0.704268i \(-0.751275\pi\)
−0.709934 + 0.704268i \(0.751275\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 9.00000 0.464140
\(377\) 4.54163 0.233906
\(378\) 1.45837 0.0750102
\(379\) 3.18335 0.163518 0.0817588 0.996652i \(-0.473946\pi\)
0.0817588 + 0.996652i \(0.473946\pi\)
\(380\) 0 0
\(381\) −18.6972 −0.957888
\(382\) 13.4222 0.686740
\(383\) 21.6333 1.10541 0.552705 0.833377i \(-0.313596\pi\)
0.552705 + 0.833377i \(0.313596\pi\)
\(384\) 18.6333 0.950877
\(385\) 0 0
\(386\) −17.2111 −0.876022
\(387\) −16.6056 −0.844108
\(388\) −4.63331 −0.235221
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 50.4500 2.55136
\(392\) 19.5416 0.987002
\(393\) 22.8167 1.15095
\(394\) −17.3305 −0.873100
\(395\) 0 0
\(396\) 0 0
\(397\) 21.6972 1.08895 0.544476 0.838776i \(-0.316728\pi\)
0.544476 + 0.838776i \(0.316728\pi\)
\(398\) −8.44996 −0.423558
\(399\) −1.60555 −0.0803781
\(400\) 0 0
\(401\) −12.7889 −0.638647 −0.319324 0.947646i \(-0.603456\pi\)
−0.319324 + 0.947646i \(0.603456\pi\)
\(402\) −12.0000 −0.598506
\(403\) −51.0555 −2.54326
\(404\) −0.155590 −0.00774088
\(405\) 0 0
\(406\) 0.825058 0.0409469
\(407\) 0 0
\(408\) 47.7250 2.36274
\(409\) 6.21110 0.307119 0.153560 0.988139i \(-0.450926\pi\)
0.153560 + 0.988139i \(0.450926\pi\)
\(410\) 0 0
\(411\) −29.7250 −1.46623
\(412\) −0.880571 −0.0433826
\(413\) 9.90833 0.487557
\(414\) −21.9083 −1.07674
\(415\) 0 0
\(416\) −8.48612 −0.416066
\(417\) 14.3028 0.700410
\(418\) 0 0
\(419\) 6.39445 0.312389 0.156195 0.987726i \(-0.450077\pi\)
0.156195 + 0.987726i \(0.450077\pi\)
\(420\) 0 0
\(421\) 0.697224 0.0339806 0.0169903 0.999856i \(-0.494592\pi\)
0.0169903 + 0.999856i \(0.494592\pi\)
\(422\) 32.8806 1.60060
\(423\) −6.90833 −0.335894
\(424\) 3.90833 0.189805
\(425\) 0 0
\(426\) −7.81665 −0.378718
\(427\) −5.51388 −0.266835
\(428\) −0.908327 −0.0439056
\(429\) 0 0
\(430\) 0 0
\(431\) −33.0000 −1.58955 −0.794777 0.606902i \(-0.792412\pi\)
−0.794777 + 0.606902i \(0.792412\pi\)
\(432\) 5.30278 0.255130
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) −9.27502 −0.445215
\(435\) 0 0
\(436\) 3.48612 0.166955
\(437\) −7.30278 −0.349339
\(438\) 23.7250 1.13362
\(439\) −24.3028 −1.15991 −0.579954 0.814649i \(-0.696930\pi\)
−0.579954 + 0.814649i \(0.696930\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 45.0000 2.14043
\(443\) −8.60555 −0.408862 −0.204431 0.978881i \(-0.565534\pi\)
−0.204431 + 0.978881i \(0.565534\pi\)
\(444\) −1.66947 −0.0792294
\(445\) 0 0
\(446\) −29.4861 −1.39621
\(447\) −39.6333 −1.87459
\(448\) −6.14719 −0.290427
\(449\) 23.4861 1.10838 0.554189 0.832391i \(-0.313028\pi\)
0.554189 + 0.832391i \(0.313028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.27502 0.154044
\(453\) −1.88057 −0.0883569
\(454\) −2.21110 −0.103772
\(455\) 0 0
\(456\) −6.90833 −0.323512
\(457\) 20.6972 0.968175 0.484088 0.875020i \(-0.339152\pi\)
0.484088 + 0.875020i \(0.339152\pi\)
\(458\) −24.3944 −1.13988
\(459\) 11.0917 0.517715
\(460\) 0 0
\(461\) −32.2111 −1.50022 −0.750110 0.661313i \(-0.770000\pi\)
−0.750110 + 0.661313i \(0.770000\pi\)
\(462\) 0 0
\(463\) 11.7889 0.547877 0.273938 0.961747i \(-0.411674\pi\)
0.273938 + 0.961747i \(0.411674\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) −20.7250 −0.960066
\(467\) −18.6333 −0.862247 −0.431123 0.902293i \(-0.641883\pi\)
−0.431123 + 0.902293i \(0.641883\pi\)
\(468\) 3.48612 0.161146
\(469\) 2.78890 0.128779
\(470\) 0 0
\(471\) 44.2389 2.03842
\(472\) 42.6333 1.96236
\(473\) 0 0
\(474\) 32.7250 1.50311
\(475\) 0 0
\(476\) −1.45837 −0.0668441
\(477\) −3.00000 −0.137361
\(478\) −27.5139 −1.25846
\(479\) 34.8167 1.59081 0.795407 0.606076i \(-0.207257\pi\)
0.795407 + 0.606076i \(0.207257\pi\)
\(480\) 0 0
\(481\) −11.9722 −0.545887
\(482\) −28.5778 −1.30168
\(483\) 11.7250 0.533505
\(484\) 0 0
\(485\) 0 0
\(486\) −25.5416 −1.15859
\(487\) 4.21110 0.190823 0.0954116 0.995438i \(-0.469583\pi\)
0.0954116 + 0.995438i \(0.469583\pi\)
\(488\) −23.7250 −1.07398
\(489\) 21.4222 0.968746
\(490\) 0 0
\(491\) 9.78890 0.441767 0.220883 0.975300i \(-0.429106\pi\)
0.220883 + 0.975300i \(0.429106\pi\)
\(492\) −3.90833 −0.176201
\(493\) 6.27502 0.282613
\(494\) −6.51388 −0.293073
\(495\) 0 0
\(496\) −33.7250 −1.51430
\(497\) 1.81665 0.0814881
\(498\) 10.5416 0.472382
\(499\) −3.48612 −0.156060 −0.0780301 0.996951i \(-0.524863\pi\)
−0.0780301 + 0.996951i \(0.524863\pi\)
\(500\) 0 0
\(501\) −30.9083 −1.38088
\(502\) 9.00000 0.401690
\(503\) −9.39445 −0.418878 −0.209439 0.977822i \(-0.567164\pi\)
−0.209439 + 0.977822i \(0.567164\pi\)
\(504\) 4.81665 0.214551
\(505\) 0 0
\(506\) 0 0
\(507\) 27.6333 1.22724
\(508\) 2.45837 0.109072
\(509\) −22.6972 −1.00604 −0.503018 0.864276i \(-0.667777\pi\)
−0.503018 + 0.864276i \(0.667777\pi\)
\(510\) 0 0
\(511\) −5.51388 −0.243920
\(512\) −25.4222 −1.12351
\(513\) −1.60555 −0.0708868
\(514\) −23.4500 −1.03433
\(515\) 0 0
\(516\) 5.02776 0.221335
\(517\) 0 0
\(518\) −2.17494 −0.0955615
\(519\) 11.0917 0.486870
\(520\) 0 0
\(521\) −41.4500 −1.81596 −0.907978 0.419018i \(-0.862374\pi\)
−0.907978 + 0.419018i \(0.862374\pi\)
\(522\) −2.72498 −0.119269
\(523\) 32.4222 1.41772 0.708862 0.705347i \(-0.249209\pi\)
0.708862 + 0.705347i \(0.249209\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) 29.7250 1.29607
\(527\) −70.5416 −3.07284
\(528\) 0 0
\(529\) 30.3305 1.31872
\(530\) 0 0
\(531\) −32.7250 −1.42014
\(532\) 0.211103 0.00915246
\(533\) −28.0278 −1.21402
\(534\) 5.09167 0.220338
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 28.8167 1.24353
\(538\) 11.3667 0.490053
\(539\) 0 0
\(540\) 0 0
\(541\) −25.7250 −1.10600 −0.553002 0.833180i \(-0.686518\pi\)
−0.553002 + 0.833180i \(0.686518\pi\)
\(542\) 0.275019 0.0118131
\(543\) −45.8444 −1.96737
\(544\) −11.7250 −0.502704
\(545\) 0 0
\(546\) 10.4584 0.447577
\(547\) 7.11943 0.304405 0.152202 0.988349i \(-0.451363\pi\)
0.152202 + 0.988349i \(0.451363\pi\)
\(548\) 3.90833 0.166955
\(549\) 18.2111 0.777231
\(550\) 0 0
\(551\) −0.908327 −0.0386960
\(552\) 50.4500 2.14729
\(553\) −7.60555 −0.323421
\(554\) −18.7527 −0.796727
\(555\) 0 0
\(556\) −1.88057 −0.0797540
\(557\) −19.4222 −0.822945 −0.411473 0.911422i \(-0.634985\pi\)
−0.411473 + 0.911422i \(0.634985\pi\)
\(558\) 30.6333 1.29681
\(559\) 36.0555 1.52499
\(560\) 0 0
\(561\) 0 0
\(562\) 1.54163 0.0650299
\(563\) −8.09167 −0.341023 −0.170512 0.985356i \(-0.554542\pi\)
−0.170512 + 0.985356i \(0.554542\pi\)
\(564\) 2.09167 0.0880753
\(565\) 0 0
\(566\) −8.21110 −0.345138
\(567\) 7.39445 0.310538
\(568\) 7.81665 0.327980
\(569\) 46.1472 1.93459 0.967295 0.253653i \(-0.0816321\pi\)
0.967295 + 0.253653i \(0.0816321\pi\)
\(570\) 0 0
\(571\) −22.3305 −0.934504 −0.467252 0.884124i \(-0.654756\pi\)
−0.467252 + 0.884124i \(0.654756\pi\)
\(572\) 0 0
\(573\) 23.7250 0.991125
\(574\) −5.09167 −0.212522
\(575\) 0 0
\(576\) 20.3028 0.845949
\(577\) 44.3583 1.84666 0.923330 0.384008i \(-0.125456\pi\)
0.923330 + 0.384008i \(0.125456\pi\)
\(578\) 40.0278 1.66494
\(579\) −30.4222 −1.26430
\(580\) 0 0
\(581\) −2.44996 −0.101642
\(582\) 45.9083 1.90296
\(583\) 0 0
\(584\) −23.7250 −0.981747
\(585\) 0 0
\(586\) −1.02776 −0.0424562
\(587\) 16.5416 0.682746 0.341373 0.939928i \(-0.389108\pi\)
0.341373 + 0.939928i \(0.389108\pi\)
\(588\) 4.54163 0.187294
\(589\) 10.2111 0.420741
\(590\) 0 0
\(591\) −30.6333 −1.26009
\(592\) −7.90833 −0.325030
\(593\) 6.39445 0.262589 0.131294 0.991343i \(-0.458087\pi\)
0.131294 + 0.991343i \(0.458087\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.21110 0.213455
\(597\) −14.9361 −0.611293
\(598\) 47.5694 1.94526
\(599\) −24.9083 −1.01773 −0.508863 0.860847i \(-0.669934\pi\)
−0.508863 + 0.860847i \(0.669934\pi\)
\(600\) 0 0
\(601\) 1.90833 0.0778423 0.0389211 0.999242i \(-0.487608\pi\)
0.0389211 + 0.999242i \(0.487608\pi\)
\(602\) 6.55004 0.266960
\(603\) −9.21110 −0.375105
\(604\) 0.247263 0.0100610
\(605\) 0 0
\(606\) 1.54163 0.0626246
\(607\) −7.21110 −0.292690 −0.146345 0.989234i \(-0.546751\pi\)
−0.146345 + 0.989234i \(0.546751\pi\)
\(608\) 1.69722 0.0688315
\(609\) 1.45837 0.0590959
\(610\) 0 0
\(611\) 15.0000 0.606835
\(612\) 4.81665 0.194702
\(613\) 15.8806 0.641410 0.320705 0.947179i \(-0.396080\pi\)
0.320705 + 0.947179i \(0.396080\pi\)
\(614\) 22.0278 0.888968
\(615\) 0 0
\(616\) 0 0
\(617\) 3.39445 0.136655 0.0683277 0.997663i \(-0.478234\pi\)
0.0683277 + 0.997663i \(0.478234\pi\)
\(618\) 8.72498 0.350970
\(619\) −11.4222 −0.459097 −0.229549 0.973297i \(-0.573725\pi\)
−0.229549 + 0.973297i \(0.573725\pi\)
\(620\) 0 0
\(621\) 11.7250 0.470507
\(622\) 6.27502 0.251605
\(623\) −1.18335 −0.0474098
\(624\) 38.0278 1.52233
\(625\) 0 0
\(626\) 0.238859 0.00954672
\(627\) 0 0
\(628\) −5.81665 −0.232110
\(629\) −16.5416 −0.659558
\(630\) 0 0
\(631\) 6.93608 0.276121 0.138061 0.990424i \(-0.455913\pi\)
0.138061 + 0.990424i \(0.455913\pi\)
\(632\) −32.7250 −1.30173
\(633\) 58.1194 2.31004
\(634\) −1.18335 −0.0469967
\(635\) 0 0
\(636\) 0.908327 0.0360175
\(637\) 32.5694 1.29045
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 27.7889 1.09760 0.548798 0.835955i \(-0.315086\pi\)
0.548798 + 0.835955i \(0.315086\pi\)
\(642\) 9.00000 0.355202
\(643\) −22.0000 −0.867595 −0.433798 0.901010i \(-0.642827\pi\)
−0.433798 + 0.901010i \(0.642827\pi\)
\(644\) −1.54163 −0.0607489
\(645\) 0 0
\(646\) −9.00000 −0.354100
\(647\) −33.2389 −1.30675 −0.653377 0.757033i \(-0.726648\pi\)
−0.653377 + 0.757033i \(0.726648\pi\)
\(648\) 31.8167 1.24988
\(649\) 0 0
\(650\) 0 0
\(651\) −16.3944 −0.642549
\(652\) −2.81665 −0.110309
\(653\) 6.11943 0.239472 0.119736 0.992806i \(-0.461795\pi\)
0.119736 + 0.992806i \(0.461795\pi\)
\(654\) −34.5416 −1.35068
\(655\) 0 0
\(656\) −18.5139 −0.722846
\(657\) 18.2111 0.710483
\(658\) 2.72498 0.106231
\(659\) 30.9083 1.20402 0.602009 0.798489i \(-0.294367\pi\)
0.602009 + 0.798489i \(0.294367\pi\)
\(660\) 0 0
\(661\) −8.81665 −0.342928 −0.171464 0.985190i \(-0.554850\pi\)
−0.171464 + 0.985190i \(0.554850\pi\)
\(662\) −28.1472 −1.09397
\(663\) 79.5416 3.08914
\(664\) −10.5416 −0.409095
\(665\) 0 0
\(666\) 7.18335 0.278349
\(667\) 6.63331 0.256843
\(668\) 4.06392 0.157238
\(669\) −52.1194 −2.01505
\(670\) 0 0
\(671\) 0 0
\(672\) −2.72498 −0.105118
\(673\) −30.0278 −1.15748 −0.578742 0.815510i \(-0.696456\pi\)
−0.578742 + 0.815510i \(0.696456\pi\)
\(674\) 40.1833 1.54780
\(675\) 0 0
\(676\) −3.63331 −0.139743
\(677\) −24.2389 −0.931575 −0.465788 0.884897i \(-0.654229\pi\)
−0.465788 + 0.884897i \(0.654229\pi\)
\(678\) −32.4500 −1.24623
\(679\) −10.6695 −0.409457
\(680\) 0 0
\(681\) −3.90833 −0.149767
\(682\) 0 0
\(683\) 47.8444 1.83072 0.915358 0.402642i \(-0.131908\pi\)
0.915358 + 0.402642i \(0.131908\pi\)
\(684\) −0.697224 −0.0266590
\(685\) 0 0
\(686\) 12.2750 0.468662
\(687\) −43.1194 −1.64511
\(688\) 23.8167 0.908001
\(689\) 6.51388 0.248159
\(690\) 0 0
\(691\) 27.5416 1.04773 0.523867 0.851800i \(-0.324489\pi\)
0.523867 + 0.851800i \(0.324489\pi\)
\(692\) −1.45837 −0.0554387
\(693\) 0 0
\(694\) 16.3028 0.618845
\(695\) 0 0
\(696\) 6.27502 0.237854
\(697\) −38.7250 −1.46681
\(698\) 6.75274 0.255595
\(699\) −36.6333 −1.38560
\(700\) 0 0
\(701\) 41.2111 1.55652 0.778261 0.627941i \(-0.216102\pi\)
0.778261 + 0.627941i \(0.216102\pi\)
\(702\) 10.4584 0.394726
\(703\) 2.39445 0.0903083
\(704\) 0 0
\(705\) 0 0
\(706\) 24.2750 0.913602
\(707\) −0.358288 −0.0134748
\(708\) 9.90833 0.372378
\(709\) −31.6333 −1.18801 −0.594007 0.804460i \(-0.702455\pi\)
−0.594007 + 0.804460i \(0.702455\pi\)
\(710\) 0 0
\(711\) 25.1194 0.942052
\(712\) −5.09167 −0.190819
\(713\) −74.5694 −2.79265
\(714\) 14.4500 0.540776
\(715\) 0 0
\(716\) −3.78890 −0.141598
\(717\) −48.6333 −1.81624
\(718\) −1.02776 −0.0383555
\(719\) 7.18335 0.267894 0.133947 0.990989i \(-0.457235\pi\)
0.133947 + 0.990989i \(0.457235\pi\)
\(720\) 0 0
\(721\) −2.02776 −0.0755176
\(722\) −23.4500 −0.872717
\(723\) −50.5139 −1.87863
\(724\) 6.02776 0.224020
\(725\) 0 0
\(726\) 0 0
\(727\) −39.3305 −1.45869 −0.729344 0.684147i \(-0.760175\pi\)
−0.729344 + 0.684147i \(0.760175\pi\)
\(728\) −10.4584 −0.387613
\(729\) −13.3305 −0.493723
\(730\) 0 0
\(731\) 49.8167 1.84254
\(732\) −5.51388 −0.203799
\(733\) −19.6056 −0.724148 −0.362074 0.932149i \(-0.617931\pi\)
−0.362074 + 0.932149i \(0.617931\pi\)
\(734\) −26.9638 −0.995253
\(735\) 0 0
\(736\) −12.3944 −0.456865
\(737\) 0 0
\(738\) 16.8167 0.619030
\(739\) −35.1194 −1.29189 −0.645945 0.763384i \(-0.723536\pi\)
−0.645945 + 0.763384i \(0.723536\pi\)
\(740\) 0 0
\(741\) −11.5139 −0.422973
\(742\) 1.18335 0.0434420
\(743\) −40.6972 −1.49304 −0.746518 0.665365i \(-0.768276\pi\)
−0.746518 + 0.665365i \(0.768276\pi\)
\(744\) −70.5416 −2.58618
\(745\) 0 0
\(746\) −35.7250 −1.30798
\(747\) 8.09167 0.296059
\(748\) 0 0
\(749\) −2.09167 −0.0764281
\(750\) 0 0
\(751\) −45.3305 −1.65413 −0.827067 0.562103i \(-0.809992\pi\)
−0.827067 + 0.562103i \(0.809992\pi\)
\(752\) 9.90833 0.361320
\(753\) 15.9083 0.579732
\(754\) 5.91673 0.215475
\(755\) 0 0
\(756\) −0.338936 −0.0123270
\(757\) 49.0555 1.78295 0.891476 0.453067i \(-0.149670\pi\)
0.891476 + 0.453067i \(0.149670\pi\)
\(758\) 4.14719 0.150633
\(759\) 0 0
\(760\) 0 0
\(761\) 13.5778 0.492195 0.246097 0.969245i \(-0.420852\pi\)
0.246097 + 0.969245i \(0.420852\pi\)
\(762\) −24.3583 −0.882408
\(763\) 8.02776 0.290624
\(764\) −3.11943 −0.112857
\(765\) 0 0
\(766\) 28.1833 1.01831
\(767\) 71.0555 2.56567
\(768\) −16.3305 −0.589277
\(769\) 5.18335 0.186916 0.0934581 0.995623i \(-0.470208\pi\)
0.0934581 + 0.995623i \(0.470208\pi\)
\(770\) 0 0
\(771\) −41.4500 −1.49278
\(772\) 4.00000 0.143963
\(773\) 3.11943 0.112198 0.0560990 0.998425i \(-0.482134\pi\)
0.0560990 + 0.998425i \(0.482134\pi\)
\(774\) −21.6333 −0.777593
\(775\) 0 0
\(776\) −45.9083 −1.64801
\(777\) −3.84441 −0.137917
\(778\) 15.6333 0.560481
\(779\) 5.60555 0.200840
\(780\) 0 0
\(781\) 0 0
\(782\) 65.7250 2.35032
\(783\) 1.45837 0.0521177
\(784\) 21.5139 0.768353
\(785\) 0 0
\(786\) 29.7250 1.06025
\(787\) −10.2111 −0.363986 −0.181993 0.983300i \(-0.558255\pi\)
−0.181993 + 0.983300i \(0.558255\pi\)
\(788\) 4.02776 0.143483
\(789\) 52.5416 1.87053
\(790\) 0 0
\(791\) 7.54163 0.268150
\(792\) 0 0
\(793\) −39.5416 −1.40416
\(794\) 28.2666 1.00314
\(795\) 0 0
\(796\) 1.96384 0.0696065
\(797\) 3.51388 0.124468 0.0622340 0.998062i \(-0.480178\pi\)
0.0622340 + 0.998062i \(0.480178\pi\)
\(798\) −2.09167 −0.0740444
\(799\) 20.7250 0.733197
\(800\) 0 0
\(801\) 3.90833 0.138094
\(802\) −16.6611 −0.588323
\(803\) 0 0
\(804\) 2.78890 0.0983568
\(805\) 0 0
\(806\) −66.5139 −2.34285
\(807\) 20.0917 0.707260
\(808\) −1.54163 −0.0542345
\(809\) −39.6333 −1.39343 −0.696716 0.717347i \(-0.745356\pi\)
−0.696716 + 0.717347i \(0.745356\pi\)
\(810\) 0 0
\(811\) −38.8722 −1.36499 −0.682493 0.730892i \(-0.739104\pi\)
−0.682493 + 0.730892i \(0.739104\pi\)
\(812\) −0.191750 −0.00672911
\(813\) 0.486122 0.0170490
\(814\) 0 0
\(815\) 0 0
\(816\) 52.5416 1.83933
\(817\) −7.21110 −0.252285
\(818\) 8.09167 0.282919
\(819\) 8.02776 0.280513
\(820\) 0 0
\(821\) −12.0000 −0.418803 −0.209401 0.977830i \(-0.567152\pi\)
−0.209401 + 0.977830i \(0.567152\pi\)
\(822\) −38.7250 −1.35069
\(823\) 18.4222 0.642158 0.321079 0.947052i \(-0.395955\pi\)
0.321079 + 0.947052i \(0.395955\pi\)
\(824\) −8.72498 −0.303949
\(825\) 0 0
\(826\) 12.9083 0.449138
\(827\) −13.8167 −0.480452 −0.240226 0.970717i \(-0.577222\pi\)
−0.240226 + 0.970717i \(0.577222\pi\)
\(828\) 5.09167 0.176948
\(829\) 29.7527 1.03336 0.516678 0.856180i \(-0.327169\pi\)
0.516678 + 0.856180i \(0.327169\pi\)
\(830\) 0 0
\(831\) −33.1472 −1.14986
\(832\) −44.0833 −1.52831
\(833\) 45.0000 1.55916
\(834\) 18.6333 0.645219
\(835\) 0 0
\(836\) 0 0
\(837\) −16.3944 −0.566675
\(838\) 8.33053 0.287773
\(839\) −9.11943 −0.314838 −0.157419 0.987532i \(-0.550317\pi\)
−0.157419 + 0.987532i \(0.550317\pi\)
\(840\) 0 0
\(841\) −28.1749 −0.971550
\(842\) 0.908327 0.0313030
\(843\) 2.72498 0.0938533
\(844\) −7.64171 −0.263039
\(845\) 0 0
\(846\) −9.00000 −0.309426
\(847\) 0 0
\(848\) 4.30278 0.147758
\(849\) −14.5139 −0.498115
\(850\) 0 0
\(851\) −17.4861 −0.599417
\(852\) 1.81665 0.0622375
\(853\) 12.7250 0.435695 0.217848 0.975983i \(-0.430096\pi\)
0.217848 + 0.975983i \(0.430096\pi\)
\(854\) −7.18335 −0.245809
\(855\) 0 0
\(856\) −9.00000 −0.307614
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) 41.3944 1.41236 0.706180 0.708032i \(-0.250417\pi\)
0.706180 + 0.708032i \(0.250417\pi\)
\(860\) 0 0
\(861\) −9.00000 −0.306719
\(862\) −42.9916 −1.46430
\(863\) −12.3944 −0.421912 −0.210956 0.977496i \(-0.567658\pi\)
−0.210956 + 0.977496i \(0.567658\pi\)
\(864\) −2.72498 −0.0927057
\(865\) 0 0
\(866\) 6.51388 0.221351
\(867\) 70.7527 2.40289
\(868\) 2.15559 0.0731655
\(869\) 0 0
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) 34.5416 1.16973
\(873\) 35.2389 1.19265
\(874\) −9.51388 −0.321812
\(875\) 0 0
\(876\) −5.51388 −0.186297
\(877\) −20.0000 −0.675352 −0.337676 0.941262i \(-0.609641\pi\)
−0.337676 + 0.941262i \(0.609641\pi\)
\(878\) −31.6611 −1.06851
\(879\) −1.81665 −0.0612742
\(880\) 0 0
\(881\) 19.5416 0.658374 0.329187 0.944265i \(-0.393225\pi\)
0.329187 + 0.944265i \(0.393225\pi\)
\(882\) −19.5416 −0.658001
\(883\) 52.4500 1.76508 0.882541 0.470236i \(-0.155831\pi\)
0.882541 + 0.470236i \(0.155831\pi\)
\(884\) −10.4584 −0.351753
\(885\) 0 0
\(886\) −11.2111 −0.376644
\(887\) 3.23886 0.108750 0.0543751 0.998521i \(-0.482683\pi\)
0.0543751 + 0.998521i \(0.482683\pi\)
\(888\) −16.5416 −0.555101
\(889\) 5.66106 0.189866
\(890\) 0 0
\(891\) 0 0
\(892\) 6.85281 0.229449
\(893\) −3.00000 −0.100391
\(894\) −51.6333 −1.72688
\(895\) 0 0
\(896\) −5.64171 −0.188476
\(897\) 84.0833 2.80746
\(898\) 30.5971 1.02104
\(899\) −9.27502 −0.309339
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) 11.5778 0.385285
\(904\) 32.4500 1.07927
\(905\) 0 0
\(906\) −2.44996 −0.0813945
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) 0.513878 0.0170536
\(909\) 1.18335 0.0392491
\(910\) 0 0
\(911\) −24.7889 −0.821293 −0.410646 0.911795i \(-0.634697\pi\)
−0.410646 + 0.911795i \(0.634697\pi\)
\(912\) −7.60555 −0.251845
\(913\) 0 0
\(914\) 26.9638 0.891885
\(915\) 0 0
\(916\) 5.66947 0.187324
\(917\) −6.90833 −0.228133
\(918\) 14.4500 0.476920
\(919\) −26.7889 −0.883684 −0.441842 0.897093i \(-0.645675\pi\)
−0.441842 + 0.897093i \(0.645675\pi\)
\(920\) 0 0
\(921\) 38.9361 1.28299
\(922\) −41.9638 −1.38201
\(923\) 13.0278 0.428814
\(924\) 0 0
\(925\) 0 0
\(926\) 15.3583 0.504705
\(927\) 6.69722 0.219966
\(928\) −1.54163 −0.0506066
\(929\) 53.6056 1.75874 0.879371 0.476138i \(-0.157964\pi\)
0.879371 + 0.476138i \(0.157964\pi\)
\(930\) 0 0
\(931\) −6.51388 −0.213484
\(932\) 4.81665 0.157775
\(933\) 11.0917 0.363125
\(934\) −24.2750 −0.794303
\(935\) 0 0
\(936\) 34.5416 1.12903
\(937\) 9.21110 0.300914 0.150457 0.988617i \(-0.451926\pi\)
0.150457 + 0.988617i \(0.451926\pi\)
\(938\) 3.63331 0.118632
\(939\) 0.422205 0.0137781
\(940\) 0 0
\(941\) −59.6056 −1.94309 −0.971543 0.236864i \(-0.923880\pi\)
−0.971543 + 0.236864i \(0.923880\pi\)
\(942\) 57.6333 1.87779
\(943\) −40.9361 −1.33306
\(944\) 46.9361 1.52764
\(945\) 0 0
\(946\) 0 0
\(947\) 6.63331 0.215554 0.107777 0.994175i \(-0.465627\pi\)
0.107777 + 0.994175i \(0.465627\pi\)
\(948\) −7.60555 −0.247017
\(949\) −39.5416 −1.28358
\(950\) 0 0
\(951\) −2.09167 −0.0678271
\(952\) −14.4500 −0.468326
\(953\) −37.2666 −1.20718 −0.603592 0.797293i \(-0.706264\pi\)
−0.603592 + 0.797293i \(0.706264\pi\)
\(954\) −3.90833 −0.126537
\(955\) 0 0
\(956\) 6.39445 0.206811
\(957\) 0 0
\(958\) 45.3583 1.46546
\(959\) 9.00000 0.290625
\(960\) 0 0
\(961\) 73.2666 2.36344
\(962\) −15.5971 −0.502872
\(963\) 6.90833 0.222618
\(964\) 6.64171 0.213915
\(965\) 0 0
\(966\) 15.2750 0.491466
\(967\) −14.9083 −0.479419 −0.239710 0.970845i \(-0.577052\pi\)
−0.239710 + 0.970845i \(0.577052\pi\)
\(968\) 0 0
\(969\) −15.9083 −0.511049
\(970\) 0 0
\(971\) 45.3583 1.45562 0.727808 0.685781i \(-0.240539\pi\)
0.727808 + 0.685781i \(0.240539\pi\)
\(972\) 5.93608 0.190400
\(973\) −4.33053 −0.138830
\(974\) 5.48612 0.175787
\(975\) 0 0
\(976\) −26.1194 −0.836063
\(977\) −52.0278 −1.66452 −0.832258 0.554389i \(-0.812952\pi\)
−0.832258 + 0.554389i \(0.812952\pi\)
\(978\) 27.9083 0.892410
\(979\) 0 0
\(980\) 0 0
\(981\) −26.5139 −0.846523
\(982\) 12.7527 0.406956
\(983\) 8.84441 0.282093 0.141046 0.990003i \(-0.454953\pi\)
0.141046 + 0.990003i \(0.454953\pi\)
\(984\) −38.7250 −1.23451
\(985\) 0 0
\(986\) 8.17494 0.260343
\(987\) 4.81665 0.153316
\(988\) 1.51388 0.0481629
\(989\) 52.6611 1.67452
\(990\) 0 0
\(991\) −16.9083 −0.537111 −0.268555 0.963264i \(-0.586546\pi\)
−0.268555 + 0.963264i \(0.586546\pi\)
\(992\) 17.3305 0.550245
\(993\) −49.7527 −1.57886
\(994\) 2.36669 0.0750669
\(995\) 0 0
\(996\) −2.44996 −0.0776300
\(997\) −46.7250 −1.47979 −0.739897 0.672720i \(-0.765126\pi\)
−0.739897 + 0.672720i \(0.765126\pi\)
\(998\) −4.54163 −0.143763
\(999\) −3.84441 −0.121632
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.h.1.2 2
5.4 even 2 3025.2.a.n.1.1 2
11.10 odd 2 275.2.a.f.1.1 yes 2
33.32 even 2 2475.2.a.o.1.2 2
44.43 even 2 4400.2.a.bh.1.1 2
55.32 even 4 275.2.b.c.199.2 4
55.43 even 4 275.2.b.c.199.3 4
55.54 odd 2 275.2.a.e.1.2 2
165.32 odd 4 2475.2.c.k.199.3 4
165.98 odd 4 2475.2.c.k.199.2 4
165.164 even 2 2475.2.a.t.1.1 2
220.43 odd 4 4400.2.b.y.4049.1 4
220.87 odd 4 4400.2.b.y.4049.4 4
220.219 even 2 4400.2.a.bs.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.a.e.1.2 2 55.54 odd 2
275.2.a.f.1.1 yes 2 11.10 odd 2
275.2.b.c.199.2 4 55.32 even 4
275.2.b.c.199.3 4 55.43 even 4
2475.2.a.o.1.2 2 33.32 even 2
2475.2.a.t.1.1 2 165.164 even 2
2475.2.c.k.199.2 4 165.98 odd 4
2475.2.c.k.199.3 4 165.32 odd 4
3025.2.a.h.1.2 2 1.1 even 1 trivial
3025.2.a.n.1.1 2 5.4 even 2
4400.2.a.bh.1.1 2 44.43 even 2
4400.2.a.bs.1.2 2 220.219 even 2
4400.2.b.y.4049.1 4 220.43 odd 4
4400.2.b.y.4049.4 4 220.87 odd 4