Properties

Label 2475.2.d.a.2474.1
Level $2475$
Weight $2$
Character 2475.2474
Analytic conductor $19.763$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,2,Mod(2474,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.2474");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2474.1
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2475.2474
Dual form 2475.2.d.a.2474.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{2} -1.00000 q^{4} -2.44949 q^{7} -1.73205i q^{8} +(-1.73205 + 2.82843i) q^{11} +4.89898 q^{13} +4.24264i q^{14} -5.00000 q^{16} -7.34847i q^{19} +(4.89898 + 3.00000i) q^{22} +2.82843 q^{23} -8.48528i q^{26} +2.44949 q^{28} -6.92820 q^{29} -4.00000 q^{31} +5.19615i q^{32} -8.00000i q^{37} -12.7279 q^{38} -6.92820 q^{41} +2.44949 q^{43} +(1.73205 - 2.82843i) q^{44} -4.89898i q^{46} -2.82843 q^{47} -1.00000 q^{49} -4.89898 q^{52} -9.89949 q^{53} +4.24264i q^{56} +12.0000i q^{58} +11.3137i q^{59} +4.89898i q^{61} +6.92820i q^{62} -1.00000 q^{64} +4.00000i q^{67} -2.82843i q^{71} -13.8564 q^{74} +7.34847i q^{76} +(4.24264 - 6.92820i) q^{77} -12.2474i q^{79} +12.0000i q^{82} -13.8564i q^{83} -4.24264i q^{86} +(4.89898 + 3.00000i) q^{88} +7.07107i q^{89} -12.0000 q^{91} -2.82843 q^{92} +4.89898i q^{94} +10.0000i q^{97} +1.73205i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 40 q^{16} - 32 q^{31} - 8 q^{49} - 8 q^{64} - 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2475\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2026\) \(2377\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205i 1.22474i −0.790569 0.612372i \(-0.790215\pi\)
0.790569 0.612372i \(-0.209785\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −2.44949 −0.925820 −0.462910 0.886405i \(-0.653195\pi\)
−0.462910 + 0.886405i \(0.653195\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 0 0
\(10\) 0 0
\(11\) −1.73205 + 2.82843i −0.522233 + 0.852803i
\(12\) 0 0
\(13\) 4.89898 1.35873 0.679366 0.733799i \(-0.262255\pi\)
0.679366 + 0.733799i \(0.262255\pi\)
\(14\) 4.24264i 1.13389i
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 7.34847i 1.68585i −0.538028 0.842927i \(-0.680830\pi\)
0.538028 0.842927i \(-0.319170\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.89898 + 3.00000i 1.04447 + 0.639602i
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 8.48528i 1.66410i
\(27\) 0 0
\(28\) 2.44949 0.462910
\(29\) −6.92820 −1.28654 −0.643268 0.765641i \(-0.722422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 5.19615i 0.918559i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) −12.7279 −2.06474
\(39\) 0 0
\(40\) 0 0
\(41\) −6.92820 −1.08200 −0.541002 0.841021i \(-0.681955\pi\)
−0.541002 + 0.841021i \(0.681955\pi\)
\(42\) 0 0
\(43\) 2.44949 0.373544 0.186772 0.982403i \(-0.440197\pi\)
0.186772 + 0.982403i \(0.440197\pi\)
\(44\) 1.73205 2.82843i 0.261116 0.426401i
\(45\) 0 0
\(46\) 4.89898i 0.722315i
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −4.89898 −0.679366
\(53\) −9.89949 −1.35980 −0.679900 0.733305i \(-0.737977\pi\)
−0.679900 + 0.733305i \(0.737977\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 0 0
\(58\) 12.0000i 1.57568i
\(59\) 11.3137i 1.47292i 0.676481 + 0.736460i \(0.263504\pi\)
−0.676481 + 0.736460i \(0.736496\pi\)
\(60\) 0 0
\(61\) 4.89898i 0.627250i 0.949547 + 0.313625i \(0.101543\pi\)
−0.949547 + 0.313625i \(0.898457\pi\)
\(62\) 6.92820i 0.879883i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.82843i 0.335673i −0.985815 0.167836i \(-0.946322\pi\)
0.985815 0.167836i \(-0.0536780\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −13.8564 −1.61077
\(75\) 0 0
\(76\) 7.34847i 0.842927i
\(77\) 4.24264 6.92820i 0.483494 0.789542i
\(78\) 0 0
\(79\) 12.2474i 1.37795i −0.724787 0.688973i \(-0.758062\pi\)
0.724787 0.688973i \(-0.241938\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.0000i 1.32518i
\(83\) 13.8564i 1.52094i −0.649374 0.760469i \(-0.724969\pi\)
0.649374 0.760469i \(-0.275031\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.24264i 0.457496i
\(87\) 0 0
\(88\) 4.89898 + 3.00000i 0.522233 + 0.319801i
\(89\) 7.07107i 0.749532i 0.927119 + 0.374766i \(0.122277\pi\)
−0.927119 + 0.374766i \(0.877723\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) −2.82843 −0.294884
\(93\) 0 0
\(94\) 4.89898i 0.505291i
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 1.73205i 0.174964i
\(99\) 0 0
\(100\) 0 0
\(101\) −13.8564 −1.37876 −0.689382 0.724398i \(-0.742118\pi\)
−0.689382 + 0.724398i \(0.742118\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 8.48528i 0.832050i
\(105\) 0 0
\(106\) 17.1464i 1.66541i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 14.6969i 1.40771i 0.710343 + 0.703856i \(0.248540\pi\)
−0.710343 + 0.703856i \(0.751460\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 12.2474 1.15728
\(113\) −1.41421 −0.133038 −0.0665190 0.997785i \(-0.521189\pi\)
−0.0665190 + 0.997785i \(0.521189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.92820 0.643268
\(117\) 0 0
\(118\) 19.5959 1.80395
\(119\) 0 0
\(120\) 0 0
\(121\) −5.00000 9.79796i −0.454545 0.890724i
\(122\) 8.48528 0.768221
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 7.34847 0.652071 0.326036 0.945357i \(-0.394287\pi\)
0.326036 + 0.945357i \(0.394287\pi\)
\(128\) 12.1244i 1.07165i
\(129\) 0 0
\(130\) 0 0
\(131\) 3.46410 0.302660 0.151330 0.988483i \(-0.451644\pi\)
0.151330 + 0.988483i \(0.451644\pi\)
\(132\) 0 0
\(133\) 18.0000i 1.56080i
\(134\) 6.92820 0.598506
\(135\) 0 0
\(136\) 0 0
\(137\) −15.5563 −1.32907 −0.664534 0.747258i \(-0.731370\pi\)
−0.664534 + 0.747258i \(0.731370\pi\)
\(138\) 0 0
\(139\) 2.44949i 0.207763i −0.994590 0.103882i \(-0.966874\pi\)
0.994590 0.103882i \(-0.0331263\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.89898 −0.411113
\(143\) −8.48528 + 13.8564i −0.709575 + 1.15873i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 8.00000i 0.657596i
\(149\) −13.8564 −1.13516 −0.567581 0.823318i \(-0.692120\pi\)
−0.567581 + 0.823318i \(0.692120\pi\)
\(150\) 0 0
\(151\) 2.44949i 0.199337i −0.995021 0.0996683i \(-0.968222\pi\)
0.995021 0.0996683i \(-0.0317782\pi\)
\(152\) −12.7279 −1.03237
\(153\) 0 0
\(154\) −12.0000 7.34847i −0.966988 0.592157i
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) −21.2132 −1.68763
\(159\) 0 0
\(160\) 0 0
\(161\) −6.92820 −0.546019
\(162\) 0 0
\(163\) 8.00000i 0.626608i 0.949653 + 0.313304i \(0.101436\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) 6.92820 0.541002
\(165\) 0 0
\(166\) −24.0000 −1.86276
\(167\) 3.46410i 0.268060i −0.990977 0.134030i \(-0.957208\pi\)
0.990977 0.134030i \(-0.0427919\pi\)
\(168\) 0 0
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) 0 0
\(172\) −2.44949 −0.186772
\(173\) 6.92820i 0.526742i 0.964695 + 0.263371i \(0.0848343\pi\)
−0.964695 + 0.263371i \(0.915166\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.66025 14.1421i 0.652791 1.06600i
\(177\) 0 0
\(178\) 12.2474 0.917985
\(179\) 22.6274i 1.69125i −0.533775 0.845626i \(-0.679227\pi\)
0.533775 0.845626i \(-0.320773\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 20.7846i 1.54066i
\(183\) 0 0
\(184\) 4.89898i 0.361158i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 2.82843 0.206284
\(189\) 0 0
\(190\) 0 0
\(191\) 2.82843i 0.204658i −0.994751 0.102329i \(-0.967371\pi\)
0.994751 0.102329i \(-0.0326294\pi\)
\(192\) 0 0
\(193\) −9.79796 −0.705273 −0.352636 0.935760i \(-0.614715\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(194\) 17.3205 1.24354
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 24.0000i 1.68863i
\(203\) 16.9706 1.19110
\(204\) 0 0
\(205\) 0 0
\(206\) −6.92820 −0.482711
\(207\) 0 0
\(208\) −24.4949 −1.69842
\(209\) 20.7846 + 12.7279i 1.43770 + 0.880409i
\(210\) 0 0
\(211\) 12.2474i 0.843149i −0.906794 0.421575i \(-0.861478\pi\)
0.906794 0.421575i \(-0.138522\pi\)
\(212\) 9.89949 0.679900
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.79796 0.665129
\(218\) 25.4558 1.72409
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 12.7279i 0.850420i
\(225\) 0 0
\(226\) 2.44949i 0.162938i
\(227\) 27.7128i 1.83936i −0.392664 0.919682i \(-0.628446\pi\)
0.392664 0.919682i \(-0.371554\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12.0000i 0.787839i
\(233\) 20.7846i 1.36165i 0.732448 + 0.680823i \(0.238378\pi\)
−0.732448 + 0.680823i \(0.761622\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.3137i 0.736460i
\(237\) 0 0
\(238\) 0 0
\(239\) 17.3205 1.12037 0.560185 0.828367i \(-0.310730\pi\)
0.560185 + 0.828367i \(0.310730\pi\)
\(240\) 0 0
\(241\) 19.5959i 1.26228i 0.775667 + 0.631142i \(0.217413\pi\)
−0.775667 + 0.631142i \(0.782587\pi\)
\(242\) −16.9706 + 8.66025i −1.09091 + 0.556702i
\(243\) 0 0
\(244\) 4.89898i 0.313625i
\(245\) 0 0
\(246\) 0 0
\(247\) 36.0000i 2.29063i
\(248\) 6.92820i 0.439941i
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65685i 0.357057i 0.983935 + 0.178529i \(0.0571337\pi\)
−0.983935 + 0.178529i \(0.942866\pi\)
\(252\) 0 0
\(253\) −4.89898 + 8.00000i −0.307996 + 0.502956i
\(254\) 12.7279i 0.798621i
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 9.89949 0.617514 0.308757 0.951141i \(-0.400087\pi\)
0.308757 + 0.951141i \(0.400087\pi\)
\(258\) 0 0
\(259\) 19.5959i 1.21763i
\(260\) 0 0
\(261\) 0 0
\(262\) 6.00000i 0.370681i
\(263\) 3.46410i 0.213606i −0.994280 0.106803i \(-0.965939\pi\)
0.994280 0.106803i \(-0.0340614\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 31.1769 1.91158
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 15.5563i 0.948487i 0.880394 + 0.474244i \(0.157278\pi\)
−0.880394 + 0.474244i \(0.842722\pi\)
\(270\) 0 0
\(271\) 7.34847i 0.446388i −0.974774 0.223194i \(-0.928352\pi\)
0.974774 0.223194i \(-0.0716483\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 26.9444i 1.62777i
\(275\) 0 0
\(276\) 0 0
\(277\) −24.4949 −1.47176 −0.735878 0.677114i \(-0.763230\pi\)
−0.735878 + 0.677114i \(0.763230\pi\)
\(278\) −4.24264 −0.254457
\(279\) 0 0
\(280\) 0 0
\(281\) −13.8564 −0.826604 −0.413302 0.910594i \(-0.635625\pi\)
−0.413302 + 0.910594i \(0.635625\pi\)
\(282\) 0 0
\(283\) −2.44949 −0.145607 −0.0728035 0.997346i \(-0.523195\pi\)
−0.0728035 + 0.997346i \(0.523195\pi\)
\(284\) 2.82843i 0.167836i
\(285\) 0 0
\(286\) 24.0000 + 14.6969i 1.41915 + 0.869048i
\(287\) 16.9706 1.00174
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.92820i 0.404750i −0.979308 0.202375i \(-0.935134\pi\)
0.979308 0.202375i \(-0.0648660\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −13.8564 −0.805387
\(297\) 0 0
\(298\) 24.0000i 1.39028i
\(299\) 13.8564 0.801337
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) −4.24264 −0.244137
\(303\) 0 0
\(304\) 36.7423i 2.10732i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.34847 0.419399 0.209700 0.977766i \(-0.432751\pi\)
0.209700 + 0.977766i \(0.432751\pi\)
\(308\) −4.24264 + 6.92820i −0.241747 + 0.394771i
\(309\) 0 0
\(310\) 0 0
\(311\) 14.1421i 0.801927i 0.916094 + 0.400963i \(0.131325\pi\)
−0.916094 + 0.400963i \(0.868675\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i −0.891923 0.452187i \(-0.850644\pi\)
0.891923 0.452187i \(-0.149356\pi\)
\(314\) −24.2487 −1.36843
\(315\) 0 0
\(316\) 12.2474i 0.688973i
\(317\) 18.3848 1.03259 0.516296 0.856410i \(-0.327310\pi\)
0.516296 + 0.856410i \(0.327310\pi\)
\(318\) 0 0
\(319\) 12.0000 19.5959i 0.671871 1.09716i
\(320\) 0 0
\(321\) 0 0
\(322\) 12.0000i 0.668734i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 13.8564 0.767435
\(327\) 0 0
\(328\) 12.0000i 0.662589i
\(329\) 6.92820 0.381964
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 13.8564i 0.760469i
\(333\) 0 0
\(334\) −6.00000 −0.328305
\(335\) 0 0
\(336\) 0 0
\(337\) 9.79796 0.533729 0.266864 0.963734i \(-0.414012\pi\)
0.266864 + 0.963734i \(0.414012\pi\)
\(338\) 19.0526i 1.03632i
\(339\) 0 0
\(340\) 0 0
\(341\) 6.92820 11.3137i 0.375183 0.612672i
\(342\) 0 0
\(343\) 19.5959 1.05808
\(344\) 4.24264i 0.228748i
\(345\) 0 0
\(346\) 12.0000 0.645124
\(347\) 13.8564i 0.743851i −0.928263 0.371925i \(-0.878698\pi\)
0.928263 0.371925i \(-0.121302\pi\)
\(348\) 0 0
\(349\) 4.89898i 0.262236i −0.991367 0.131118i \(-0.958143\pi\)
0.991367 0.131118i \(-0.0418567\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −14.6969 9.00000i −0.783349 0.479702i
\(353\) 32.5269 1.73123 0.865616 0.500708i \(-0.166927\pi\)
0.865616 + 0.500708i \(0.166927\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.07107i 0.374766i
\(357\) 0 0
\(358\) −39.1918 −2.07135
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −35.0000 −1.84211
\(362\) 13.8564i 0.728277i
\(363\) 0 0
\(364\) 12.0000 0.628971
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) −14.1421 −0.737210
\(369\) 0 0
\(370\) 0 0
\(371\) 24.2487 1.25893
\(372\) 0 0
\(373\) −24.4949 −1.26830 −0.634149 0.773211i \(-0.718649\pi\)
−0.634149 + 0.773211i \(0.718649\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.89898i 0.252646i
\(377\) −33.9411 −1.74806
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.89898 −0.250654
\(383\) 36.7696 1.87884 0.939418 0.342773i \(-0.111366\pi\)
0.939418 + 0.342773i \(0.111366\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 16.9706i 0.863779i
\(387\) 0 0
\(388\) 10.0000i 0.507673i
\(389\) 9.89949i 0.501924i −0.967997 0.250962i \(-0.919253\pi\)
0.967997 0.250962i \(-0.0807470\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.73205i 0.0874818i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000i 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 13.8564i 0.694559i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41421i 0.0706225i 0.999376 + 0.0353112i \(0.0112422\pi\)
−0.999376 + 0.0353112i \(0.988758\pi\)
\(402\) 0 0
\(403\) −19.5959 −0.976142
\(404\) 13.8564 0.689382
\(405\) 0 0
\(406\) 29.3939i 1.45879i
\(407\) 22.6274 + 13.8564i 1.12160 + 0.686837i
\(408\) 0 0
\(409\) 39.1918i 1.93791i −0.247234 0.968956i \(-0.579522\pi\)
0.247234 0.968956i \(-0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.00000i 0.197066i
\(413\) 27.7128i 1.36366i
\(414\) 0 0
\(415\) 0 0
\(416\) 25.4558i 1.24808i
\(417\) 0 0
\(418\) 22.0454 36.0000i 1.07828 1.76082i
\(419\) 11.3137i 0.552711i 0.961056 + 0.276355i \(0.0891267\pi\)
−0.961056 + 0.276355i \(0.910873\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) −21.2132 −1.03264
\(423\) 0 0
\(424\) 17.1464i 0.832704i
\(425\) 0 0
\(426\) 0 0
\(427\) 12.0000i 0.580721i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.3923 0.500580 0.250290 0.968171i \(-0.419474\pi\)
0.250290 + 0.968171i \(0.419474\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 16.9706i 0.814613i
\(435\) 0 0
\(436\) 14.6969i 0.703856i
\(437\) 20.7846i 0.994263i
\(438\) 0 0
\(439\) 2.44949i 0.116908i 0.998290 + 0.0584539i \(0.0186171\pi\)
−0.998290 + 0.0584539i \(0.981383\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.6274 −1.07506 −0.537531 0.843244i \(-0.680643\pi\)
−0.537531 + 0.843244i \(0.680643\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −27.7128 −1.31224
\(447\) 0 0
\(448\) 2.44949 0.115728
\(449\) 9.89949i 0.467186i −0.972334 0.233593i \(-0.924952\pi\)
0.972334 0.233593i \(-0.0750483\pi\)
\(450\) 0 0
\(451\) 12.0000 19.5959i 0.565058 0.922736i
\(452\) 1.41421 0.0665190
\(453\) 0 0
\(454\) −48.0000 −2.25275
\(455\) 0 0
\(456\) 0 0
\(457\) −9.79796 −0.458329 −0.229165 0.973388i \(-0.573599\pi\)
−0.229165 + 0.973388i \(0.573599\pi\)
\(458\) 17.3205i 0.809334i
\(459\) 0 0
\(460\) 0 0
\(461\) 6.92820 0.322679 0.161339 0.986899i \(-0.448419\pi\)
0.161339 + 0.986899i \(0.448419\pi\)
\(462\) 0 0
\(463\) 28.0000i 1.30127i −0.759390 0.650635i \(-0.774503\pi\)
0.759390 0.650635i \(-0.225497\pi\)
\(464\) 34.6410 1.60817
\(465\) 0 0
\(466\) 36.0000 1.66767
\(467\) 22.6274 1.04707 0.523536 0.852004i \(-0.324613\pi\)
0.523536 + 0.852004i \(0.324613\pi\)
\(468\) 0 0
\(469\) 9.79796i 0.452428i
\(470\) 0 0
\(471\) 0 0
\(472\) 19.5959 0.901975
\(473\) −4.24264 + 6.92820i −0.195077 + 0.318559i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 30.0000i 1.37217i
\(479\) −38.1051 −1.74107 −0.870534 0.492109i \(-0.836226\pi\)
−0.870534 + 0.492109i \(0.836226\pi\)
\(480\) 0 0
\(481\) 39.1918i 1.78699i
\(482\) 33.9411 1.54598
\(483\) 0 0
\(484\) 5.00000 + 9.79796i 0.227273 + 0.445362i
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000i 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) 8.48528 0.384111
\(489\) 0 0
\(490\) 0 0
\(491\) −27.7128 −1.25066 −0.625331 0.780360i \(-0.715036\pi\)
−0.625331 + 0.780360i \(0.715036\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −62.3538 −2.80543
\(495\) 0 0
\(496\) 20.0000 0.898027
\(497\) 6.92820i 0.310772i
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.79796 0.437304
\(503\) 31.1769i 1.39011i 0.718957 + 0.695055i \(0.244620\pi\)
−0.718957 + 0.695055i \(0.755380\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 13.8564 + 8.48528i 0.615992 + 0.377217i
\(507\) 0 0
\(508\) −7.34847 −0.326036
\(509\) 15.5563i 0.689523i 0.938690 + 0.344762i \(0.112040\pi\)
−0.938690 + 0.344762i \(0.887960\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.66025i 0.382733i
\(513\) 0 0
\(514\) 17.1464i 0.756297i
\(515\) 0 0
\(516\) 0 0
\(517\) 4.89898 8.00000i 0.215457 0.351840i
\(518\) 33.9411 1.49129
\(519\) 0 0
\(520\) 0 0
\(521\) 15.5563i 0.681536i −0.940147 0.340768i \(-0.889313\pi\)
0.940147 0.340768i \(-0.110687\pi\)
\(522\) 0 0
\(523\) −22.0454 −0.963978 −0.481989 0.876177i \(-0.660086\pi\)
−0.481989 + 0.876177i \(0.660086\pi\)
\(524\) −3.46410 −0.151330
\(525\) 0 0
\(526\) −6.00000 −0.261612
\(527\) 0 0
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 18.0000i 0.780399i
\(533\) −33.9411 −1.47015
\(534\) 0 0
\(535\) 0 0
\(536\) 6.92820 0.299253
\(537\) 0 0
\(538\) 26.9444 1.16166
\(539\) 1.73205 2.82843i 0.0746047 0.121829i
\(540\) 0 0
\(541\) 14.6969i 0.631871i 0.948781 + 0.315935i \(0.102318\pi\)
−0.948781 + 0.315935i \(0.897682\pi\)
\(542\) −12.7279 −0.546711
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −31.8434 −1.36152 −0.680762 0.732505i \(-0.738351\pi\)
−0.680762 + 0.732505i \(0.738351\pi\)
\(548\) 15.5563 0.664534
\(549\) 0 0
\(550\) 0 0
\(551\) 50.9117i 2.16891i
\(552\) 0 0
\(553\) 30.0000i 1.27573i
\(554\) 42.4264i 1.80253i
\(555\) 0 0
\(556\) 2.44949i 0.103882i
\(557\) 20.7846i 0.880672i 0.897833 + 0.440336i \(0.145141\pi\)
−0.897833 + 0.440336i \(0.854859\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 24.0000i 1.01238i
\(563\) 17.3205i 0.729972i −0.931013 0.364986i \(-0.881074\pi\)
0.931013 0.364986i \(-0.118926\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.24264i 0.178331i
\(567\) 0 0
\(568\) −4.89898 −0.205557
\(569\) 13.8564 0.580891 0.290445 0.956892i \(-0.406197\pi\)
0.290445 + 0.956892i \(0.406197\pi\)
\(570\) 0 0
\(571\) 2.44949i 0.102508i 0.998686 + 0.0512540i \(0.0163218\pi\)
−0.998686 + 0.0512540i \(0.983678\pi\)
\(572\) 8.48528 13.8564i 0.354787 0.579365i
\(573\) 0 0
\(574\) 29.3939i 1.22688i
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0000i 0.416305i 0.978096 + 0.208153i \(0.0667451\pi\)
−0.978096 + 0.208153i \(0.933255\pi\)
\(578\) 29.4449i 1.22474i
\(579\) 0 0
\(580\) 0 0
\(581\) 33.9411i 1.40812i
\(582\) 0 0
\(583\) 17.1464 28.0000i 0.710132 1.15964i
\(584\) 0 0
\(585\) 0 0
\(586\) −12.0000 −0.495715
\(587\) −28.2843 −1.16742 −0.583708 0.811963i \(-0.698399\pi\)
−0.583708 + 0.811963i \(0.698399\pi\)
\(588\) 0 0
\(589\) 29.3939i 1.21115i
\(590\) 0 0
\(591\) 0 0
\(592\) 40.0000i 1.64399i
\(593\) 41.5692i 1.70704i −0.521057 0.853522i \(-0.674462\pi\)
0.521057 0.853522i \(-0.325538\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 13.8564 0.567581
\(597\) 0 0
\(598\) 24.0000i 0.981433i
\(599\) 2.82843i 0.115566i 0.998329 + 0.0577832i \(0.0184032\pi\)
−0.998329 + 0.0577832i \(0.981597\pi\)
\(600\) 0 0
\(601\) 19.5959i 0.799334i 0.916660 + 0.399667i \(0.130874\pi\)
−0.916660 + 0.399667i \(0.869126\pi\)
\(602\) 10.3923i 0.423559i
\(603\) 0 0
\(604\) 2.44949i 0.0996683i
\(605\) 0 0
\(606\) 0 0
\(607\) −12.2474 −0.497109 −0.248554 0.968618i \(-0.579955\pi\)
−0.248554 + 0.968618i \(0.579955\pi\)
\(608\) 38.1838 1.54856
\(609\) 0 0
\(610\) 0 0
\(611\) −13.8564 −0.560570
\(612\) 0 0
\(613\) 14.6969 0.593604 0.296802 0.954939i \(-0.404080\pi\)
0.296802 + 0.954939i \(0.404080\pi\)
\(614\) 12.7279i 0.513657i
\(615\) 0 0
\(616\) −12.0000 7.34847i −0.483494 0.296078i
\(617\) 26.8701 1.08175 0.540874 0.841104i \(-0.318094\pi\)
0.540874 + 0.841104i \(0.318094\pi\)
\(618\) 0 0
\(619\) 28.0000 1.12542 0.562708 0.826656i \(-0.309760\pi\)
0.562708 + 0.826656i \(0.309760\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.4949 0.982156
\(623\) 17.3205i 0.693932i
\(624\) 0 0
\(625\) 0 0
\(626\) −27.7128 −1.10763
\(627\) 0 0
\(628\) 14.0000i 0.558661i
\(629\) 0 0
\(630\) 0 0
\(631\) 44.0000 1.75161 0.875806 0.482663i \(-0.160330\pi\)
0.875806 + 0.482663i \(0.160330\pi\)
\(632\) −21.2132 −0.843816
\(633\) 0 0
\(634\) 31.8434i 1.26466i
\(635\) 0 0
\(636\) 0 0
\(637\) −4.89898 −0.194105
\(638\) −33.9411 20.7846i −1.34374 0.822871i
\(639\) 0 0
\(640\) 0 0
\(641\) 32.5269i 1.28474i −0.766396 0.642368i \(-0.777952\pi\)
0.766396 0.642368i \(-0.222048\pi\)
\(642\) 0 0
\(643\) 28.0000i 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 6.92820 0.273009
\(645\) 0 0
\(646\) 0 0
\(647\) −19.7990 −0.778379 −0.389189 0.921158i \(-0.627245\pi\)
−0.389189 + 0.921158i \(0.627245\pi\)
\(648\) 0 0
\(649\) −32.0000 19.5959i −1.25611 0.769207i
\(650\) 0 0
\(651\) 0 0
\(652\) 8.00000i 0.313304i
\(653\) −26.8701 −1.05151 −0.525753 0.850637i \(-0.676216\pi\)
−0.525753 + 0.850637i \(0.676216\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 34.6410 1.35250
\(657\) 0 0
\(658\) 12.0000i 0.467809i
\(659\) −38.1051 −1.48436 −0.742182 0.670198i \(-0.766209\pi\)
−0.742182 + 0.670198i \(0.766209\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 13.8564i 0.538545i
\(663\) 0 0
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) 0 0
\(667\) −19.5959 −0.758757
\(668\) 3.46410i 0.134030i
\(669\) 0 0
\(670\) 0 0
\(671\) −13.8564 8.48528i −0.534921 0.327571i
\(672\) 0 0
\(673\) 39.1918 1.51073 0.755367 0.655302i \(-0.227459\pi\)
0.755367 + 0.655302i \(0.227459\pi\)
\(674\) 16.9706i 0.653682i
\(675\) 0 0
\(676\) −11.0000 −0.423077
\(677\) 27.7128i 1.06509i −0.846402 0.532545i \(-0.821236\pi\)
0.846402 0.532545i \(-0.178764\pi\)
\(678\) 0 0
\(679\) 24.4949i 0.940028i
\(680\) 0 0
\(681\) 0 0
\(682\) −19.5959 12.0000i −0.750366 0.459504i
\(683\) 28.2843 1.08227 0.541134 0.840937i \(-0.317995\pi\)
0.541134 + 0.840937i \(0.317995\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 33.9411i 1.29588i
\(687\) 0 0
\(688\) −12.2474 −0.466930
\(689\) −48.4974 −1.84760
\(690\) 0 0
\(691\) 44.0000 1.67384 0.836919 0.547326i \(-0.184354\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(692\) 6.92820i 0.263371i
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −8.48528 −0.321173
\(699\) 0 0
\(700\) 0 0
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) 0 0
\(703\) −58.7878 −2.21722
\(704\) 1.73205 2.82843i 0.0652791 0.106600i
\(705\) 0 0
\(706\) 56.3383i 2.12032i
\(707\) 33.9411 1.27649
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.2474 0.458993
\(713\) −11.3137 −0.423702
\(714\) 0 0
\(715\) 0 0
\(716\) 22.6274i 0.845626i
\(717\) 0 0
\(718\) 0 0
\(719\) 2.82843i 0.105483i 0.998608 + 0.0527413i \(0.0167959\pi\)
−0.998608 + 0.0527413i \(0.983204\pi\)
\(720\) 0 0
\(721\) 9.79796i 0.364895i
\(722\) 60.6218i 2.25611i
\(723\) 0 0
\(724\) −8.00000 −0.297318
\(725\) 0 0
\(726\) 0 0
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 20.7846i 0.770329i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 34.2929 1.26664 0.633318 0.773892i \(-0.281693\pi\)
0.633318 + 0.773892i \(0.281693\pi\)
\(734\) −13.8564 −0.511449
\(735\) 0 0
\(736\) 14.6969i 0.541736i
\(737\) −11.3137 6.92820i −0.416746 0.255204i
\(738\) 0 0
\(739\) 7.34847i 0.270318i 0.990824 + 0.135159i \(0.0431545\pi\)
−0.990824 + 0.135159i \(0.956846\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 42.0000i 1.54187i
\(743\) 27.7128i 1.01668i −0.861155 0.508342i \(-0.830258\pi\)
0.861155 0.508342i \(-0.169742\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 42.4264i 1.55334i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 14.1421 0.515711
\(753\) 0 0
\(754\) 58.7878i 2.14092i
\(755\) 0 0
\(756\) 0 0
\(757\) 8.00000i 0.290765i −0.989376 0.145382i \(-0.953559\pi\)
0.989376 0.145382i \(-0.0464413\pi\)
\(758\) 27.7128i 1.00657i
\(759\) 0 0
\(760\) 0 0
\(761\) 13.8564 0.502294 0.251147 0.967949i \(-0.419192\pi\)
0.251147 + 0.967949i \(0.419192\pi\)
\(762\) 0 0
\(763\) 36.0000i 1.30329i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 63.6867i 2.30110i
\(767\) 55.4256i 2.00130i
\(768\) 0 0
\(769\) 19.5959i 0.706647i 0.935501 + 0.353323i \(0.114948\pi\)
−0.935501 + 0.353323i \(0.885052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.79796 0.352636
\(773\) 32.5269 1.16991 0.584956 0.811065i \(-0.301112\pi\)
0.584956 + 0.811065i \(0.301112\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 17.3205 0.621770
\(777\) 0 0
\(778\) −17.1464 −0.614729
\(779\) 50.9117i 1.82410i
\(780\) 0 0
\(781\) 8.00000 + 4.89898i 0.286263 + 0.175299i
\(782\) 0 0
\(783\) 0 0
\(784\) 5.00000 0.178571
\(785\) 0 0
\(786\) 0 0
\(787\) −12.2474 −0.436574 −0.218287 0.975885i \(-0.570047\pi\)
−0.218287 + 0.975885i \(0.570047\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.46410 0.123169
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) −13.8564 −0.491745
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 26.8701 0.951786 0.475893 0.879503i \(-0.342125\pi\)
0.475893 + 0.879503i \(0.342125\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 2.44949 0.0864945
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 33.9411i 1.19553i
\(807\) 0 0
\(808\) 24.0000i 0.844317i
\(809\) 20.7846 0.730748 0.365374 0.930861i \(-0.380941\pi\)
0.365374 + 0.930861i \(0.380941\pi\)
\(810\) 0 0
\(811\) 22.0454i 0.774119i 0.922055 + 0.387059i \(0.126509\pi\)
−0.922055 + 0.387059i \(0.873491\pi\)
\(812\) −16.9706 −0.595550
\(813\) 0 0
\(814\) 24.0000 39.1918i 0.841200 1.37367i
\(815\) 0 0
\(816\) 0 0
\(817\) 18.0000i 0.629740i
\(818\) −67.8823 −2.37345
\(819\) 0 0
\(820\) 0 0
\(821\) −13.8564 −0.483592 −0.241796 0.970327i \(-0.577736\pi\)
−0.241796 + 0.970327i \(0.577736\pi\)
\(822\) 0 0
\(823\) 8.00000i 0.278862i 0.990232 + 0.139431i \(0.0445274\pi\)
−0.990232 + 0.139431i \(0.955473\pi\)
\(824\) −6.92820 −0.241355
\(825\) 0 0
\(826\) −48.0000 −1.67013
\(827\) 41.5692i 1.44550i −0.691108 0.722752i \(-0.742877\pi\)
0.691108 0.722752i \(-0.257123\pi\)
\(828\) 0 0
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −4.89898 −0.169842
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −20.7846 12.7279i −0.718851 0.440204i
\(837\) 0 0
\(838\) 19.5959 0.676930
\(839\) 19.7990i 0.683537i 0.939784 + 0.341769i \(0.111026\pi\)
−0.939784 + 0.341769i \(0.888974\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) 13.8564i 0.477523i
\(843\) 0 0
\(844\) 12.2474i 0.421575i
\(845\) 0 0
\(846\) 0 0
\(847\) 12.2474 + 24.0000i 0.420827 + 0.824650i
\(848\) 49.4975 1.69975
\(849\) 0 0
\(850\) 0 0
\(851\) 22.6274i 0.775658i
\(852\) 0 0
\(853\) −34.2929 −1.17417 −0.587083 0.809527i \(-0.699724\pi\)
−0.587083 + 0.809527i \(0.699724\pi\)
\(854\) −20.7846 −0.711235
\(855\) 0 0
\(856\) 0 0
\(857\) 34.6410i 1.18331i 0.806190 + 0.591657i \(0.201526\pi\)
−0.806190 + 0.591657i \(0.798474\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 18.0000i 0.613082i
\(863\) 19.7990 0.673965 0.336983 0.941511i \(-0.390594\pi\)
0.336983 + 0.941511i \(0.390594\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −27.7128 −0.941720
\(867\) 0 0
\(868\) −9.79796 −0.332564
\(869\) 34.6410 + 21.2132i 1.17512 + 0.719609i
\(870\) 0 0
\(871\) 19.5959i 0.663982i
\(872\) 25.4558 0.862044
\(873\) 0 0
\(874\) −36.0000 −1.21772
\(875\) 0 0
\(876\) 0 0
\(877\) 53.8888 1.81969 0.909847 0.414943i \(-0.136199\pi\)
0.909847 + 0.414943i \(0.136199\pi\)
\(878\) 4.24264 0.143182
\(879\) 0 0
\(880\) 0 0
\(881\) 9.89949i 0.333522i 0.985997 + 0.166761i \(0.0533309\pi\)
−0.985997 + 0.166761i \(0.946669\pi\)
\(882\) 0 0
\(883\) 28.0000i 0.942275i −0.882060 0.471138i \(-0.843844\pi\)
0.882060 0.471138i \(-0.156156\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 39.1918i 1.31668i
\(887\) 55.4256i 1.86101i −0.366279 0.930505i \(-0.619368\pi\)
0.366279 0.930505i \(-0.380632\pi\)
\(888\) 0 0
\(889\) −18.0000 −0.603701
\(890\) 0 0
\(891\) 0 0
\(892\) 16.0000i 0.535720i
\(893\) 20.7846i 0.695530i
\(894\) 0 0
\(895\) 0 0
\(896\) 29.6985i 0.992157i
\(897\) 0 0
\(898\) −17.1464 −0.572184
\(899\) 27.7128 0.924274
\(900\) 0 0
\(901\) 0 0
\(902\) −33.9411 20.7846i −1.13012 0.692052i
\(903\) 0 0
\(904\) 2.44949i 0.0814688i
\(905\) 0 0
\(906\) 0 0
\(907\) 52.0000i 1.72663i 0.504664 + 0.863316i \(0.331616\pi\)
−0.504664 + 0.863316i \(0.668384\pi\)
\(908\) 27.7128i 0.919682i
\(909\) 0 0
\(910\) 0 0
\(911\) 53.7401i 1.78049i −0.455483 0.890245i \(-0.650533\pi\)
0.455483 0.890245i \(-0.349467\pi\)
\(912\) 0 0
\(913\) 39.1918 + 24.0000i 1.29706 + 0.794284i
\(914\) 16.9706i 0.561336i
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) −8.48528 −0.280209
\(918\) 0 0
\(919\) 36.7423i 1.21202i 0.795458 + 0.606009i \(0.207230\pi\)
−0.795458 + 0.606009i \(0.792770\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 12.0000i 0.395199i
\(923\) 13.8564i 0.456089i
\(924\) 0 0
\(925\) 0 0
\(926\) −48.4974 −1.59372
\(927\) 0 0
\(928\) 36.0000i 1.18176i
\(929\) 9.89949i 0.324792i −0.986726 0.162396i \(-0.948078\pi\)
0.986726 0.162396i \(-0.0519222\pi\)
\(930\) 0 0
\(931\) 7.34847i 0.240836i
\(932\) 20.7846i 0.680823i
\(933\) 0 0
\(934\) 39.1918i 1.28240i
\(935\) 0 0
\(936\) 0 0
\(937\) −29.3939 −0.960256 −0.480128 0.877198i \(-0.659410\pi\)
−0.480128 + 0.877198i \(0.659410\pi\)
\(938\) −16.9706 −0.554109
\(939\) 0 0
\(940\) 0 0
\(941\) −27.7128 −0.903412 −0.451706 0.892167i \(-0.649184\pi\)
−0.451706 + 0.892167i \(0.649184\pi\)
\(942\) 0 0
\(943\) −19.5959 −0.638131
\(944\) 56.5685i 1.84115i
\(945\) 0 0
\(946\) 12.0000 + 7.34847i 0.390154 + 0.238919i
\(947\) 22.6274 0.735292 0.367646 0.929966i \(-0.380164\pi\)
0.367646 + 0.929966i \(0.380164\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.7846i 0.673280i 0.941634 + 0.336640i \(0.109290\pi\)
−0.941634 + 0.336640i \(0.890710\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −17.3205 −0.560185
\(957\) 0 0
\(958\) 66.0000i 2.13236i
\(959\) 38.1051 1.23048
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −67.8823 −2.18861
\(963\) 0 0
\(964\) 19.5959i 0.631142i
\(965\) 0 0
\(966\) 0 0
\(967\) −41.6413 −1.33909 −0.669547 0.742769i \(-0.733512\pi\)
−0.669547 + 0.742769i \(0.733512\pi\)
\(968\) −16.9706 + 8.66025i −0.545455 + 0.278351i
\(969\) 0 0
\(970\) 0 0
\(971\) 56.5685i 1.81537i 0.419651 + 0.907685i \(0.362152\pi\)
−0.419651 + 0.907685i \(0.637848\pi\)
\(972\) 0 0
\(973\) 6.00000i 0.192351i
\(974\) −13.8564 −0.443988
\(975\) 0 0
\(976\) 24.4949i 0.784063i
\(977\) 35.3553 1.13112 0.565559 0.824708i \(-0.308661\pi\)
0.565559 + 0.824708i \(0.308661\pi\)
\(978\) 0 0
\(979\) −20.0000 12.2474i −0.639203 0.391430i
\(980\) 0 0
\(981\) 0 0
\(982\) 48.0000i 1.53174i
\(983\) −48.0833 −1.53362 −0.766809 0.641875i \(-0.778157\pi\)
−0.766809 + 0.641875i \(0.778157\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 36.0000i 1.14531i
\(989\) 6.92820 0.220304
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 20.7846i 0.659912i
\(993\) 0 0
\(994\) 12.0000 0.380617
\(995\) 0 0
\(996\) 0 0
\(997\) −24.4949 −0.775761 −0.387881 0.921710i \(-0.626793\pi\)
−0.387881 + 0.921710i \(0.626793\pi\)
\(998\) 55.4256i 1.75447i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.d.a.2474.1 8
3.2 odd 2 inner 2475.2.d.a.2474.6 8
5.2 odd 4 99.2.d.a.98.4 yes 4
5.3 odd 4 2475.2.f.e.2276.2 4
5.4 even 2 inner 2475.2.d.a.2474.7 8
11.10 odd 2 inner 2475.2.d.a.2474.8 8
15.2 even 4 99.2.d.a.98.1 4
15.8 even 4 2475.2.f.e.2276.4 4
15.14 odd 2 inner 2475.2.d.a.2474.4 8
20.7 even 4 1584.2.b.e.593.4 4
33.32 even 2 inner 2475.2.d.a.2474.3 8
40.27 even 4 6336.2.b.t.2177.2 4
40.37 odd 4 6336.2.b.s.2177.1 4
45.2 even 12 891.2.g.c.296.4 8
45.7 odd 12 891.2.g.c.296.1 8
45.22 odd 12 891.2.g.c.593.2 8
45.32 even 12 891.2.g.c.593.3 8
55.32 even 4 99.2.d.a.98.2 yes 4
55.43 even 4 2475.2.f.e.2276.3 4
55.54 odd 2 inner 2475.2.d.a.2474.2 8
60.47 odd 4 1584.2.b.e.593.2 4
120.77 even 4 6336.2.b.s.2177.3 4
120.107 odd 4 6336.2.b.t.2177.4 4
165.32 odd 4 99.2.d.a.98.3 yes 4
165.98 odd 4 2475.2.f.e.2276.1 4
165.164 even 2 inner 2475.2.d.a.2474.5 8
220.87 odd 4 1584.2.b.e.593.3 4
440.197 even 4 6336.2.b.s.2177.2 4
440.307 odd 4 6336.2.b.t.2177.1 4
495.32 odd 12 891.2.g.c.593.1 8
495.142 even 12 891.2.g.c.296.3 8
495.362 odd 12 891.2.g.c.296.2 8
495.472 even 12 891.2.g.c.593.4 8
660.527 even 4 1584.2.b.e.593.1 4
1320.197 odd 4 6336.2.b.s.2177.4 4
1320.1187 even 4 6336.2.b.t.2177.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.d.a.98.1 4 15.2 even 4
99.2.d.a.98.2 yes 4 55.32 even 4
99.2.d.a.98.3 yes 4 165.32 odd 4
99.2.d.a.98.4 yes 4 5.2 odd 4
891.2.g.c.296.1 8 45.7 odd 12
891.2.g.c.296.2 8 495.362 odd 12
891.2.g.c.296.3 8 495.142 even 12
891.2.g.c.296.4 8 45.2 even 12
891.2.g.c.593.1 8 495.32 odd 12
891.2.g.c.593.2 8 45.22 odd 12
891.2.g.c.593.3 8 45.32 even 12
891.2.g.c.593.4 8 495.472 even 12
1584.2.b.e.593.1 4 660.527 even 4
1584.2.b.e.593.2 4 60.47 odd 4
1584.2.b.e.593.3 4 220.87 odd 4
1584.2.b.e.593.4 4 20.7 even 4
2475.2.d.a.2474.1 8 1.1 even 1 trivial
2475.2.d.a.2474.2 8 55.54 odd 2 inner
2475.2.d.a.2474.3 8 33.32 even 2 inner
2475.2.d.a.2474.4 8 15.14 odd 2 inner
2475.2.d.a.2474.5 8 165.164 even 2 inner
2475.2.d.a.2474.6 8 3.2 odd 2 inner
2475.2.d.a.2474.7 8 5.4 even 2 inner
2475.2.d.a.2474.8 8 11.10 odd 2 inner
2475.2.f.e.2276.1 4 165.98 odd 4
2475.2.f.e.2276.2 4 5.3 odd 4
2475.2.f.e.2276.3 4 55.43 even 4
2475.2.f.e.2276.4 4 15.8 even 4
6336.2.b.s.2177.1 4 40.37 odd 4
6336.2.b.s.2177.2 4 440.197 even 4
6336.2.b.s.2177.3 4 120.77 even 4
6336.2.b.s.2177.4 4 1320.197 odd 4
6336.2.b.t.2177.1 4 440.307 odd 4
6336.2.b.t.2177.2 4 40.27 even 4
6336.2.b.t.2177.3 4 1320.1187 even 4
6336.2.b.t.2177.4 4 120.107 odd 4