Properties

Label 2475.4.a.bw.1.1
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 72x^{8} + 1771x^{6} - 17056x^{4} + 52892x^{2} - 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.44091\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.44091 q^{2} +21.6035 q^{4} +18.8252 q^{7} -74.0156 q^{8} -11.0000 q^{11} +1.72915 q^{13} -102.426 q^{14} +229.884 q^{16} -3.07229 q^{17} +123.822 q^{19} +59.8500 q^{22} +92.3179 q^{23} -9.40815 q^{26} +406.690 q^{28} +119.388 q^{29} +292.648 q^{31} -658.654 q^{32} +16.7161 q^{34} -235.769 q^{37} -673.704 q^{38} +51.2730 q^{41} -229.869 q^{43} -237.639 q^{44} -502.293 q^{46} +356.494 q^{47} +11.3869 q^{49} +37.3557 q^{52} +117.848 q^{53} -1393.36 q^{56} -649.579 q^{58} +205.210 q^{59} +490.921 q^{61} -1592.27 q^{62} +1744.61 q^{64} -890.724 q^{67} -66.3723 q^{68} +655.118 q^{71} +80.8916 q^{73} +1282.80 q^{74} +2674.99 q^{76} -207.077 q^{77} -335.730 q^{79} -278.972 q^{82} +432.146 q^{83} +1250.69 q^{86} +814.171 q^{88} -455.024 q^{89} +32.5515 q^{91} +1994.39 q^{92} -1939.65 q^{94} -842.417 q^{97} -61.9550 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 64 q^{4} - 110 q^{11} - 34 q^{14} + 468 q^{16} + 90 q^{19} - 392 q^{26} + 58 q^{29} + 1242 q^{31} - 66 q^{34} - 416 q^{41} - 704 q^{44} + 1816 q^{46} + 1980 q^{49} - 2626 q^{56} - 476 q^{59} + 1650 q^{61}+ \cdots - 2860 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.44091 −1.92365 −0.961826 0.273660i \(-0.911766\pi\)
−0.961826 + 0.273660i \(0.911766\pi\)
\(3\) 0 0
\(4\) 21.6035 2.70044
\(5\) 0 0
\(6\) 0 0
\(7\) 18.8252 1.01646 0.508232 0.861220i \(-0.330299\pi\)
0.508232 + 0.861220i \(0.330299\pi\)
\(8\) −74.0156 −3.27106
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 1.72915 0.0368907 0.0184454 0.999830i \(-0.494128\pi\)
0.0184454 + 0.999830i \(0.494128\pi\)
\(14\) −102.426 −1.95532
\(15\) 0 0
\(16\) 229.884 3.59194
\(17\) −3.07229 −0.0438317 −0.0219159 0.999760i \(-0.506977\pi\)
−0.0219159 + 0.999760i \(0.506977\pi\)
\(18\) 0 0
\(19\) 123.822 1.49509 0.747545 0.664211i \(-0.231232\pi\)
0.747545 + 0.664211i \(0.231232\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 59.8500 0.580003
\(23\) 92.3179 0.836939 0.418470 0.908231i \(-0.362567\pi\)
0.418470 + 0.908231i \(0.362567\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −9.40815 −0.0709650
\(27\) 0 0
\(28\) 406.690 2.74490
\(29\) 119.388 0.764475 0.382237 0.924064i \(-0.375154\pi\)
0.382237 + 0.924064i \(0.375154\pi\)
\(30\) 0 0
\(31\) 292.648 1.69552 0.847761 0.530379i \(-0.177950\pi\)
0.847761 + 0.530379i \(0.177950\pi\)
\(32\) −658.654 −3.63858
\(33\) 0 0
\(34\) 16.7161 0.0843170
\(35\) 0 0
\(36\) 0 0
\(37\) −235.769 −1.04757 −0.523787 0.851849i \(-0.675481\pi\)
−0.523787 + 0.851849i \(0.675481\pi\)
\(38\) −673.704 −2.87603
\(39\) 0 0
\(40\) 0 0
\(41\) 51.2730 0.195305 0.0976524 0.995221i \(-0.468867\pi\)
0.0976524 + 0.995221i \(0.468867\pi\)
\(42\) 0 0
\(43\) −229.869 −0.815224 −0.407612 0.913155i \(-0.633638\pi\)
−0.407612 + 0.913155i \(0.633638\pi\)
\(44\) −237.639 −0.814213
\(45\) 0 0
\(46\) −502.293 −1.60998
\(47\) 356.494 1.10638 0.553191 0.833055i \(-0.313410\pi\)
0.553191 + 0.833055i \(0.313410\pi\)
\(48\) 0 0
\(49\) 11.3869 0.0331979
\(50\) 0 0
\(51\) 0 0
\(52\) 37.3557 0.0996212
\(53\) 117.848 0.305427 0.152713 0.988271i \(-0.451199\pi\)
0.152713 + 0.988271i \(0.451199\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1393.36 −3.32491
\(57\) 0 0
\(58\) −649.579 −1.47058
\(59\) 205.210 0.452815 0.226407 0.974033i \(-0.427302\pi\)
0.226407 + 0.974033i \(0.427302\pi\)
\(60\) 0 0
\(61\) 490.921 1.03043 0.515213 0.857062i \(-0.327713\pi\)
0.515213 + 0.857062i \(0.327713\pi\)
\(62\) −1592.27 −3.26159
\(63\) 0 0
\(64\) 1744.61 3.40744
\(65\) 0 0
\(66\) 0 0
\(67\) −890.724 −1.62417 −0.812084 0.583540i \(-0.801667\pi\)
−0.812084 + 0.583540i \(0.801667\pi\)
\(68\) −66.3723 −0.118365
\(69\) 0 0
\(70\) 0 0
\(71\) 655.118 1.09504 0.547522 0.836791i \(-0.315571\pi\)
0.547522 + 0.836791i \(0.315571\pi\)
\(72\) 0 0
\(73\) 80.8916 0.129694 0.0648469 0.997895i \(-0.479344\pi\)
0.0648469 + 0.997895i \(0.479344\pi\)
\(74\) 1282.80 2.01517
\(75\) 0 0
\(76\) 2674.99 4.03740
\(77\) −207.077 −0.306475
\(78\) 0 0
\(79\) −335.730 −0.478134 −0.239067 0.971003i \(-0.576842\pi\)
−0.239067 + 0.971003i \(0.576842\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −278.972 −0.375699
\(83\) 432.146 0.571497 0.285748 0.958305i \(-0.407758\pi\)
0.285748 + 0.958305i \(0.407758\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1250.69 1.56821
\(87\) 0 0
\(88\) 814.171 0.986261
\(89\) −455.024 −0.541937 −0.270969 0.962588i \(-0.587344\pi\)
−0.270969 + 0.962588i \(0.587344\pi\)
\(90\) 0 0
\(91\) 32.5515 0.0374981
\(92\) 1994.39 2.26010
\(93\) 0 0
\(94\) −1939.65 −2.12829
\(95\) 0 0
\(96\) 0 0
\(97\) −842.417 −0.881798 −0.440899 0.897557i \(-0.645340\pi\)
−0.440899 + 0.897557i \(0.645340\pi\)
\(98\) −61.9550 −0.0638612
\(99\) 0 0
\(100\) 0 0
\(101\) 524.725 0.516952 0.258476 0.966018i \(-0.416780\pi\)
0.258476 + 0.966018i \(0.416780\pi\)
\(102\) 0 0
\(103\) 239.172 0.228799 0.114400 0.993435i \(-0.463506\pi\)
0.114400 + 0.993435i \(0.463506\pi\)
\(104\) −127.984 −0.120672
\(105\) 0 0
\(106\) −641.199 −0.587535
\(107\) 891.407 0.805379 0.402690 0.915337i \(-0.368075\pi\)
0.402690 + 0.915337i \(0.368075\pi\)
\(108\) 0 0
\(109\) 1423.96 1.25129 0.625645 0.780108i \(-0.284836\pi\)
0.625645 + 0.780108i \(0.284836\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4327.61 3.65107
\(113\) −102.586 −0.0854022 −0.0427011 0.999088i \(-0.513596\pi\)
−0.0427011 + 0.999088i \(0.513596\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2579.20 2.06442
\(117\) 0 0
\(118\) −1116.53 −0.871058
\(119\) −57.8363 −0.0445534
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2671.06 −1.98218
\(123\) 0 0
\(124\) 6322.23 4.57865
\(125\) 0 0
\(126\) 0 0
\(127\) 238.080 0.166348 0.0831740 0.996535i \(-0.473494\pi\)
0.0831740 + 0.996535i \(0.473494\pi\)
\(128\) −4223.02 −2.91614
\(129\) 0 0
\(130\) 0 0
\(131\) −532.630 −0.355238 −0.177619 0.984099i \(-0.556839\pi\)
−0.177619 + 0.984099i \(0.556839\pi\)
\(132\) 0 0
\(133\) 2330.97 1.51970
\(134\) 4846.35 3.12434
\(135\) 0 0
\(136\) 227.397 0.143376
\(137\) −478.506 −0.298405 −0.149203 0.988807i \(-0.547671\pi\)
−0.149203 + 0.988807i \(0.547671\pi\)
\(138\) 0 0
\(139\) 354.237 0.216158 0.108079 0.994142i \(-0.465530\pi\)
0.108079 + 0.994142i \(0.465530\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3564.44 −2.10649
\(143\) −19.0206 −0.0111230
\(144\) 0 0
\(145\) 0 0
\(146\) −440.124 −0.249486
\(147\) 0 0
\(148\) −5093.45 −2.82891
\(149\) −3002.16 −1.65065 −0.825324 0.564660i \(-0.809007\pi\)
−0.825324 + 0.564660i \(0.809007\pi\)
\(150\) 0 0
\(151\) 2231.65 1.20271 0.601356 0.798981i \(-0.294627\pi\)
0.601356 + 0.798981i \(0.294627\pi\)
\(152\) −9164.75 −4.89052
\(153\) 0 0
\(154\) 1126.69 0.589552
\(155\) 0 0
\(156\) 0 0
\(157\) 283.657 0.144193 0.0720965 0.997398i \(-0.477031\pi\)
0.0720965 + 0.997398i \(0.477031\pi\)
\(158\) 1826.68 0.919764
\(159\) 0 0
\(160\) 0 0
\(161\) 1737.90 0.850718
\(162\) 0 0
\(163\) 3474.38 1.66953 0.834767 0.550603i \(-0.185602\pi\)
0.834767 + 0.550603i \(0.185602\pi\)
\(164\) 1107.68 0.527409
\(165\) 0 0
\(166\) −2351.27 −1.09936
\(167\) 1276.60 0.591536 0.295768 0.955260i \(-0.404424\pi\)
0.295768 + 0.955260i \(0.404424\pi\)
\(168\) 0 0
\(169\) −2194.01 −0.998639
\(170\) 0 0
\(171\) 0 0
\(172\) −4965.97 −2.20146
\(173\) 421.138 0.185078 0.0925392 0.995709i \(-0.470502\pi\)
0.0925392 + 0.995709i \(0.470502\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2528.72 −1.08301
\(177\) 0 0
\(178\) 2475.74 1.04250
\(179\) 2631.95 1.09900 0.549501 0.835493i \(-0.314818\pi\)
0.549501 + 0.835493i \(0.314818\pi\)
\(180\) 0 0
\(181\) −2427.32 −0.996804 −0.498402 0.866946i \(-0.666080\pi\)
−0.498402 + 0.866946i \(0.666080\pi\)
\(182\) −177.110 −0.0721333
\(183\) 0 0
\(184\) −6832.96 −2.73768
\(185\) 0 0
\(186\) 0 0
\(187\) 33.7952 0.0132158
\(188\) 7701.52 2.98772
\(189\) 0 0
\(190\) 0 0
\(191\) −927.802 −0.351484 −0.175742 0.984436i \(-0.556232\pi\)
−0.175742 + 0.984436i \(0.556232\pi\)
\(192\) 0 0
\(193\) 1353.07 0.504643 0.252322 0.967643i \(-0.418806\pi\)
0.252322 + 0.967643i \(0.418806\pi\)
\(194\) 4583.51 1.69627
\(195\) 0 0
\(196\) 245.997 0.0896489
\(197\) −2697.55 −0.975596 −0.487798 0.872957i \(-0.662200\pi\)
−0.487798 + 0.872957i \(0.662200\pi\)
\(198\) 0 0
\(199\) 1796.87 0.640084 0.320042 0.947403i \(-0.396303\pi\)
0.320042 + 0.947403i \(0.396303\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2854.98 −0.994436
\(203\) 2247.50 0.777061
\(204\) 0 0
\(205\) 0 0
\(206\) −1301.31 −0.440130
\(207\) 0 0
\(208\) 397.504 0.132509
\(209\) −1362.04 −0.450787
\(210\) 0 0
\(211\) −235.773 −0.0769254 −0.0384627 0.999260i \(-0.512246\pi\)
−0.0384627 + 0.999260i \(0.512246\pi\)
\(212\) 2545.92 0.824787
\(213\) 0 0
\(214\) −4850.07 −1.54927
\(215\) 0 0
\(216\) 0 0
\(217\) 5509.15 1.72344
\(218\) −7747.64 −2.40705
\(219\) 0 0
\(220\) 0 0
\(221\) −5.31244 −0.00161699
\(222\) 0 0
\(223\) −4355.88 −1.30803 −0.654017 0.756480i \(-0.726918\pi\)
−0.654017 + 0.756480i \(0.726918\pi\)
\(224\) −12399.3 −3.69849
\(225\) 0 0
\(226\) 558.160 0.164284
\(227\) −3029.90 −0.885910 −0.442955 0.896544i \(-0.646070\pi\)
−0.442955 + 0.896544i \(0.646070\pi\)
\(228\) 0 0
\(229\) −6092.66 −1.75814 −0.879070 0.476693i \(-0.841835\pi\)
−0.879070 + 0.476693i \(0.841835\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −8836.56 −2.50064
\(233\) −1632.51 −0.459008 −0.229504 0.973308i \(-0.573710\pi\)
−0.229504 + 0.973308i \(0.573710\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4433.26 1.22280
\(237\) 0 0
\(238\) 314.682 0.0857052
\(239\) −5627.21 −1.52299 −0.761494 0.648172i \(-0.775534\pi\)
−0.761494 + 0.648172i \(0.775534\pi\)
\(240\) 0 0
\(241\) 3486.63 0.931925 0.465962 0.884805i \(-0.345708\pi\)
0.465962 + 0.884805i \(0.345708\pi\)
\(242\) −658.350 −0.174878
\(243\) 0 0
\(244\) 10605.6 2.78260
\(245\) 0 0
\(246\) 0 0
\(247\) 214.107 0.0551550
\(248\) −21660.5 −5.54615
\(249\) 0 0
\(250\) 0 0
\(251\) 5704.48 1.43452 0.717258 0.696808i \(-0.245397\pi\)
0.717258 + 0.696808i \(0.245397\pi\)
\(252\) 0 0
\(253\) −1015.50 −0.252347
\(254\) −1295.37 −0.319996
\(255\) 0 0
\(256\) 9020.23 2.20220
\(257\) −2633.52 −0.639200 −0.319600 0.947553i \(-0.603549\pi\)
−0.319600 + 0.947553i \(0.603549\pi\)
\(258\) 0 0
\(259\) −4438.40 −1.06482
\(260\) 0 0
\(261\) 0 0
\(262\) 2898.00 0.683354
\(263\) 4713.39 1.10509 0.552547 0.833482i \(-0.313656\pi\)
0.552547 + 0.833482i \(0.313656\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −12682.6 −2.92338
\(267\) 0 0
\(268\) −19242.8 −4.38597
\(269\) −4145.66 −0.939649 −0.469825 0.882760i \(-0.655683\pi\)
−0.469825 + 0.882760i \(0.655683\pi\)
\(270\) 0 0
\(271\) −7155.58 −1.60395 −0.801975 0.597357i \(-0.796217\pi\)
−0.801975 + 0.597357i \(0.796217\pi\)
\(272\) −706.270 −0.157441
\(273\) 0 0
\(274\) 2603.51 0.574028
\(275\) 0 0
\(276\) 0 0
\(277\) −8076.45 −1.75187 −0.875933 0.482433i \(-0.839753\pi\)
−0.875933 + 0.482433i \(0.839753\pi\)
\(278\) −1927.37 −0.415813
\(279\) 0 0
\(280\) 0 0
\(281\) −1445.70 −0.306915 −0.153458 0.988155i \(-0.549041\pi\)
−0.153458 + 0.988155i \(0.549041\pi\)
\(282\) 0 0
\(283\) 8260.14 1.73503 0.867517 0.497408i \(-0.165715\pi\)
0.867517 + 0.497408i \(0.165715\pi\)
\(284\) 14152.8 2.95710
\(285\) 0 0
\(286\) 103.490 0.0213967
\(287\) 965.222 0.198520
\(288\) 0 0
\(289\) −4903.56 −0.998079
\(290\) 0 0
\(291\) 0 0
\(292\) 1747.54 0.350230
\(293\) −5784.63 −1.15338 −0.576692 0.816961i \(-0.695657\pi\)
−0.576692 + 0.816961i \(0.695657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 17450.6 3.42667
\(297\) 0 0
\(298\) 16334.5 3.17527
\(299\) 159.631 0.0308753
\(300\) 0 0
\(301\) −4327.31 −0.828645
\(302\) −12142.2 −2.31360
\(303\) 0 0
\(304\) 28464.7 5.37027
\(305\) 0 0
\(306\) 0 0
\(307\) 9458.25 1.75834 0.879171 0.476506i \(-0.158097\pi\)
0.879171 + 0.476506i \(0.158097\pi\)
\(308\) −4473.59 −0.827618
\(309\) 0 0
\(310\) 0 0
\(311\) 5984.54 1.09116 0.545582 0.838057i \(-0.316309\pi\)
0.545582 + 0.838057i \(0.316309\pi\)
\(312\) 0 0
\(313\) −1282.31 −0.231568 −0.115784 0.993274i \(-0.536938\pi\)
−0.115784 + 0.993274i \(0.536938\pi\)
\(314\) −1543.35 −0.277377
\(315\) 0 0
\(316\) −7252.95 −1.29117
\(317\) −1727.90 −0.306147 −0.153073 0.988215i \(-0.548917\pi\)
−0.153073 + 0.988215i \(0.548917\pi\)
\(318\) 0 0
\(319\) −1313.27 −0.230498
\(320\) 0 0
\(321\) 0 0
\(322\) −9455.76 −1.63649
\(323\) −380.417 −0.0655324
\(324\) 0 0
\(325\) 0 0
\(326\) −18903.8 −3.21160
\(327\) 0 0
\(328\) −3795.00 −0.638853
\(329\) 6711.05 1.12460
\(330\) 0 0
\(331\) −2047.24 −0.339959 −0.169980 0.985448i \(-0.554370\pi\)
−0.169980 + 0.985448i \(0.554370\pi\)
\(332\) 9335.89 1.54329
\(333\) 0 0
\(334\) −6945.89 −1.13791
\(335\) 0 0
\(336\) 0 0
\(337\) 7259.71 1.17348 0.586738 0.809777i \(-0.300412\pi\)
0.586738 + 0.809777i \(0.300412\pi\)
\(338\) 11937.4 1.92103
\(339\) 0 0
\(340\) 0 0
\(341\) −3219.13 −0.511219
\(342\) 0 0
\(343\) −6242.67 −0.982719
\(344\) 17013.9 2.66664
\(345\) 0 0
\(346\) −2291.38 −0.356027
\(347\) 6537.39 1.01137 0.505685 0.862718i \(-0.331240\pi\)
0.505685 + 0.862718i \(0.331240\pi\)
\(348\) 0 0
\(349\) 10911.5 1.67357 0.836787 0.547529i \(-0.184431\pi\)
0.836787 + 0.547529i \(0.184431\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 7245.20 1.09707
\(353\) 4974.07 0.749980 0.374990 0.927029i \(-0.377646\pi\)
0.374990 + 0.927029i \(0.377646\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9830.11 −1.46347
\(357\) 0 0
\(358\) −14320.2 −2.11410
\(359\) −2468.77 −0.362943 −0.181471 0.983396i \(-0.558086\pi\)
−0.181471 + 0.983396i \(0.558086\pi\)
\(360\) 0 0
\(361\) 8472.88 1.23529
\(362\) 13206.9 1.91750
\(363\) 0 0
\(364\) 703.227 0.101261
\(365\) 0 0
\(366\) 0 0
\(367\) −7504.87 −1.06744 −0.533721 0.845661i \(-0.679207\pi\)
−0.533721 + 0.845661i \(0.679207\pi\)
\(368\) 21222.4 3.00623
\(369\) 0 0
\(370\) 0 0
\(371\) 2218.50 0.310455
\(372\) 0 0
\(373\) 7696.58 1.06840 0.534201 0.845357i \(-0.320613\pi\)
0.534201 + 0.845357i \(0.320613\pi\)
\(374\) −183.877 −0.0254225
\(375\) 0 0
\(376\) −26386.1 −3.61904
\(377\) 206.439 0.0282020
\(378\) 0 0
\(379\) 6248.82 0.846913 0.423457 0.905916i \(-0.360817\pi\)
0.423457 + 0.905916i \(0.360817\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5048.09 0.676133
\(383\) 4505.13 0.601048 0.300524 0.953774i \(-0.402838\pi\)
0.300524 + 0.953774i \(0.402838\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7361.94 −0.970759
\(387\) 0 0
\(388\) −18199.2 −2.38124
\(389\) −5426.65 −0.707305 −0.353653 0.935377i \(-0.615061\pi\)
−0.353653 + 0.935377i \(0.615061\pi\)
\(390\) 0 0
\(391\) −283.627 −0.0366845
\(392\) −842.806 −0.108592
\(393\) 0 0
\(394\) 14677.1 1.87671
\(395\) 0 0
\(396\) 0 0
\(397\) 11783.1 1.48961 0.744805 0.667282i \(-0.232542\pi\)
0.744805 + 0.667282i \(0.232542\pi\)
\(398\) −9776.60 −1.23130
\(399\) 0 0
\(400\) 0 0
\(401\) −10743.2 −1.33788 −0.668941 0.743315i \(-0.733252\pi\)
−0.668941 + 0.743315i \(0.733252\pi\)
\(402\) 0 0
\(403\) 506.032 0.0625490
\(404\) 11335.9 1.39600
\(405\) 0 0
\(406\) −12228.4 −1.49479
\(407\) 2593.46 0.315855
\(408\) 0 0
\(409\) 5156.54 0.623409 0.311705 0.950179i \(-0.399100\pi\)
0.311705 + 0.950179i \(0.399100\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5166.95 0.617858
\(413\) 3863.11 0.460270
\(414\) 0 0
\(415\) 0 0
\(416\) −1138.91 −0.134230
\(417\) 0 0
\(418\) 7410.75 0.867157
\(419\) −9993.25 −1.16516 −0.582580 0.812773i \(-0.697957\pi\)
−0.582580 + 0.812773i \(0.697957\pi\)
\(420\) 0 0
\(421\) −1823.62 −0.211111 −0.105555 0.994413i \(-0.533662\pi\)
−0.105555 + 0.994413i \(0.533662\pi\)
\(422\) 1282.82 0.147978
\(423\) 0 0
\(424\) −8722.56 −0.999069
\(425\) 0 0
\(426\) 0 0
\(427\) 9241.66 1.04739
\(428\) 19257.5 2.17488
\(429\) 0 0
\(430\) 0 0
\(431\) 6639.30 0.742005 0.371002 0.928632i \(-0.379014\pi\)
0.371002 + 0.928632i \(0.379014\pi\)
\(432\) 0 0
\(433\) −17034.9 −1.89063 −0.945316 0.326156i \(-0.894247\pi\)
−0.945316 + 0.326156i \(0.894247\pi\)
\(434\) −29974.8 −3.31529
\(435\) 0 0
\(436\) 30762.6 3.37904
\(437\) 11431.0 1.25130
\(438\) 0 0
\(439\) −8175.20 −0.888795 −0.444397 0.895830i \(-0.646582\pi\)
−0.444397 + 0.895830i \(0.646582\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 28.9045 0.00311052
\(443\) −3336.90 −0.357880 −0.178940 0.983860i \(-0.557267\pi\)
−0.178940 + 0.983860i \(0.557267\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23700.0 2.51620
\(447\) 0 0
\(448\) 32842.5 3.46353
\(449\) 8068.30 0.848033 0.424016 0.905654i \(-0.360620\pi\)
0.424016 + 0.905654i \(0.360620\pi\)
\(450\) 0 0
\(451\) −564.003 −0.0588866
\(452\) −2216.21 −0.230624
\(453\) 0 0
\(454\) 16485.4 1.70418
\(455\) 0 0
\(456\) 0 0
\(457\) −6937.49 −0.710114 −0.355057 0.934845i \(-0.615538\pi\)
−0.355057 + 0.934845i \(0.615538\pi\)
\(458\) 33149.6 3.38205
\(459\) 0 0
\(460\) 0 0
\(461\) −7068.73 −0.714151 −0.357075 0.934076i \(-0.616226\pi\)
−0.357075 + 0.934076i \(0.616226\pi\)
\(462\) 0 0
\(463\) 5832.99 0.585490 0.292745 0.956191i \(-0.405431\pi\)
0.292745 + 0.956191i \(0.405431\pi\)
\(464\) 27445.4 2.74595
\(465\) 0 0
\(466\) 8882.32 0.882973
\(467\) 6157.77 0.610166 0.305083 0.952326i \(-0.401316\pi\)
0.305083 + 0.952326i \(0.401316\pi\)
\(468\) 0 0
\(469\) −16768.0 −1.65091
\(470\) 0 0
\(471\) 0 0
\(472\) −15188.7 −1.48118
\(473\) 2528.55 0.245799
\(474\) 0 0
\(475\) 0 0
\(476\) −1249.47 −0.120314
\(477\) 0 0
\(478\) 30617.2 2.92970
\(479\) 7042.80 0.671803 0.335901 0.941897i \(-0.390959\pi\)
0.335901 + 0.941897i \(0.390959\pi\)
\(480\) 0 0
\(481\) −407.680 −0.0386458
\(482\) −18970.5 −1.79270
\(483\) 0 0
\(484\) 2614.03 0.245495
\(485\) 0 0
\(486\) 0 0
\(487\) −4698.83 −0.437216 −0.218608 0.975813i \(-0.570152\pi\)
−0.218608 + 0.975813i \(0.570152\pi\)
\(488\) −36335.8 −3.37058
\(489\) 0 0
\(490\) 0 0
\(491\) 18714.1 1.72007 0.860037 0.510232i \(-0.170440\pi\)
0.860037 + 0.510232i \(0.170440\pi\)
\(492\) 0 0
\(493\) −366.794 −0.0335082
\(494\) −1164.94 −0.106099
\(495\) 0 0
\(496\) 67275.1 6.09021
\(497\) 12332.7 1.11307
\(498\) 0 0
\(499\) −6019.34 −0.540005 −0.270003 0.962860i \(-0.587025\pi\)
−0.270003 + 0.962860i \(0.587025\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −31037.6 −2.75951
\(503\) −171.433 −0.0151965 −0.00759823 0.999971i \(-0.502419\pi\)
−0.00759823 + 0.999971i \(0.502419\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5525.23 0.485427
\(507\) 0 0
\(508\) 5143.37 0.449213
\(509\) 5719.31 0.498043 0.249022 0.968498i \(-0.419891\pi\)
0.249022 + 0.968498i \(0.419891\pi\)
\(510\) 0 0
\(511\) 1522.80 0.131829
\(512\) −15294.1 −1.32014
\(513\) 0 0
\(514\) 14328.7 1.22960
\(515\) 0 0
\(516\) 0 0
\(517\) −3921.43 −0.333587
\(518\) 24148.9 2.04834
\(519\) 0 0
\(520\) 0 0
\(521\) −3500.52 −0.294358 −0.147179 0.989110i \(-0.547019\pi\)
−0.147179 + 0.989110i \(0.547019\pi\)
\(522\) 0 0
\(523\) 7103.24 0.593887 0.296943 0.954895i \(-0.404033\pi\)
0.296943 + 0.954895i \(0.404033\pi\)
\(524\) −11506.7 −0.959298
\(525\) 0 0
\(526\) −25645.1 −2.12582
\(527\) −899.100 −0.0743176
\(528\) 0 0
\(529\) −3644.41 −0.299533
\(530\) 0 0
\(531\) 0 0
\(532\) 50357.1 4.10387
\(533\) 88.6586 0.00720494
\(534\) 0 0
\(535\) 0 0
\(536\) 65927.5 5.31275
\(537\) 0 0
\(538\) 22556.2 1.80756
\(539\) −125.256 −0.0100095
\(540\) 0 0
\(541\) 2035.89 0.161792 0.0808961 0.996723i \(-0.474222\pi\)
0.0808961 + 0.996723i \(0.474222\pi\)
\(542\) 38932.9 3.08544
\(543\) 0 0
\(544\) 2023.58 0.159485
\(545\) 0 0
\(546\) 0 0
\(547\) 24546.4 1.91870 0.959348 0.282226i \(-0.0910728\pi\)
0.959348 + 0.282226i \(0.0910728\pi\)
\(548\) −10337.4 −0.805825
\(549\) 0 0
\(550\) 0 0
\(551\) 14782.8 1.14296
\(552\) 0 0
\(553\) −6320.17 −0.486006
\(554\) 43943.3 3.36998
\(555\) 0 0
\(556\) 7652.76 0.583722
\(557\) 17398.0 1.32348 0.661740 0.749733i \(-0.269818\pi\)
0.661740 + 0.749733i \(0.269818\pi\)
\(558\) 0 0
\(559\) −397.477 −0.0300742
\(560\) 0 0
\(561\) 0 0
\(562\) 7865.93 0.590399
\(563\) 13198.2 0.987992 0.493996 0.869464i \(-0.335536\pi\)
0.493996 + 0.869464i \(0.335536\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −44942.7 −3.33760
\(567\) 0 0
\(568\) −48488.9 −3.58195
\(569\) 15124.2 1.11431 0.557153 0.830410i \(-0.311894\pi\)
0.557153 + 0.830410i \(0.311894\pi\)
\(570\) 0 0
\(571\) 8485.10 0.621875 0.310937 0.950430i \(-0.399357\pi\)
0.310937 + 0.950430i \(0.399357\pi\)
\(572\) −410.913 −0.0300369
\(573\) 0 0
\(574\) −5251.69 −0.381884
\(575\) 0 0
\(576\) 0 0
\(577\) −14482.9 −1.04494 −0.522471 0.852657i \(-0.674990\pi\)
−0.522471 + 0.852657i \(0.674990\pi\)
\(578\) 26679.8 1.91996
\(579\) 0 0
\(580\) 0 0
\(581\) 8135.23 0.580906
\(582\) 0 0
\(583\) −1296.32 −0.0920896
\(584\) −5987.24 −0.424236
\(585\) 0 0
\(586\) 31473.7 2.21871
\(587\) −6985.26 −0.491163 −0.245581 0.969376i \(-0.578979\pi\)
−0.245581 + 0.969376i \(0.578979\pi\)
\(588\) 0 0
\(589\) 36236.3 2.53496
\(590\) 0 0
\(591\) 0 0
\(592\) −54199.6 −3.76282
\(593\) 585.572 0.0405507 0.0202753 0.999794i \(-0.493546\pi\)
0.0202753 + 0.999794i \(0.493546\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −64857.2 −4.45748
\(597\) 0 0
\(598\) −868.540 −0.0593934
\(599\) 19170.0 1.30762 0.653809 0.756659i \(-0.273170\pi\)
0.653809 + 0.756659i \(0.273170\pi\)
\(600\) 0 0
\(601\) 22098.9 1.49989 0.749943 0.661502i \(-0.230081\pi\)
0.749943 + 0.661502i \(0.230081\pi\)
\(602\) 23544.5 1.59403
\(603\) 0 0
\(604\) 48211.6 3.24785
\(605\) 0 0
\(606\) 0 0
\(607\) −3717.96 −0.248612 −0.124306 0.992244i \(-0.539670\pi\)
−0.124306 + 0.992244i \(0.539670\pi\)
\(608\) −81555.9 −5.44001
\(609\) 0 0
\(610\) 0 0
\(611\) 616.430 0.0408152
\(612\) 0 0
\(613\) 25728.4 1.69520 0.847602 0.530632i \(-0.178045\pi\)
0.847602 + 0.530632i \(0.178045\pi\)
\(614\) −51461.5 −3.38244
\(615\) 0 0
\(616\) 15326.9 1.00250
\(617\) −5085.97 −0.331853 −0.165927 0.986138i \(-0.553061\pi\)
−0.165927 + 0.986138i \(0.553061\pi\)
\(618\) 0 0
\(619\) 770.194 0.0500108 0.0250054 0.999687i \(-0.492040\pi\)
0.0250054 + 0.999687i \(0.492040\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −32561.4 −2.09902
\(623\) −8565.90 −0.550859
\(624\) 0 0
\(625\) 0 0
\(626\) 6976.96 0.445456
\(627\) 0 0
\(628\) 6127.99 0.389385
\(629\) 724.351 0.0459170
\(630\) 0 0
\(631\) −12396.1 −0.782063 −0.391031 0.920377i \(-0.627882\pi\)
−0.391031 + 0.920377i \(0.627882\pi\)
\(632\) 24849.3 1.56400
\(633\) 0 0
\(634\) 9401.35 0.588920
\(635\) 0 0
\(636\) 0 0
\(637\) 19.6896 0.00122469
\(638\) 7145.37 0.443398
\(639\) 0 0
\(640\) 0 0
\(641\) −5728.50 −0.352983 −0.176491 0.984302i \(-0.556475\pi\)
−0.176491 + 0.984302i \(0.556475\pi\)
\(642\) 0 0
\(643\) −1536.24 −0.0942202 −0.0471101 0.998890i \(-0.515001\pi\)
−0.0471101 + 0.998890i \(0.515001\pi\)
\(644\) 37544.7 2.29731
\(645\) 0 0
\(646\) 2069.81 0.126062
\(647\) −26647.1 −1.61917 −0.809587 0.586999i \(-0.800309\pi\)
−0.809587 + 0.586999i \(0.800309\pi\)
\(648\) 0 0
\(649\) −2257.31 −0.136529
\(650\) 0 0
\(651\) 0 0
\(652\) 75058.8 4.50848
\(653\) 28405.1 1.70226 0.851131 0.524954i \(-0.175917\pi\)
0.851131 + 0.524954i \(0.175917\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 11786.8 0.701522
\(657\) 0 0
\(658\) −36514.2 −2.16333
\(659\) −12108.5 −0.715752 −0.357876 0.933769i \(-0.616499\pi\)
−0.357876 + 0.933769i \(0.616499\pi\)
\(660\) 0 0
\(661\) 9862.98 0.580371 0.290186 0.956970i \(-0.406283\pi\)
0.290186 + 0.956970i \(0.406283\pi\)
\(662\) 11138.9 0.653964
\(663\) 0 0
\(664\) −31985.6 −1.86940
\(665\) 0 0
\(666\) 0 0
\(667\) 11021.6 0.639819
\(668\) 27579.1 1.59741
\(669\) 0 0
\(670\) 0 0
\(671\) −5400.13 −0.310685
\(672\) 0 0
\(673\) 2282.66 0.130743 0.0653714 0.997861i \(-0.479177\pi\)
0.0653714 + 0.997861i \(0.479177\pi\)
\(674\) −39499.4 −2.25736
\(675\) 0 0
\(676\) −47398.3 −2.69677
\(677\) −10499.2 −0.596038 −0.298019 0.954560i \(-0.596326\pi\)
−0.298019 + 0.954560i \(0.596326\pi\)
\(678\) 0 0
\(679\) −15858.6 −0.896316
\(680\) 0 0
\(681\) 0 0
\(682\) 17515.0 0.983408
\(683\) −26681.2 −1.49477 −0.747386 0.664391i \(-0.768691\pi\)
−0.747386 + 0.664391i \(0.768691\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 33965.8 1.89041
\(687\) 0 0
\(688\) −52843.1 −2.92823
\(689\) 203.776 0.0112674
\(690\) 0 0
\(691\) −1530.22 −0.0842434 −0.0421217 0.999112i \(-0.513412\pi\)
−0.0421217 + 0.999112i \(0.513412\pi\)
\(692\) 9098.07 0.499793
\(693\) 0 0
\(694\) −35569.4 −1.94553
\(695\) 0 0
\(696\) 0 0
\(697\) −157.525 −0.00856054
\(698\) −59368.3 −3.21937
\(699\) 0 0
\(700\) 0 0
\(701\) −25470.4 −1.37233 −0.686165 0.727446i \(-0.740707\pi\)
−0.686165 + 0.727446i \(0.740707\pi\)
\(702\) 0 0
\(703\) −29193.4 −1.56622
\(704\) −19190.7 −1.02738
\(705\) 0 0
\(706\) −27063.5 −1.44270
\(707\) 9878.04 0.525463
\(708\) 0 0
\(709\) 36906.7 1.95495 0.977475 0.211052i \(-0.0676891\pi\)
0.977475 + 0.211052i \(0.0676891\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 33678.8 1.77271
\(713\) 27016.7 1.41905
\(714\) 0 0
\(715\) 0 0
\(716\) 56859.4 2.96779
\(717\) 0 0
\(718\) 13432.3 0.698176
\(719\) −13606.1 −0.705734 −0.352867 0.935673i \(-0.614793\pi\)
−0.352867 + 0.935673i \(0.614793\pi\)
\(720\) 0 0
\(721\) 4502.45 0.232566
\(722\) −46100.2 −2.37628
\(723\) 0 0
\(724\) −52438.7 −2.69181
\(725\) 0 0
\(726\) 0 0
\(727\) 25132.2 1.28212 0.641060 0.767491i \(-0.278495\pi\)
0.641060 + 0.767491i \(0.278495\pi\)
\(728\) −2409.32 −0.122658
\(729\) 0 0
\(730\) 0 0
\(731\) 706.223 0.0357327
\(732\) 0 0
\(733\) 10789.5 0.543681 0.271841 0.962342i \(-0.412368\pi\)
0.271841 + 0.962342i \(0.412368\pi\)
\(734\) 40833.3 2.05339
\(735\) 0 0
\(736\) −60805.5 −3.04527
\(737\) 9797.97 0.489705
\(738\) 0 0
\(739\) −34785.9 −1.73156 −0.865778 0.500428i \(-0.833176\pi\)
−0.865778 + 0.500428i \(0.833176\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12070.7 −0.597208
\(743\) 19790.8 0.977195 0.488597 0.872509i \(-0.337509\pi\)
0.488597 + 0.872509i \(0.337509\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −41876.4 −2.05523
\(747\) 0 0
\(748\) 730.095 0.0356884
\(749\) 16780.9 0.818639
\(750\) 0 0
\(751\) 17836.9 0.866681 0.433341 0.901230i \(-0.357335\pi\)
0.433341 + 0.901230i \(0.357335\pi\)
\(752\) 81952.2 3.97405
\(753\) 0 0
\(754\) −1123.22 −0.0542509
\(755\) 0 0
\(756\) 0 0
\(757\) −26599.8 −1.27713 −0.638564 0.769569i \(-0.720471\pi\)
−0.638564 + 0.769569i \(0.720471\pi\)
\(758\) −33999.3 −1.62917
\(759\) 0 0
\(760\) 0 0
\(761\) −8248.59 −0.392919 −0.196459 0.980512i \(-0.562944\pi\)
−0.196459 + 0.980512i \(0.562944\pi\)
\(762\) 0 0
\(763\) 26806.3 1.27189
\(764\) −20043.8 −0.949161
\(765\) 0 0
\(766\) −24512.0 −1.15621
\(767\) 354.839 0.0167047
\(768\) 0 0
\(769\) 1496.76 0.0701880 0.0350940 0.999384i \(-0.488827\pi\)
0.0350940 + 0.999384i \(0.488827\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 29231.1 1.36276
\(773\) 459.376 0.0213746 0.0106873 0.999943i \(-0.496598\pi\)
0.0106873 + 0.999943i \(0.496598\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 62351.9 2.88441
\(777\) 0 0
\(778\) 29525.9 1.36061
\(779\) 6348.72 0.291998
\(780\) 0 0
\(781\) −7206.29 −0.330168
\(782\) 1543.19 0.0705682
\(783\) 0 0
\(784\) 2617.66 0.119245
\(785\) 0 0
\(786\) 0 0
\(787\) 21110.4 0.956170 0.478085 0.878314i \(-0.341331\pi\)
0.478085 + 0.878314i \(0.341331\pi\)
\(788\) −58276.5 −2.63454
\(789\) 0 0
\(790\) 0 0
\(791\) −1931.19 −0.0868082
\(792\) 0 0
\(793\) 848.875 0.0380132
\(794\) −64110.7 −2.86549
\(795\) 0 0
\(796\) 38818.7 1.72851
\(797\) −44355.5 −1.97133 −0.985666 0.168711i \(-0.946040\pi\)
−0.985666 + 0.168711i \(0.946040\pi\)
\(798\) 0 0
\(799\) −1095.25 −0.0484946
\(800\) 0 0
\(801\) 0 0
\(802\) 58452.9 2.57362
\(803\) −889.807 −0.0391041
\(804\) 0 0
\(805\) 0 0
\(806\) −2753.28 −0.120323
\(807\) 0 0
\(808\) −38837.8 −1.69098
\(809\) 15021.8 0.652830 0.326415 0.945227i \(-0.394159\pi\)
0.326415 + 0.945227i \(0.394159\pi\)
\(810\) 0 0
\(811\) 20178.0 0.873667 0.436833 0.899542i \(-0.356100\pi\)
0.436833 + 0.899542i \(0.356100\pi\)
\(812\) 48553.8 2.09841
\(813\) 0 0
\(814\) −14110.8 −0.607596
\(815\) 0 0
\(816\) 0 0
\(817\) −28462.8 −1.21883
\(818\) −28056.3 −1.19922
\(819\) 0 0
\(820\) 0 0
\(821\) −8507.06 −0.361630 −0.180815 0.983517i \(-0.557874\pi\)
−0.180815 + 0.983517i \(0.557874\pi\)
\(822\) 0 0
\(823\) 13562.9 0.574451 0.287225 0.957863i \(-0.407267\pi\)
0.287225 + 0.957863i \(0.407267\pi\)
\(824\) −17702.4 −0.748415
\(825\) 0 0
\(826\) −21018.9 −0.885399
\(827\) 42090.2 1.76979 0.884897 0.465786i \(-0.154229\pi\)
0.884897 + 0.465786i \(0.154229\pi\)
\(828\) 0 0
\(829\) 19524.7 0.817998 0.408999 0.912535i \(-0.365878\pi\)
0.408999 + 0.912535i \(0.365878\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3016.69 0.125703
\(833\) −34.9838 −0.00145512
\(834\) 0 0
\(835\) 0 0
\(836\) −29424.9 −1.21732
\(837\) 0 0
\(838\) 54372.4 2.24136
\(839\) −40733.8 −1.67615 −0.838073 0.545559i \(-0.816317\pi\)
−0.838073 + 0.545559i \(0.816317\pi\)
\(840\) 0 0
\(841\) −10135.5 −0.415578
\(842\) 9922.13 0.406104
\(843\) 0 0
\(844\) −5093.52 −0.207732
\(845\) 0 0
\(846\) 0 0
\(847\) 2277.85 0.0924058
\(848\) 27091.3 1.09707
\(849\) 0 0
\(850\) 0 0
\(851\) −21765.7 −0.876756
\(852\) 0 0
\(853\) 7476.59 0.300110 0.150055 0.988678i \(-0.452055\pi\)
0.150055 + 0.988678i \(0.452055\pi\)
\(854\) −50283.1 −2.01481
\(855\) 0 0
\(856\) −65978.0 −2.63444
\(857\) −46353.7 −1.84762 −0.923812 0.382847i \(-0.874944\pi\)
−0.923812 + 0.382847i \(0.874944\pi\)
\(858\) 0 0
\(859\) −3254.04 −0.129251 −0.0646254 0.997910i \(-0.520585\pi\)
−0.0646254 + 0.997910i \(0.520585\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −36123.9 −1.42736
\(863\) 38864.6 1.53299 0.766493 0.642252i \(-0.222000\pi\)
0.766493 + 0.642252i \(0.222000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 92685.2 3.63692
\(867\) 0 0
\(868\) 119017. 4.65404
\(869\) 3693.03 0.144163
\(870\) 0 0
\(871\) −1540.19 −0.0599168
\(872\) −105395. −4.09304
\(873\) 0 0
\(874\) −62195.0 −2.40707
\(875\) 0 0
\(876\) 0 0
\(877\) −35144.3 −1.35318 −0.676589 0.736361i \(-0.736543\pi\)
−0.676589 + 0.736361i \(0.736543\pi\)
\(878\) 44480.5 1.70973
\(879\) 0 0
\(880\) 0 0
\(881\) −31530.7 −1.20578 −0.602892 0.797823i \(-0.705985\pi\)
−0.602892 + 0.797823i \(0.705985\pi\)
\(882\) 0 0
\(883\) 35263.1 1.34394 0.671970 0.740579i \(-0.265448\pi\)
0.671970 + 0.740579i \(0.265448\pi\)
\(884\) −114.768 −0.00436657
\(885\) 0 0
\(886\) 18155.8 0.688436
\(887\) −10912.5 −0.413086 −0.206543 0.978438i \(-0.566221\pi\)
−0.206543 + 0.978438i \(0.566221\pi\)
\(888\) 0 0
\(889\) 4481.90 0.169087
\(890\) 0 0
\(891\) 0 0
\(892\) −94102.4 −3.53227
\(893\) 44141.7 1.65414
\(894\) 0 0
\(895\) 0 0
\(896\) −79499.1 −2.96415
\(897\) 0 0
\(898\) −43898.9 −1.63132
\(899\) 34938.6 1.29618
\(900\) 0 0
\(901\) −362.062 −0.0133874
\(902\) 3068.69 0.113277
\(903\) 0 0
\(904\) 7592.94 0.279356
\(905\) 0 0
\(906\) 0 0
\(907\) 6918.62 0.253285 0.126642 0.991948i \(-0.459580\pi\)
0.126642 + 0.991948i \(0.459580\pi\)
\(908\) −65456.5 −2.39235
\(909\) 0 0
\(910\) 0 0
\(911\) −9101.44 −0.331003 −0.165502 0.986210i \(-0.552924\pi\)
−0.165502 + 0.986210i \(0.552924\pi\)
\(912\) 0 0
\(913\) −4753.61 −0.172313
\(914\) 37746.3 1.36601
\(915\) 0 0
\(916\) −131623. −4.74775
\(917\) −10026.9 −0.361086
\(918\) 0 0
\(919\) 34392.5 1.23450 0.617248 0.786768i \(-0.288247\pi\)
0.617248 + 0.786768i \(0.288247\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 38460.3 1.37378
\(923\) 1132.80 0.0403970
\(924\) 0 0
\(925\) 0 0
\(926\) −31736.8 −1.12628
\(927\) 0 0
\(928\) −78635.3 −2.78161
\(929\) −4364.57 −0.154141 −0.0770704 0.997026i \(-0.524557\pi\)
−0.0770704 + 0.997026i \(0.524557\pi\)
\(930\) 0 0
\(931\) 1409.95 0.0496338
\(932\) −35267.9 −1.23952
\(933\) 0 0
\(934\) −33503.9 −1.17375
\(935\) 0 0
\(936\) 0 0
\(937\) 1816.07 0.0633174 0.0316587 0.999499i \(-0.489921\pi\)
0.0316587 + 0.999499i \(0.489921\pi\)
\(938\) 91233.4 3.17577
\(939\) 0 0
\(940\) 0 0
\(941\) 35113.5 1.21644 0.608218 0.793770i \(-0.291885\pi\)
0.608218 + 0.793770i \(0.291885\pi\)
\(942\) 0 0
\(943\) 4733.41 0.163458
\(944\) 47174.5 1.62648
\(945\) 0 0
\(946\) −13757.6 −0.472833
\(947\) 10104.6 0.346731 0.173365 0.984858i \(-0.444536\pi\)
0.173365 + 0.984858i \(0.444536\pi\)
\(948\) 0 0
\(949\) 139.874 0.00478450
\(950\) 0 0
\(951\) 0 0
\(952\) 4280.79 0.145737
\(953\) 46422.4 1.57793 0.788965 0.614438i \(-0.210617\pi\)
0.788965 + 0.614438i \(0.210617\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −121568. −4.11274
\(957\) 0 0
\(958\) −38319.2 −1.29232
\(959\) −9007.95 −0.303318
\(960\) 0 0
\(961\) 55852.0 1.87479
\(962\) 2218.15 0.0743410
\(963\) 0 0
\(964\) 75323.6 2.51661
\(965\) 0 0
\(966\) 0 0
\(967\) 928.679 0.0308835 0.0154417 0.999881i \(-0.495085\pi\)
0.0154417 + 0.999881i \(0.495085\pi\)
\(968\) −8955.88 −0.297369
\(969\) 0 0
\(970\) 0 0
\(971\) 51195.8 1.69202 0.846011 0.533166i \(-0.178998\pi\)
0.846011 + 0.533166i \(0.178998\pi\)
\(972\) 0 0
\(973\) 6668.56 0.219717
\(974\) 25565.9 0.841052
\(975\) 0 0
\(976\) 112855. 3.70122
\(977\) 31543.9 1.03294 0.516469 0.856306i \(-0.327246\pi\)
0.516469 + 0.856306i \(0.327246\pi\)
\(978\) 0 0
\(979\) 5005.26 0.163400
\(980\) 0 0
\(981\) 0 0
\(982\) −101822. −3.30883
\(983\) 30743.8 0.997532 0.498766 0.866737i \(-0.333787\pi\)
0.498766 + 0.866737i \(0.333787\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1995.69 0.0644582
\(987\) 0 0
\(988\) 4625.46 0.148943
\(989\) −21221.0 −0.682293
\(990\) 0 0
\(991\) −31389.1 −1.00616 −0.503082 0.864239i \(-0.667801\pi\)
−0.503082 + 0.864239i \(0.667801\pi\)
\(992\) −192754. −6.16930
\(993\) 0 0
\(994\) −67101.1 −2.14117
\(995\) 0 0
\(996\) 0 0
\(997\) 10343.4 0.328565 0.164282 0.986413i \(-0.447469\pi\)
0.164282 + 0.986413i \(0.447469\pi\)
\(998\) 32750.7 1.03878
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.bw.1.1 10
3.2 odd 2 275.4.a.k.1.10 10
5.2 odd 4 495.4.c.b.199.1 10
5.3 odd 4 495.4.c.b.199.10 10
5.4 even 2 inner 2475.4.a.bw.1.10 10
15.2 even 4 55.4.b.b.34.10 yes 10
15.8 even 4 55.4.b.b.34.1 10
15.14 odd 2 275.4.a.k.1.1 10
60.23 odd 4 880.4.b.i.529.8 10
60.47 odd 4 880.4.b.i.529.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.b.b.34.1 10 15.8 even 4
55.4.b.b.34.10 yes 10 15.2 even 4
275.4.a.k.1.1 10 15.14 odd 2
275.4.a.k.1.10 10 3.2 odd 2
495.4.c.b.199.1 10 5.2 odd 4
495.4.c.b.199.10 10 5.3 odd 4
880.4.b.i.529.3 10 60.47 odd 4
880.4.b.i.529.8 10 60.23 odd 4
2475.4.a.bw.1.1 10 1.1 even 1 trivial
2475.4.a.bw.1.10 10 5.4 even 2 inner