Properties

Label 275.4.a.k.1.10
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 72x^{8} + 1771x^{6} - 17056x^{4} + 52892x^{2} - 3136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(5.44091\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.44091 q^{2} -5.19344 q^{3} +21.6035 q^{4} -28.2570 q^{6} +18.8252 q^{7} +74.0156 q^{8} -0.0282092 q^{9} +11.0000 q^{11} -112.197 q^{12} +1.72915 q^{13} +102.426 q^{14} +229.884 q^{16} +3.07229 q^{17} -0.153484 q^{18} +123.822 q^{19} -97.7673 q^{21} +59.8500 q^{22} -92.3179 q^{23} -384.395 q^{24} +9.40815 q^{26} +140.369 q^{27} +406.690 q^{28} -119.388 q^{29} +292.648 q^{31} +658.654 q^{32} -57.1278 q^{33} +16.7161 q^{34} -0.609419 q^{36} -235.769 q^{37} +673.704 q^{38} -8.98023 q^{39} -51.2730 q^{41} -531.943 q^{42} -229.869 q^{43} +237.639 q^{44} -502.293 q^{46} -356.494 q^{47} -1193.89 q^{48} +11.3869 q^{49} -15.9557 q^{51} +37.3557 q^{52} -117.848 q^{53} +763.737 q^{54} +1393.36 q^{56} -643.062 q^{57} -649.579 q^{58} -205.210 q^{59} +490.921 q^{61} +1592.27 q^{62} -0.531043 q^{63} +1744.61 q^{64} -310.827 q^{66} -890.724 q^{67} +66.3723 q^{68} +479.447 q^{69} -655.118 q^{71} -2.08792 q^{72} +80.8916 q^{73} -1282.80 q^{74} +2674.99 q^{76} +207.077 q^{77} -48.8606 q^{78} -335.730 q^{79} -728.238 q^{81} -278.972 q^{82} -432.146 q^{83} -2112.12 q^{84} -1250.69 q^{86} +620.033 q^{87} +814.171 q^{88} +455.024 q^{89} +32.5515 q^{91} -1994.39 q^{92} -1519.85 q^{93} -1939.65 q^{94} -3420.68 q^{96} -842.417 q^{97} +61.9550 q^{98} -0.310301 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 64 q^{4} + 26 q^{6} + 152 q^{9} + 110 q^{11} + 34 q^{14} + 468 q^{16} + 90 q^{19} + 302 q^{21} + 206 q^{24} + 392 q^{26} - 58 q^{29} + 1242 q^{31} - 66 q^{34} + 1786 q^{36} - 384 q^{39} + 416 q^{41}+ \cdots + 1672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.44091 1.92365 0.961826 0.273660i \(-0.0882344\pi\)
0.961826 + 0.273660i \(0.0882344\pi\)
\(3\) −5.19344 −0.999477 −0.499739 0.866176i \(-0.666571\pi\)
−0.499739 + 0.866176i \(0.666571\pi\)
\(4\) 21.6035 2.70044
\(5\) 0 0
\(6\) −28.2570 −1.92265
\(7\) 18.8252 1.01646 0.508232 0.861220i \(-0.330299\pi\)
0.508232 + 0.861220i \(0.330299\pi\)
\(8\) 74.0156 3.27106
\(9\) −0.0282092 −0.00104479
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) −112.197 −2.69903
\(13\) 1.72915 0.0368907 0.0184454 0.999830i \(-0.494128\pi\)
0.0184454 + 0.999830i \(0.494128\pi\)
\(14\) 102.426 1.95532
\(15\) 0 0
\(16\) 229.884 3.59194
\(17\) 3.07229 0.0438317 0.0219159 0.999760i \(-0.493023\pi\)
0.0219159 + 0.999760i \(0.493023\pi\)
\(18\) −0.153484 −0.00200981
\(19\) 123.822 1.49509 0.747545 0.664211i \(-0.231232\pi\)
0.747545 + 0.664211i \(0.231232\pi\)
\(20\) 0 0
\(21\) −97.7673 −1.01593
\(22\) 59.8500 0.580003
\(23\) −92.3179 −0.836939 −0.418470 0.908231i \(-0.637433\pi\)
−0.418470 + 0.908231i \(0.637433\pi\)
\(24\) −384.395 −3.26935
\(25\) 0 0
\(26\) 9.40815 0.0709650
\(27\) 140.369 1.00052
\(28\) 406.690 2.74490
\(29\) −119.388 −0.764475 −0.382237 0.924064i \(-0.624846\pi\)
−0.382237 + 0.924064i \(0.624846\pi\)
\(30\) 0 0
\(31\) 292.648 1.69552 0.847761 0.530379i \(-0.177950\pi\)
0.847761 + 0.530379i \(0.177950\pi\)
\(32\) 658.654 3.63858
\(33\) −57.1278 −0.301354
\(34\) 16.7161 0.0843170
\(35\) 0 0
\(36\) −0.609419 −0.00282138
\(37\) −235.769 −1.04757 −0.523787 0.851849i \(-0.675481\pi\)
−0.523787 + 0.851849i \(0.675481\pi\)
\(38\) 673.704 2.87603
\(39\) −8.98023 −0.0368715
\(40\) 0 0
\(41\) −51.2730 −0.195305 −0.0976524 0.995221i \(-0.531133\pi\)
−0.0976524 + 0.995221i \(0.531133\pi\)
\(42\) −531.943 −1.95430
\(43\) −229.869 −0.815224 −0.407612 0.913155i \(-0.633638\pi\)
−0.407612 + 0.913155i \(0.633638\pi\)
\(44\) 237.639 0.814213
\(45\) 0 0
\(46\) −502.293 −1.60998
\(47\) −356.494 −1.10638 −0.553191 0.833055i \(-0.686590\pi\)
−0.553191 + 0.833055i \(0.686590\pi\)
\(48\) −1193.89 −3.59006
\(49\) 11.3869 0.0331979
\(50\) 0 0
\(51\) −15.9557 −0.0438088
\(52\) 37.3557 0.0996212
\(53\) −117.848 −0.305427 −0.152713 0.988271i \(-0.548801\pi\)
−0.152713 + 0.988271i \(0.548801\pi\)
\(54\) 763.737 1.92466
\(55\) 0 0
\(56\) 1393.36 3.32491
\(57\) −643.062 −1.49431
\(58\) −649.579 −1.47058
\(59\) −205.210 −0.452815 −0.226407 0.974033i \(-0.572698\pi\)
−0.226407 + 0.974033i \(0.572698\pi\)
\(60\) 0 0
\(61\) 490.921 1.03043 0.515213 0.857062i \(-0.327713\pi\)
0.515213 + 0.857062i \(0.327713\pi\)
\(62\) 1592.27 3.26159
\(63\) −0.531043 −0.00106199
\(64\) 1744.61 3.40744
\(65\) 0 0
\(66\) −310.827 −0.579700
\(67\) −890.724 −1.62417 −0.812084 0.583540i \(-0.801667\pi\)
−0.812084 + 0.583540i \(0.801667\pi\)
\(68\) 66.3723 0.118365
\(69\) 479.447 0.836502
\(70\) 0 0
\(71\) −655.118 −1.09504 −0.547522 0.836791i \(-0.684429\pi\)
−0.547522 + 0.836791i \(0.684429\pi\)
\(72\) −2.08792 −0.00341756
\(73\) 80.8916 0.129694 0.0648469 0.997895i \(-0.479344\pi\)
0.0648469 + 0.997895i \(0.479344\pi\)
\(74\) −1282.80 −2.01517
\(75\) 0 0
\(76\) 2674.99 4.03740
\(77\) 207.077 0.306475
\(78\) −48.8606 −0.0709279
\(79\) −335.730 −0.478134 −0.239067 0.971003i \(-0.576842\pi\)
−0.239067 + 0.971003i \(0.576842\pi\)
\(80\) 0 0
\(81\) −728.238 −0.998954
\(82\) −278.972 −0.375699
\(83\) −432.146 −0.571497 −0.285748 0.958305i \(-0.592242\pi\)
−0.285748 + 0.958305i \(0.592242\pi\)
\(84\) −2112.12 −2.74346
\(85\) 0 0
\(86\) −1250.69 −1.56821
\(87\) 620.033 0.764075
\(88\) 814.171 0.986261
\(89\) 455.024 0.541937 0.270969 0.962588i \(-0.412656\pi\)
0.270969 + 0.962588i \(0.412656\pi\)
\(90\) 0 0
\(91\) 32.5515 0.0374981
\(92\) −1994.39 −2.26010
\(93\) −1519.85 −1.69464
\(94\) −1939.65 −2.12829
\(95\) 0 0
\(96\) −3420.68 −3.63668
\(97\) −842.417 −0.881798 −0.440899 0.897557i \(-0.645340\pi\)
−0.440899 + 0.897557i \(0.645340\pi\)
\(98\) 61.9550 0.0638612
\(99\) −0.310301 −0.000315015 0
\(100\) 0 0
\(101\) −524.725 −0.516952 −0.258476 0.966018i \(-0.583220\pi\)
−0.258476 + 0.966018i \(0.583220\pi\)
\(102\) −86.8138 −0.0842730
\(103\) 239.172 0.228799 0.114400 0.993435i \(-0.463506\pi\)
0.114400 + 0.993435i \(0.463506\pi\)
\(104\) 127.984 0.120672
\(105\) 0 0
\(106\) −641.199 −0.587535
\(107\) −891.407 −0.805379 −0.402690 0.915337i \(-0.631925\pi\)
−0.402690 + 0.915337i \(0.631925\pi\)
\(108\) 3032.47 2.70185
\(109\) 1423.96 1.25129 0.625645 0.780108i \(-0.284836\pi\)
0.625645 + 0.780108i \(0.284836\pi\)
\(110\) 0 0
\(111\) 1224.45 1.04703
\(112\) 4327.61 3.65107
\(113\) 102.586 0.0854022 0.0427011 0.999088i \(-0.486404\pi\)
0.0427011 + 0.999088i \(0.486404\pi\)
\(114\) −3498.84 −2.87453
\(115\) 0 0
\(116\) −2579.20 −2.06442
\(117\) −0.0487780 −3.85429e−5 0
\(118\) −1116.53 −0.871058
\(119\) 57.8363 0.0445534
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 2671.06 1.98218
\(123\) 266.283 0.195203
\(124\) 6322.23 4.57865
\(125\) 0 0
\(126\) −2.88936 −0.00204289
\(127\) 238.080 0.166348 0.0831740 0.996535i \(-0.473494\pi\)
0.0831740 + 0.996535i \(0.473494\pi\)
\(128\) 4223.02 2.91614
\(129\) 1193.81 0.814798
\(130\) 0 0
\(131\) 532.630 0.355238 0.177619 0.984099i \(-0.443161\pi\)
0.177619 + 0.984099i \(0.443161\pi\)
\(132\) −1234.16 −0.813788
\(133\) 2330.97 1.51970
\(134\) −4846.35 −3.12434
\(135\) 0 0
\(136\) 227.397 0.143376
\(137\) 478.506 0.298405 0.149203 0.988807i \(-0.452329\pi\)
0.149203 + 0.988807i \(0.452329\pi\)
\(138\) 2608.63 1.60914
\(139\) 354.237 0.216158 0.108079 0.994142i \(-0.465530\pi\)
0.108079 + 0.994142i \(0.465530\pi\)
\(140\) 0 0
\(141\) 1851.43 1.10580
\(142\) −3564.44 −2.10649
\(143\) 19.0206 0.0111230
\(144\) −6.48485 −0.00375281
\(145\) 0 0
\(146\) 440.124 0.249486
\(147\) −59.1370 −0.0331805
\(148\) −5093.45 −2.82891
\(149\) 3002.16 1.65065 0.825324 0.564660i \(-0.190993\pi\)
0.825324 + 0.564660i \(0.190993\pi\)
\(150\) 0 0
\(151\) 2231.65 1.20271 0.601356 0.798981i \(-0.294627\pi\)
0.601356 + 0.798981i \(0.294627\pi\)
\(152\) 9164.75 4.89052
\(153\) −0.0866669 −4.57948e−5 0
\(154\) 1126.69 0.589552
\(155\) 0 0
\(156\) −194.005 −0.0995692
\(157\) 283.657 0.144193 0.0720965 0.997398i \(-0.477031\pi\)
0.0720965 + 0.997398i \(0.477031\pi\)
\(158\) −1826.68 −0.919764
\(159\) 612.034 0.305267
\(160\) 0 0
\(161\) −1737.90 −0.850718
\(162\) −3962.28 −1.92164
\(163\) 3474.38 1.66953 0.834767 0.550603i \(-0.185602\pi\)
0.834767 + 0.550603i \(0.185602\pi\)
\(164\) −1107.68 −0.527409
\(165\) 0 0
\(166\) −2351.27 −1.09936
\(167\) −1276.60 −0.591536 −0.295768 0.955260i \(-0.595576\pi\)
−0.295768 + 0.955260i \(0.595576\pi\)
\(168\) −7236.30 −3.32317
\(169\) −2194.01 −0.998639
\(170\) 0 0
\(171\) −3.49292 −0.00156205
\(172\) −4965.97 −2.20146
\(173\) −421.138 −0.185078 −0.0925392 0.995709i \(-0.529498\pi\)
−0.0925392 + 0.995709i \(0.529498\pi\)
\(174\) 3373.55 1.46982
\(175\) 0 0
\(176\) 2528.72 1.08301
\(177\) 1065.75 0.452578
\(178\) 2475.74 1.04250
\(179\) −2631.95 −1.09900 −0.549501 0.835493i \(-0.685182\pi\)
−0.549501 + 0.835493i \(0.685182\pi\)
\(180\) 0 0
\(181\) −2427.32 −0.996804 −0.498402 0.866946i \(-0.666080\pi\)
−0.498402 + 0.866946i \(0.666080\pi\)
\(182\) 177.110 0.0721333
\(183\) −2549.57 −1.02989
\(184\) −6832.96 −2.73768
\(185\) 0 0
\(186\) −8269.37 −3.25989
\(187\) 33.7952 0.0132158
\(188\) −7701.52 −2.98772
\(189\) 2642.48 1.01699
\(190\) 0 0
\(191\) 927.802 0.351484 0.175742 0.984436i \(-0.443768\pi\)
0.175742 + 0.984436i \(0.443768\pi\)
\(192\) −9060.51 −3.40566
\(193\) 1353.07 0.504643 0.252322 0.967643i \(-0.418806\pi\)
0.252322 + 0.967643i \(0.418806\pi\)
\(194\) −4583.51 −1.69627
\(195\) 0 0
\(196\) 245.997 0.0896489
\(197\) 2697.55 0.975596 0.487798 0.872957i \(-0.337800\pi\)
0.487798 + 0.872957i \(0.337800\pi\)
\(198\) −1.68832 −0.000605979 0
\(199\) 1796.87 0.640084 0.320042 0.947403i \(-0.396303\pi\)
0.320042 + 0.947403i \(0.396303\pi\)
\(200\) 0 0
\(201\) 4625.92 1.62332
\(202\) −2854.98 −0.994436
\(203\) −2247.50 −0.777061
\(204\) −344.700 −0.118303
\(205\) 0 0
\(206\) 1301.31 0.440130
\(207\) 2.60422 0.000874423 0
\(208\) 397.504 0.132509
\(209\) 1362.04 0.450787
\(210\) 0 0
\(211\) −235.773 −0.0769254 −0.0384627 0.999260i \(-0.512246\pi\)
−0.0384627 + 0.999260i \(0.512246\pi\)
\(212\) −2545.92 −0.824787
\(213\) 3402.31 1.09447
\(214\) −4850.07 −1.54927
\(215\) 0 0
\(216\) 10389.5 3.27276
\(217\) 5509.15 1.72344
\(218\) 7747.64 2.40705
\(219\) −420.105 −0.129626
\(220\) 0 0
\(221\) 5.31244 0.00161699
\(222\) 6662.14 2.01412
\(223\) −4355.88 −1.30803 −0.654017 0.756480i \(-0.726918\pi\)
−0.654017 + 0.756480i \(0.726918\pi\)
\(224\) 12399.3 3.69849
\(225\) 0 0
\(226\) 558.160 0.164284
\(227\) 3029.90 0.885910 0.442955 0.896544i \(-0.353930\pi\)
0.442955 + 0.896544i \(0.353930\pi\)
\(228\) −13892.4 −4.03529
\(229\) −6092.66 −1.75814 −0.879070 0.476693i \(-0.841835\pi\)
−0.879070 + 0.476693i \(0.841835\pi\)
\(230\) 0 0
\(231\) −1075.44 −0.306315
\(232\) −8836.56 −2.50064
\(233\) 1632.51 0.459008 0.229504 0.973308i \(-0.426290\pi\)
0.229504 + 0.973308i \(0.426290\pi\)
\(234\) −0.265397 −7.41432e−5 0
\(235\) 0 0
\(236\) −4433.26 −1.22280
\(237\) 1743.59 0.477884
\(238\) 314.682 0.0857052
\(239\) 5627.21 1.52299 0.761494 0.648172i \(-0.224466\pi\)
0.761494 + 0.648172i \(0.224466\pi\)
\(240\) 0 0
\(241\) 3486.63 0.931925 0.465962 0.884805i \(-0.345708\pi\)
0.465962 + 0.884805i \(0.345708\pi\)
\(242\) 658.350 0.174878
\(243\) −7.91529 −0.00208957
\(244\) 10605.6 2.78260
\(245\) 0 0
\(246\) 1448.82 0.375502
\(247\) 214.107 0.0551550
\(248\) 21660.5 5.54615
\(249\) 2244.33 0.571198
\(250\) 0 0
\(251\) −5704.48 −1.43452 −0.717258 0.696808i \(-0.754603\pi\)
−0.717258 + 0.696808i \(0.754603\pi\)
\(252\) −11.4724 −0.00286783
\(253\) −1015.50 −0.252347
\(254\) 1295.37 0.319996
\(255\) 0 0
\(256\) 9020.23 2.20220
\(257\) 2633.52 0.639200 0.319600 0.947553i \(-0.396451\pi\)
0.319600 + 0.947553i \(0.396451\pi\)
\(258\) 6495.41 1.56739
\(259\) −4438.40 −1.06482
\(260\) 0 0
\(261\) 3.36784 0.000798713 0
\(262\) 2898.00 0.683354
\(263\) −4713.39 −1.10509 −0.552547 0.833482i \(-0.686344\pi\)
−0.552547 + 0.833482i \(0.686344\pi\)
\(264\) −4228.35 −0.985745
\(265\) 0 0
\(266\) 12682.6 2.92338
\(267\) −2363.14 −0.541654
\(268\) −19242.8 −4.38597
\(269\) 4145.66 0.939649 0.469825 0.882760i \(-0.344317\pi\)
0.469825 + 0.882760i \(0.344317\pi\)
\(270\) 0 0
\(271\) −7155.58 −1.60395 −0.801975 0.597357i \(-0.796217\pi\)
−0.801975 + 0.597357i \(0.796217\pi\)
\(272\) 706.270 0.157441
\(273\) −169.054 −0.0374785
\(274\) 2603.51 0.574028
\(275\) 0 0
\(276\) 10357.7 2.25892
\(277\) −8076.45 −1.75187 −0.875933 0.482433i \(-0.839753\pi\)
−0.875933 + 0.482433i \(0.839753\pi\)
\(278\) 1927.37 0.415813
\(279\) −8.25538 −0.00177146
\(280\) 0 0
\(281\) 1445.70 0.306915 0.153458 0.988155i \(-0.450959\pi\)
0.153458 + 0.988155i \(0.450959\pi\)
\(282\) 10073.5 2.12718
\(283\) 8260.14 1.73503 0.867517 0.497408i \(-0.165715\pi\)
0.867517 + 0.497408i \(0.165715\pi\)
\(284\) −14152.8 −2.95710
\(285\) 0 0
\(286\) 103.490 0.0213967
\(287\) −965.222 −0.198520
\(288\) −18.5801 −0.00380154
\(289\) −4903.56 −0.998079
\(290\) 0 0
\(291\) 4375.04 0.881338
\(292\) 1747.54 0.350230
\(293\) 5784.63 1.15338 0.576692 0.816961i \(-0.304343\pi\)
0.576692 + 0.816961i \(0.304343\pi\)
\(294\) −321.759 −0.0638278
\(295\) 0 0
\(296\) −17450.6 −3.42667
\(297\) 1544.06 0.301669
\(298\) 16334.5 3.17527
\(299\) −159.631 −0.0308753
\(300\) 0 0
\(301\) −4327.31 −0.828645
\(302\) 12142.2 2.31360
\(303\) 2725.13 0.516682
\(304\) 28464.7 5.37027
\(305\) 0 0
\(306\) −0.471547 −8.80933e−5 0
\(307\) 9458.25 1.75834 0.879171 0.476506i \(-0.158097\pi\)
0.879171 + 0.476506i \(0.158097\pi\)
\(308\) 4473.59 0.827618
\(309\) −1242.12 −0.228680
\(310\) 0 0
\(311\) −5984.54 −1.09116 −0.545582 0.838057i \(-0.683691\pi\)
−0.545582 + 0.838057i \(0.683691\pi\)
\(312\) −664.677 −0.120609
\(313\) −1282.31 −0.231568 −0.115784 0.993274i \(-0.536938\pi\)
−0.115784 + 0.993274i \(0.536938\pi\)
\(314\) 1543.35 0.277377
\(315\) 0 0
\(316\) −7252.95 −1.29117
\(317\) 1727.90 0.306147 0.153073 0.988215i \(-0.451083\pi\)
0.153073 + 0.988215i \(0.451083\pi\)
\(318\) 3330.03 0.587228
\(319\) −1313.27 −0.230498
\(320\) 0 0
\(321\) 4629.47 0.804959
\(322\) −9455.76 −1.63649
\(323\) 380.417 0.0655324
\(324\) −15732.5 −2.69762
\(325\) 0 0
\(326\) 18903.8 3.21160
\(327\) −7395.25 −1.25064
\(328\) −3795.00 −0.638853
\(329\) −6711.05 −1.12460
\(330\) 0 0
\(331\) −2047.24 −0.339959 −0.169980 0.985448i \(-0.554370\pi\)
−0.169980 + 0.985448i \(0.554370\pi\)
\(332\) −9335.89 −1.54329
\(333\) 6.65087 0.00109449
\(334\) −6945.89 −1.13791
\(335\) 0 0
\(336\) −22475.1 −3.64917
\(337\) 7259.71 1.17348 0.586738 0.809777i \(-0.300412\pi\)
0.586738 + 0.809777i \(0.300412\pi\)
\(338\) −11937.4 −1.92103
\(339\) −532.772 −0.0853576
\(340\) 0 0
\(341\) 3219.13 0.511219
\(342\) −19.0047 −0.00300484
\(343\) −6242.67 −0.982719
\(344\) −17013.9 −2.66664
\(345\) 0 0
\(346\) −2291.38 −0.356027
\(347\) −6537.39 −1.01137 −0.505685 0.862718i \(-0.668760\pi\)
−0.505685 + 0.862718i \(0.668760\pi\)
\(348\) 13394.9 2.06334
\(349\) 10911.5 1.67357 0.836787 0.547529i \(-0.184431\pi\)
0.836787 + 0.547529i \(0.184431\pi\)
\(350\) 0 0
\(351\) 242.719 0.0369100
\(352\) 7245.20 1.09707
\(353\) −4974.07 −0.749980 −0.374990 0.927029i \(-0.622354\pi\)
−0.374990 + 0.927029i \(0.622354\pi\)
\(354\) 5798.63 0.870603
\(355\) 0 0
\(356\) 9830.11 1.46347
\(357\) −300.369 −0.0445301
\(358\) −14320.2 −2.11410
\(359\) 2468.77 0.362943 0.181471 0.983396i \(-0.441914\pi\)
0.181471 + 0.983396i \(0.441914\pi\)
\(360\) 0 0
\(361\) 8472.88 1.23529
\(362\) −13206.9 −1.91750
\(363\) −628.406 −0.0908616
\(364\) 703.227 0.101261
\(365\) 0 0
\(366\) −13872.0 −1.98115
\(367\) −7504.87 −1.06744 −0.533721 0.845661i \(-0.679207\pi\)
−0.533721 + 0.845661i \(0.679207\pi\)
\(368\) −21222.4 −3.00623
\(369\) 1.44637 0.000204052 0
\(370\) 0 0
\(371\) −2218.50 −0.310455
\(372\) −32834.1 −4.57626
\(373\) 7696.58 1.06840 0.534201 0.845357i \(-0.320613\pi\)
0.534201 + 0.845357i \(0.320613\pi\)
\(374\) 183.877 0.0254225
\(375\) 0 0
\(376\) −26386.1 −3.61904
\(377\) −206.439 −0.0282020
\(378\) 14377.5 1.95634
\(379\) 6248.82 0.846913 0.423457 0.905916i \(-0.360817\pi\)
0.423457 + 0.905916i \(0.360817\pi\)
\(380\) 0 0
\(381\) −1236.45 −0.166261
\(382\) 5048.09 0.676133
\(383\) −4505.13 −0.601048 −0.300524 0.953774i \(-0.597162\pi\)
−0.300524 + 0.953774i \(0.597162\pi\)
\(384\) −21932.0 −2.91462
\(385\) 0 0
\(386\) 7361.94 0.970759
\(387\) 6.48442 0.000851735 0
\(388\) −18199.2 −2.38124
\(389\) 5426.65 0.707305 0.353653 0.935377i \(-0.384939\pi\)
0.353653 + 0.935377i \(0.384939\pi\)
\(390\) 0 0
\(391\) −283.627 −0.0366845
\(392\) 842.806 0.108592
\(393\) −2766.18 −0.355052
\(394\) 14677.1 1.87671
\(395\) 0 0
\(396\) −6.70361 −0.000850679 0
\(397\) 11783.1 1.48961 0.744805 0.667282i \(-0.232542\pi\)
0.744805 + 0.667282i \(0.232542\pi\)
\(398\) 9776.60 1.23130
\(399\) −12105.7 −1.51891
\(400\) 0 0
\(401\) 10743.2 1.33788 0.668941 0.743315i \(-0.266748\pi\)
0.668941 + 0.743315i \(0.266748\pi\)
\(402\) 25169.2 3.12270
\(403\) 506.032 0.0625490
\(404\) −11335.9 −1.39600
\(405\) 0 0
\(406\) −12228.4 −1.49479
\(407\) −2593.46 −0.315855
\(408\) −1180.97 −0.143301
\(409\) 5156.54 0.623409 0.311705 0.950179i \(-0.399100\pi\)
0.311705 + 0.950179i \(0.399100\pi\)
\(410\) 0 0
\(411\) −2485.09 −0.298249
\(412\) 5166.95 0.617858
\(413\) −3863.11 −0.460270
\(414\) 14.1693 0.00168209
\(415\) 0 0
\(416\) 1138.91 0.134230
\(417\) −1839.71 −0.216045
\(418\) 7410.75 0.867157
\(419\) 9993.25 1.16516 0.582580 0.812773i \(-0.302043\pi\)
0.582580 + 0.812773i \(0.302043\pi\)
\(420\) 0 0
\(421\) −1823.62 −0.211111 −0.105555 0.994413i \(-0.533662\pi\)
−0.105555 + 0.994413i \(0.533662\pi\)
\(422\) −1282.82 −0.147978
\(423\) 10.0564 0.00115593
\(424\) −8722.56 −0.999069
\(425\) 0 0
\(426\) 18511.7 2.10538
\(427\) 9241.66 1.04739
\(428\) −19257.5 −2.17488
\(429\) −98.7825 −0.0111172
\(430\) 0 0
\(431\) −6639.30 −0.742005 −0.371002 0.928632i \(-0.620986\pi\)
−0.371002 + 0.928632i \(0.620986\pi\)
\(432\) 32268.7 3.59381
\(433\) −17034.9 −1.89063 −0.945316 0.326156i \(-0.894247\pi\)
−0.945316 + 0.326156i \(0.894247\pi\)
\(434\) 29974.8 3.31529
\(435\) 0 0
\(436\) 30762.6 3.37904
\(437\) −11431.0 −1.25130
\(438\) −2285.76 −0.249355
\(439\) −8175.20 −0.888795 −0.444397 0.895830i \(-0.646582\pi\)
−0.444397 + 0.895830i \(0.646582\pi\)
\(440\) 0 0
\(441\) −0.321215 −3.46847e−5 0
\(442\) 28.9045 0.00311052
\(443\) 3336.90 0.357880 0.178940 0.983860i \(-0.442733\pi\)
0.178940 + 0.983860i \(0.442733\pi\)
\(444\) 26452.5 2.82743
\(445\) 0 0
\(446\) −23700.0 −2.51620
\(447\) −15591.5 −1.64979
\(448\) 32842.5 3.46353
\(449\) −8068.30 −0.848033 −0.424016 0.905654i \(-0.639380\pi\)
−0.424016 + 0.905654i \(0.639380\pi\)
\(450\) 0 0
\(451\) −564.003 −0.0588866
\(452\) 2216.21 0.230624
\(453\) −11590.0 −1.20208
\(454\) 16485.4 1.70418
\(455\) 0 0
\(456\) −47596.6 −4.88797
\(457\) −6937.49 −0.710114 −0.355057 0.934845i \(-0.615538\pi\)
−0.355057 + 0.934845i \(0.615538\pi\)
\(458\) −33149.6 −3.38205
\(459\) 431.255 0.0438546
\(460\) 0 0
\(461\) 7068.73 0.714151 0.357075 0.934076i \(-0.383774\pi\)
0.357075 + 0.934076i \(0.383774\pi\)
\(462\) −5851.38 −0.589244
\(463\) 5832.99 0.585490 0.292745 0.956191i \(-0.405431\pi\)
0.292745 + 0.956191i \(0.405431\pi\)
\(464\) −27445.4 −2.74595
\(465\) 0 0
\(466\) 8882.32 0.882973
\(467\) −6157.77 −0.610166 −0.305083 0.952326i \(-0.598684\pi\)
−0.305083 + 0.952326i \(0.598684\pi\)
\(468\) −1.05378 −0.000104083 0
\(469\) −16768.0 −1.65091
\(470\) 0 0
\(471\) −1473.16 −0.144118
\(472\) −15188.7 −1.48118
\(473\) −2528.55 −0.245799
\(474\) 9486.74 0.919283
\(475\) 0 0
\(476\) 1249.47 0.120314
\(477\) 3.32439 0.000319106 0
\(478\) 30617.2 2.92970
\(479\) −7042.80 −0.671803 −0.335901 0.941897i \(-0.609041\pi\)
−0.335901 + 0.941897i \(0.609041\pi\)
\(480\) 0 0
\(481\) −407.680 −0.0386458
\(482\) 18970.5 1.79270
\(483\) 9025.67 0.850274
\(484\) 2614.03 0.245495
\(485\) 0 0
\(486\) −43.0664 −0.00401961
\(487\) −4698.83 −0.437216 −0.218608 0.975813i \(-0.570152\pi\)
−0.218608 + 0.975813i \(0.570152\pi\)
\(488\) 36335.8 3.37058
\(489\) −18044.0 −1.66866
\(490\) 0 0
\(491\) −18714.1 −1.72007 −0.860037 0.510232i \(-0.829560\pi\)
−0.860037 + 0.510232i \(0.829560\pi\)
\(492\) 5752.65 0.527133
\(493\) −366.794 −0.0335082
\(494\) 1164.94 0.106099
\(495\) 0 0
\(496\) 67275.1 6.09021
\(497\) −12332.7 −1.11307
\(498\) 12211.2 1.09879
\(499\) −6019.34 −0.540005 −0.270003 0.962860i \(-0.587025\pi\)
−0.270003 + 0.962860i \(0.587025\pi\)
\(500\) 0 0
\(501\) 6629.96 0.591227
\(502\) −31037.6 −2.75951
\(503\) 171.433 0.0151965 0.00759823 0.999971i \(-0.497581\pi\)
0.00759823 + 0.999971i \(0.497581\pi\)
\(504\) −39.3055 −0.00347382
\(505\) 0 0
\(506\) −5525.23 −0.485427
\(507\) 11394.5 0.998117
\(508\) 5143.37 0.449213
\(509\) −5719.31 −0.498043 −0.249022 0.968498i \(-0.580109\pi\)
−0.249022 + 0.968498i \(0.580109\pi\)
\(510\) 0 0
\(511\) 1522.80 0.131829
\(512\) 15294.1 1.32014
\(513\) 17380.8 1.49587
\(514\) 14328.7 1.22960
\(515\) 0 0
\(516\) 25790.5 2.20031
\(517\) −3921.43 −0.333587
\(518\) −24148.9 −2.04834
\(519\) 2187.16 0.184982
\(520\) 0 0
\(521\) 3500.52 0.294358 0.147179 0.989110i \(-0.452981\pi\)
0.147179 + 0.989110i \(0.452981\pi\)
\(522\) 18.3241 0.00153645
\(523\) 7103.24 0.593887 0.296943 0.954895i \(-0.404033\pi\)
0.296943 + 0.954895i \(0.404033\pi\)
\(524\) 11506.7 0.959298
\(525\) 0 0
\(526\) −25645.1 −2.12582
\(527\) 899.100 0.0743176
\(528\) −13132.8 −1.08244
\(529\) −3644.41 −0.299533
\(530\) 0 0
\(531\) 5.78882 0.000473095 0
\(532\) 50357.1 4.10387
\(533\) −88.6586 −0.00720494
\(534\) −12857.6 −1.04195
\(535\) 0 0
\(536\) −65927.5 −5.31275
\(537\) 13668.9 1.09843
\(538\) 22556.2 1.80756
\(539\) 125.256 0.0100095
\(540\) 0 0
\(541\) 2035.89 0.161792 0.0808961 0.996723i \(-0.474222\pi\)
0.0808961 + 0.996723i \(0.474222\pi\)
\(542\) −38932.9 −3.08544
\(543\) 12606.2 0.996283
\(544\) 2023.58 0.159485
\(545\) 0 0
\(546\) −919.809 −0.0720956
\(547\) 24546.4 1.91870 0.959348 0.282226i \(-0.0910728\pi\)
0.959348 + 0.282226i \(0.0910728\pi\)
\(548\) 10337.4 0.805825
\(549\) −13.8485 −0.00107657
\(550\) 0 0
\(551\) −14782.8 −1.14296
\(552\) 35486.5 2.73625
\(553\) −6320.17 −0.486006
\(554\) −43943.3 −3.36998
\(555\) 0 0
\(556\) 7652.76 0.583722
\(557\) −17398.0 −1.32348 −0.661740 0.749733i \(-0.730182\pi\)
−0.661740 + 0.749733i \(0.730182\pi\)
\(558\) −44.9168 −0.00340767
\(559\) −397.477 −0.0300742
\(560\) 0 0
\(561\) −175.513 −0.0132089
\(562\) 7865.93 0.590399
\(563\) −13198.2 −0.987992 −0.493996 0.869464i \(-0.664464\pi\)
−0.493996 + 0.869464i \(0.664464\pi\)
\(564\) 39997.3 2.98616
\(565\) 0 0
\(566\) 44942.7 3.33760
\(567\) −13709.2 −1.01540
\(568\) −48488.9 −3.58195
\(569\) −15124.2 −1.11431 −0.557153 0.830410i \(-0.688106\pi\)
−0.557153 + 0.830410i \(0.688106\pi\)
\(570\) 0 0
\(571\) 8485.10 0.621875 0.310937 0.950430i \(-0.399357\pi\)
0.310937 + 0.950430i \(0.399357\pi\)
\(572\) 410.913 0.0300369
\(573\) −4818.48 −0.351300
\(574\) −5251.69 −0.381884
\(575\) 0 0
\(576\) −49.2140 −0.00356004
\(577\) −14482.9 −1.04494 −0.522471 0.852657i \(-0.674990\pi\)
−0.522471 + 0.852657i \(0.674990\pi\)
\(578\) −26679.8 −1.91996
\(579\) −7027.09 −0.504380
\(580\) 0 0
\(581\) −8135.23 −0.580906
\(582\) 23804.2 1.69539
\(583\) −1296.32 −0.0920896
\(584\) 5987.24 0.424236
\(585\) 0 0
\(586\) 31473.7 2.21871
\(587\) 6985.26 0.491163 0.245581 0.969376i \(-0.421021\pi\)
0.245581 + 0.969376i \(0.421021\pi\)
\(588\) −1277.57 −0.0896021
\(589\) 36236.3 2.53496
\(590\) 0 0
\(591\) −14009.5 −0.975086
\(592\) −54199.6 −3.76282
\(593\) −585.572 −0.0405507 −0.0202753 0.999794i \(-0.506454\pi\)
−0.0202753 + 0.999794i \(0.506454\pi\)
\(594\) 8401.11 0.580306
\(595\) 0 0
\(596\) 64857.2 4.45748
\(597\) −9331.92 −0.639749
\(598\) −868.540 −0.0593934
\(599\) −19170.0 −1.30762 −0.653809 0.756659i \(-0.726830\pi\)
−0.653809 + 0.756659i \(0.726830\pi\)
\(600\) 0 0
\(601\) 22098.9 1.49989 0.749943 0.661502i \(-0.230081\pi\)
0.749943 + 0.661502i \(0.230081\pi\)
\(602\) −23544.5 −1.59403
\(603\) 25.1266 0.00169691
\(604\) 48211.6 3.24785
\(605\) 0 0
\(606\) 14827.2 0.993916
\(607\) −3717.96 −0.248612 −0.124306 0.992244i \(-0.539670\pi\)
−0.124306 + 0.992244i \(0.539670\pi\)
\(608\) 81555.9 5.44001
\(609\) 11672.2 0.776655
\(610\) 0 0
\(611\) −616.430 −0.0408152
\(612\) −1.87231 −0.000123666 0
\(613\) 25728.4 1.69520 0.847602 0.530632i \(-0.178045\pi\)
0.847602 + 0.530632i \(0.178045\pi\)
\(614\) 51461.5 3.38244
\(615\) 0 0
\(616\) 15326.9 1.00250
\(617\) 5085.97 0.331853 0.165927 0.986138i \(-0.446939\pi\)
0.165927 + 0.986138i \(0.446939\pi\)
\(618\) −6758.29 −0.439900
\(619\) 770.194 0.0500108 0.0250054 0.999687i \(-0.492040\pi\)
0.0250054 + 0.999687i \(0.492040\pi\)
\(620\) 0 0
\(621\) −12958.6 −0.837376
\(622\) −32561.4 −2.09902
\(623\) 8565.90 0.550859
\(624\) −2064.41 −0.132440
\(625\) 0 0
\(626\) −6976.96 −0.445456
\(627\) −7073.68 −0.450551
\(628\) 6127.99 0.389385
\(629\) −724.351 −0.0459170
\(630\) 0 0
\(631\) −12396.1 −0.782063 −0.391031 0.920377i \(-0.627882\pi\)
−0.391031 + 0.920377i \(0.627882\pi\)
\(632\) −24849.3 −1.56400
\(633\) 1224.47 0.0768852
\(634\) 9401.35 0.588920
\(635\) 0 0
\(636\) 13222.1 0.824356
\(637\) 19.6896 0.00122469
\(638\) −7145.37 −0.443398
\(639\) 18.4804 0.00114409
\(640\) 0 0
\(641\) 5728.50 0.352983 0.176491 0.984302i \(-0.443525\pi\)
0.176491 + 0.984302i \(0.443525\pi\)
\(642\) 25188.5 1.54846
\(643\) −1536.24 −0.0942202 −0.0471101 0.998890i \(-0.515001\pi\)
−0.0471101 + 0.998890i \(0.515001\pi\)
\(644\) −37544.7 −2.29731
\(645\) 0 0
\(646\) 2069.81 0.126062
\(647\) 26647.1 1.61917 0.809587 0.586999i \(-0.199691\pi\)
0.809587 + 0.586999i \(0.199691\pi\)
\(648\) −53900.9 −3.26764
\(649\) −2257.31 −0.136529
\(650\) 0 0
\(651\) −28611.4 −1.72254
\(652\) 75058.8 4.50848
\(653\) −28405.1 −1.70226 −0.851131 0.524954i \(-0.824083\pi\)
−0.851131 + 0.524954i \(0.824083\pi\)
\(654\) −40236.9 −2.40579
\(655\) 0 0
\(656\) −11786.8 −0.701522
\(657\) −2.28189 −0.000135502 0
\(658\) −36514.2 −2.16333
\(659\) 12108.5 0.715752 0.357876 0.933769i \(-0.383501\pi\)
0.357876 + 0.933769i \(0.383501\pi\)
\(660\) 0 0
\(661\) 9862.98 0.580371 0.290186 0.956970i \(-0.406283\pi\)
0.290186 + 0.956970i \(0.406283\pi\)
\(662\) −11138.9 −0.653964
\(663\) −27.5898 −0.00161614
\(664\) −31985.6 −1.86940
\(665\) 0 0
\(666\) 36.1868 0.00210542
\(667\) 11021.6 0.639819
\(668\) −27579.1 −1.59741
\(669\) 22622.0 1.30735
\(670\) 0 0
\(671\) 5400.13 0.310685
\(672\) −64394.9 −3.69656
\(673\) 2282.66 0.130743 0.0653714 0.997861i \(-0.479177\pi\)
0.0653714 + 0.997861i \(0.479177\pi\)
\(674\) 39499.4 2.25736
\(675\) 0 0
\(676\) −47398.3 −2.69677
\(677\) 10499.2 0.596038 0.298019 0.954560i \(-0.403674\pi\)
0.298019 + 0.954560i \(0.403674\pi\)
\(678\) −2898.77 −0.164198
\(679\) −15858.6 −0.896316
\(680\) 0 0
\(681\) −15735.6 −0.885447
\(682\) 17515.0 0.983408
\(683\) 26681.2 1.49477 0.747386 0.664391i \(-0.231309\pi\)
0.747386 + 0.664391i \(0.231309\pi\)
\(684\) −75.4594 −0.00421822
\(685\) 0 0
\(686\) −33965.8 −1.89041
\(687\) 31641.8 1.75722
\(688\) −52843.1 −2.92823
\(689\) −203.776 −0.0112674
\(690\) 0 0
\(691\) −1530.22 −0.0842434 −0.0421217 0.999112i \(-0.513412\pi\)
−0.0421217 + 0.999112i \(0.513412\pi\)
\(692\) −9098.07 −0.499793
\(693\) −5.84148 −0.000320201 0
\(694\) −35569.4 −1.94553
\(695\) 0 0
\(696\) 45892.1 2.49933
\(697\) −157.525 −0.00856054
\(698\) 59368.3 3.21937
\(699\) −8478.31 −0.458769
\(700\) 0 0
\(701\) 25470.4 1.37233 0.686165 0.727446i \(-0.259293\pi\)
0.686165 + 0.727446i \(0.259293\pi\)
\(702\) 1320.62 0.0710020
\(703\) −29193.4 −1.56622
\(704\) 19190.7 1.02738
\(705\) 0 0
\(706\) −27063.5 −1.44270
\(707\) −9878.04 −0.525463
\(708\) 23023.9 1.22216
\(709\) 36906.7 1.95495 0.977475 0.211052i \(-0.0676891\pi\)
0.977475 + 0.211052i \(0.0676891\pi\)
\(710\) 0 0
\(711\) 9.47069 0.000499548 0
\(712\) 33678.8 1.77271
\(713\) −27016.7 −1.41905
\(714\) −1634.28 −0.0856604
\(715\) 0 0
\(716\) −56859.4 −2.96779
\(717\) −29224.6 −1.52219
\(718\) 13432.3 0.698176
\(719\) 13606.1 0.705734 0.352867 0.935673i \(-0.385207\pi\)
0.352867 + 0.935673i \(0.385207\pi\)
\(720\) 0 0
\(721\) 4502.45 0.232566
\(722\) 46100.2 2.37628
\(723\) −18107.6 −0.931438
\(724\) −52438.7 −2.69181
\(725\) 0 0
\(726\) −3419.10 −0.174786
\(727\) 25132.2 1.28212 0.641060 0.767491i \(-0.278495\pi\)
0.641060 + 0.767491i \(0.278495\pi\)
\(728\) 2409.32 0.122658
\(729\) 19703.5 1.00104
\(730\) 0 0
\(731\) −706.223 −0.0357327
\(732\) −55079.6 −2.78115
\(733\) 10789.5 0.543681 0.271841 0.962342i \(-0.412368\pi\)
0.271841 + 0.962342i \(0.412368\pi\)
\(734\) −40833.3 −2.05339
\(735\) 0 0
\(736\) −60805.5 −3.04527
\(737\) −9797.97 −0.489705
\(738\) 7.86958 0.000392525 0
\(739\) −34785.9 −1.73156 −0.865778 0.500428i \(-0.833176\pi\)
−0.865778 + 0.500428i \(0.833176\pi\)
\(740\) 0 0
\(741\) −1111.95 −0.0551262
\(742\) −12070.7 −0.597208
\(743\) −19790.8 −0.977195 −0.488597 0.872509i \(-0.662491\pi\)
−0.488597 + 0.872509i \(0.662491\pi\)
\(744\) −112493. −5.54325
\(745\) 0 0
\(746\) 41876.4 2.05523
\(747\) 12.1905 0.000597092 0
\(748\) 730.095 0.0356884
\(749\) −16780.9 −0.818639
\(750\) 0 0
\(751\) 17836.9 0.866681 0.433341 0.901230i \(-0.357335\pi\)
0.433341 + 0.901230i \(0.357335\pi\)
\(752\) −81952.2 −3.97405
\(753\) 29625.8 1.43377
\(754\) −1123.22 −0.0542509
\(755\) 0 0
\(756\) 57086.8 2.74633
\(757\) −26599.8 −1.27713 −0.638564 0.769569i \(-0.720471\pi\)
−0.638564 + 0.769569i \(0.720471\pi\)
\(758\) 33999.3 1.62917
\(759\) 5273.92 0.252215
\(760\) 0 0
\(761\) 8248.59 0.392919 0.196459 0.980512i \(-0.437056\pi\)
0.196459 + 0.980512i \(0.437056\pi\)
\(762\) −6727.44 −0.319828
\(763\) 26806.3 1.27189
\(764\) 20043.8 0.949161
\(765\) 0 0
\(766\) −24512.0 −1.15621
\(767\) −354.839 −0.0167047
\(768\) −46846.0 −2.20105
\(769\) 1496.76 0.0701880 0.0350940 0.999384i \(-0.488827\pi\)
0.0350940 + 0.999384i \(0.488827\pi\)
\(770\) 0 0
\(771\) −13677.0 −0.638866
\(772\) 29231.1 1.36276
\(773\) −459.376 −0.0213746 −0.0106873 0.999943i \(-0.503402\pi\)
−0.0106873 + 0.999943i \(0.503402\pi\)
\(774\) 35.2811 0.00163844
\(775\) 0 0
\(776\) −62351.9 −2.88441
\(777\) 23050.5 1.06426
\(778\) 29525.9 1.36061
\(779\) −6348.72 −0.291998
\(780\) 0 0
\(781\) −7206.29 −0.330168
\(782\) −1543.19 −0.0705682
\(783\) −16758.4 −0.764874
\(784\) 2617.66 0.119245
\(785\) 0 0
\(786\) −15050.6 −0.682997
\(787\) 21110.4 0.956170 0.478085 0.878314i \(-0.341331\pi\)
0.478085 + 0.878314i \(0.341331\pi\)
\(788\) 58276.5 2.63454
\(789\) 24478.7 1.10452
\(790\) 0 0
\(791\) 1931.19 0.0868082
\(792\) −22.9671 −0.00103043
\(793\) 848.875 0.0380132
\(794\) 64110.7 2.86549
\(795\) 0 0
\(796\) 38818.7 1.72851
\(797\) 44355.5 1.97133 0.985666 0.168711i \(-0.0539605\pi\)
0.985666 + 0.168711i \(0.0539605\pi\)
\(798\) −65866.3 −2.92186
\(799\) −1095.25 −0.0484946
\(800\) 0 0
\(801\) −12.8359 −0.000566208 0
\(802\) 58452.9 2.57362
\(803\) 889.807 0.0391041
\(804\) 99936.2 4.38368
\(805\) 0 0
\(806\) 2753.28 0.120323
\(807\) −21530.2 −0.939158
\(808\) −38837.8 −1.69098
\(809\) −15021.8 −0.652830 −0.326415 0.945227i \(-0.605841\pi\)
−0.326415 + 0.945227i \(0.605841\pi\)
\(810\) 0 0
\(811\) 20178.0 0.873667 0.436833 0.899542i \(-0.356100\pi\)
0.436833 + 0.899542i \(0.356100\pi\)
\(812\) −48553.8 −2.09841
\(813\) 37162.1 1.60311
\(814\) −14110.8 −0.607596
\(815\) 0 0
\(816\) −3667.97 −0.157359
\(817\) −28462.8 −1.21883
\(818\) 28056.3 1.19922
\(819\) −0.918253 −3.91775e−5 0
\(820\) 0 0
\(821\) 8507.06 0.361630 0.180815 0.983517i \(-0.442126\pi\)
0.180815 + 0.983517i \(0.442126\pi\)
\(822\) −13521.2 −0.573728
\(823\) 13562.9 0.574451 0.287225 0.957863i \(-0.407267\pi\)
0.287225 + 0.957863i \(0.407267\pi\)
\(824\) 17702.4 0.748415
\(825\) 0 0
\(826\) −21018.9 −0.885399
\(827\) −42090.2 −1.76979 −0.884897 0.465786i \(-0.845771\pi\)
−0.884897 + 0.465786i \(0.845771\pi\)
\(828\) 56.2602 0.00236133
\(829\) 19524.7 0.817998 0.408999 0.912535i \(-0.365878\pi\)
0.408999 + 0.912535i \(0.365878\pi\)
\(830\) 0 0
\(831\) 41944.5 1.75095
\(832\) 3016.69 0.125703
\(833\) 34.9838 0.00145512
\(834\) −10009.7 −0.415596
\(835\) 0 0
\(836\) 29424.9 1.21732
\(837\) 41078.8 1.69641
\(838\) 54372.4 2.24136
\(839\) 40733.8 1.67615 0.838073 0.545559i \(-0.183683\pi\)
0.838073 + 0.545559i \(0.183683\pi\)
\(840\) 0 0
\(841\) −10135.5 −0.415578
\(842\) −9922.13 −0.406104
\(843\) −7508.15 −0.306755
\(844\) −5093.52 −0.207732
\(845\) 0 0
\(846\) 54.7160 0.00222361
\(847\) 2277.85 0.0924058
\(848\) −27091.3 −1.09707
\(849\) −42898.5 −1.73413
\(850\) 0 0
\(851\) 21765.7 0.876756
\(852\) 73501.9 2.95556
\(853\) 7476.59 0.300110 0.150055 0.988678i \(-0.452055\pi\)
0.150055 + 0.988678i \(0.452055\pi\)
\(854\) 50283.1 2.01481
\(855\) 0 0
\(856\) −65978.0 −2.63444
\(857\) 46353.7 1.84762 0.923812 0.382847i \(-0.125056\pi\)
0.923812 + 0.382847i \(0.125056\pi\)
\(858\) −537.467 −0.0213856
\(859\) −3254.04 −0.129251 −0.0646254 0.997910i \(-0.520585\pi\)
−0.0646254 + 0.997910i \(0.520585\pi\)
\(860\) 0 0
\(861\) 5012.82 0.198416
\(862\) −36123.9 −1.42736
\(863\) −38864.6 −1.53299 −0.766493 0.642252i \(-0.778000\pi\)
−0.766493 + 0.642252i \(0.778000\pi\)
\(864\) 92454.8 3.64048
\(865\) 0 0
\(866\) −92685.2 −3.63692
\(867\) 25466.3 0.997557
\(868\) 119017. 4.65404
\(869\) −3693.03 −0.144163
\(870\) 0 0
\(871\) −1540.19 −0.0599168
\(872\) 105395. 4.09304
\(873\) 23.7639 0.000921291 0
\(874\) −62195.0 −2.40707
\(875\) 0 0
\(876\) −9075.75 −0.350047
\(877\) −35144.3 −1.35318 −0.676589 0.736361i \(-0.736543\pi\)
−0.676589 + 0.736361i \(0.736543\pi\)
\(878\) −44480.5 −1.70973
\(879\) −30042.1 −1.15278
\(880\) 0 0
\(881\) 31530.7 1.20578 0.602892 0.797823i \(-0.294015\pi\)
0.602892 + 0.797823i \(0.294015\pi\)
\(882\) −1.74770 −6.67213e−5 0
\(883\) 35263.1 1.34394 0.671970 0.740579i \(-0.265448\pi\)
0.671970 + 0.740579i \(0.265448\pi\)
\(884\) 114.768 0.00436657
\(885\) 0 0
\(886\) 18155.8 0.688436
\(887\) 10912.5 0.413086 0.206543 0.978438i \(-0.433779\pi\)
0.206543 + 0.978438i \(0.433779\pi\)
\(888\) 90628.6 3.42488
\(889\) 4481.90 0.169087
\(890\) 0 0
\(891\) −8010.61 −0.301196
\(892\) −94102.4 −3.53227
\(893\) −44141.7 −1.65414
\(894\) −84832.1 −3.17361
\(895\) 0 0
\(896\) 79499.1 2.96415
\(897\) 829.035 0.0308592
\(898\) −43898.9 −1.63132
\(899\) −34938.6 −1.29618
\(900\) 0 0
\(901\) −362.062 −0.0133874
\(902\) −3068.69 −0.113277
\(903\) 22473.6 0.828212
\(904\) 7592.94 0.279356
\(905\) 0 0
\(906\) −63059.9 −2.31239
\(907\) 6918.62 0.253285 0.126642 0.991948i \(-0.459580\pi\)
0.126642 + 0.991948i \(0.459580\pi\)
\(908\) 65456.5 2.39235
\(909\) 14.8021 0.000540104 0
\(910\) 0 0
\(911\) 9101.44 0.331003 0.165502 0.986210i \(-0.447076\pi\)
0.165502 + 0.986210i \(0.447076\pi\)
\(912\) −147830. −5.36746
\(913\) −4753.61 −0.172313
\(914\) −37746.3 −1.36601
\(915\) 0 0
\(916\) −131623. −4.74775
\(917\) 10026.9 0.361086
\(918\) 2346.42 0.0843610
\(919\) 34392.5 1.23450 0.617248 0.786768i \(-0.288247\pi\)
0.617248 + 0.786768i \(0.288247\pi\)
\(920\) 0 0
\(921\) −49120.8 −1.75742
\(922\) 38460.3 1.37378
\(923\) −1132.80 −0.0403970
\(924\) −23233.3 −0.827186
\(925\) 0 0
\(926\) 31736.8 1.12628
\(927\) −6.74685 −0.000239046 0
\(928\) −78635.3 −2.78161
\(929\) 4364.57 0.154141 0.0770704 0.997026i \(-0.475443\pi\)
0.0770704 + 0.997026i \(0.475443\pi\)
\(930\) 0 0
\(931\) 1409.95 0.0496338
\(932\) 35267.9 1.23952
\(933\) 31080.3 1.09059
\(934\) −33503.9 −1.17375
\(935\) 0 0
\(936\) −3.61033 −0.000126076 0
\(937\) 1816.07 0.0633174 0.0316587 0.999499i \(-0.489921\pi\)
0.0316587 + 0.999499i \(0.489921\pi\)
\(938\) −91233.4 −3.17577
\(939\) 6659.62 0.231447
\(940\) 0 0
\(941\) −35113.5 −1.21644 −0.608218 0.793770i \(-0.708115\pi\)
−0.608218 + 0.793770i \(0.708115\pi\)
\(942\) −8015.31 −0.277232
\(943\) 4733.41 0.163458
\(944\) −47174.5 −1.62648
\(945\) 0 0
\(946\) −13757.6 −0.472833
\(947\) −10104.6 −0.346731 −0.173365 0.984858i \(-0.555464\pi\)
−0.173365 + 0.984858i \(0.555464\pi\)
\(948\) 37667.8 1.29050
\(949\) 139.874 0.00478450
\(950\) 0 0
\(951\) −8973.74 −0.305987
\(952\) 4280.79 0.145737
\(953\) −46422.4 −1.57793 −0.788965 0.614438i \(-0.789383\pi\)
−0.788965 + 0.614438i \(0.789383\pi\)
\(954\) 18.0877 0.000613849 0
\(955\) 0 0
\(956\) 121568. 4.11274
\(957\) 6820.37 0.230377
\(958\) −38319.2 −1.29232
\(959\) 9007.95 0.303318
\(960\) 0 0
\(961\) 55852.0 1.87479
\(962\) −2218.15 −0.0743410
\(963\) 25.1459 0.000841449 0
\(964\) 75323.6 2.51661
\(965\) 0 0
\(966\) 49107.9 1.63563
\(967\) 928.679 0.0308835 0.0154417 0.999881i \(-0.495085\pi\)
0.0154417 + 0.999881i \(0.495085\pi\)
\(968\) 8955.88 0.297369
\(969\) −1975.67 −0.0654981
\(970\) 0 0
\(971\) −51195.8 −1.69202 −0.846011 0.533166i \(-0.821002\pi\)
−0.846011 + 0.533166i \(0.821002\pi\)
\(972\) −170.998 −0.00564276
\(973\) 6668.56 0.219717
\(974\) −25565.9 −0.841052
\(975\) 0 0
\(976\) 112855. 3.70122
\(977\) −31543.9 −1.03294 −0.516469 0.856306i \(-0.672754\pi\)
−0.516469 + 0.856306i \(0.672754\pi\)
\(978\) −98175.6 −3.20993
\(979\) 5005.26 0.163400
\(980\) 0 0
\(981\) −40.1688 −0.00130733
\(982\) −101822. −3.30883
\(983\) −30743.8 −0.997532 −0.498766 0.866737i \(-0.666213\pi\)
−0.498766 + 0.866737i \(0.666213\pi\)
\(984\) 19709.1 0.638519
\(985\) 0 0
\(986\) −1995.69 −0.0644582
\(987\) 34853.4 1.12401
\(988\) 4625.46 0.148943
\(989\) 21221.0 0.682293
\(990\) 0 0
\(991\) −31389.1 −1.00616 −0.503082 0.864239i \(-0.667801\pi\)
−0.503082 + 0.864239i \(0.667801\pi\)
\(992\) 192754. 6.16930
\(993\) 10632.2 0.339782
\(994\) −67101.1 −2.14117
\(995\) 0 0
\(996\) 48485.3 1.54249
\(997\) 10343.4 0.328565 0.164282 0.986413i \(-0.447469\pi\)
0.164282 + 0.986413i \(0.447469\pi\)
\(998\) −32750.7 −1.03878
\(999\) −33094.8 −1.04812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.k.1.10 10
3.2 odd 2 2475.4.a.bw.1.1 10
5.2 odd 4 55.4.b.b.34.10 yes 10
5.3 odd 4 55.4.b.b.34.1 10
5.4 even 2 inner 275.4.a.k.1.1 10
15.2 even 4 495.4.c.b.199.1 10
15.8 even 4 495.4.c.b.199.10 10
15.14 odd 2 2475.4.a.bw.1.10 10
20.3 even 4 880.4.b.i.529.8 10
20.7 even 4 880.4.b.i.529.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.b.b.34.1 10 5.3 odd 4
55.4.b.b.34.10 yes 10 5.2 odd 4
275.4.a.k.1.1 10 5.4 even 2 inner
275.4.a.k.1.10 10 1.1 even 1 trivial
495.4.c.b.199.1 10 15.2 even 4
495.4.c.b.199.10 10 15.8 even 4
880.4.b.i.529.3 10 20.7 even 4
880.4.b.i.529.8 10 20.3 even 4
2475.4.a.bw.1.1 10 3.2 odd 2
2475.4.a.bw.1.10 10 15.14 odd 2