Properties

Label 2496.1.be.a
Level 24962496
Weight 11
Character orbit 2496.be
Analytic conductor 1.2461.246
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,1,Mod(671,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 2, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.671");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2496=26313 2496 = 2^{6} \cdot 3 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2496.be (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.245666271531.24566627153
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.421824.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qq3+(i1)q7+q9+iq13+(i+1)q19+(i+1)q21iq25q27+(i+1)q31+(i1)q37iq392iq43+iq49+(i1)q572iq61++(i+1)q97+O(q100) q - q^{3} + ( - i - 1) q^{7} + q^{9} + i q^{13} + (i + 1) q^{19} + (i + 1) q^{21} - i q^{25} - q^{27} + ( - i + 1) q^{31} + ( - i - 1) q^{37} - i q^{39} - 2 i q^{43} + i q^{49} + ( - i - 1) q^{57} - 2 i q^{61} + \cdots + (i + 1) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q32q7+2q9+2q19+2q212q27+2q312q372q572q63+2q67+2q73+2q81+2q912q93+2q97+O(q100) 2 q - 2 q^{3} - 2 q^{7} + 2 q^{9} + 2 q^{19} + 2 q^{21} - 2 q^{27} + 2 q^{31} - 2 q^{37} - 2 q^{57} - 2 q^{63} + 2 q^{67} + 2 q^{73} + 2 q^{81} + 2 q^{91} - 2 q^{93} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2496Z)×\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times.

nn 703703 769769 833833 10931093
χ(n)\chi(n) 1-1 ii 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
671.1
1.00000i
1.00000i
0 −1.00000 0 0 0 −1.00000 1.00000i 0 1.00000 0
863.1 0 −1.00000 0 0 0 −1.00000 + 1.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
104.m even 4 1 inner
312.w odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.1.be.a 2
3.b odd 2 1 CM 2496.1.be.a 2
4.b odd 2 1 2496.1.be.d yes 2
8.b even 2 1 2496.1.be.c yes 2
8.d odd 2 1 2496.1.be.b yes 2
12.b even 2 1 2496.1.be.d yes 2
13.d odd 4 1 2496.1.be.b yes 2
24.f even 2 1 2496.1.be.b yes 2
24.h odd 2 1 2496.1.be.c yes 2
39.f even 4 1 2496.1.be.b yes 2
52.f even 4 1 2496.1.be.c yes 2
104.j odd 4 1 2496.1.be.d yes 2
104.m even 4 1 inner 2496.1.be.a 2
156.l odd 4 1 2496.1.be.c yes 2
312.w odd 4 1 inner 2496.1.be.a 2
312.y even 4 1 2496.1.be.d yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2496.1.be.a 2 1.a even 1 1 trivial
2496.1.be.a 2 3.b odd 2 1 CM
2496.1.be.a 2 104.m even 4 1 inner
2496.1.be.a 2 312.w odd 4 1 inner
2496.1.be.b yes 2 8.d odd 2 1
2496.1.be.b yes 2 13.d odd 4 1
2496.1.be.b yes 2 24.f even 2 1
2496.1.be.b yes 2 39.f even 4 1
2496.1.be.c yes 2 8.b even 2 1
2496.1.be.c yes 2 24.h odd 2 1
2496.1.be.c yes 2 52.f even 4 1
2496.1.be.c yes 2 156.l odd 4 1
2496.1.be.d yes 2 4.b odd 2 1
2496.1.be.d yes 2 12.b even 2 1
2496.1.be.d yes 2 104.j odd 4 1
2496.1.be.d yes 2 312.y even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2496,[χ])S_{1}^{\mathrm{new}}(2496, [\chi]):

T72+2T7+2 T_{7}^{2} + 2T_{7} + 2 Copy content Toggle raw display
T1922T19+2 T_{19}^{2} - 2T_{19} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
3737 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+4 T^{2} + 4 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
show more
show less