Properties

Label 25.2.d.a.6.1
Level $25$
Weight $2$
Character 25.6
Analytic conductor $0.200$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,2,Mod(6,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.6");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25.d (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.199626005053\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 6.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 25.6
Dual form 25.2.d.a.21.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 1.53884i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-0.500000 + 0.363271i) q^{4} +(-0.690983 + 2.12663i) q^{5} +(1.30902 + 0.951057i) q^{6} +0.618034 q^{7} +(-1.80902 - 1.31433i) q^{8} +(-0.618034 + 1.90211i) q^{9} +3.61803 q^{10} +(-1.61803 - 4.97980i) q^{11} +(0.190983 - 0.587785i) q^{12} +(0.572949 - 1.76336i) q^{13} +(-0.309017 - 0.951057i) q^{14} +(-0.690983 - 2.12663i) q^{15} +(-1.50000 + 4.61653i) q^{16} +(4.23607 + 3.07768i) q^{17} +3.23607 q^{18} +(-0.690983 - 0.502029i) q^{19} +(-0.427051 - 1.31433i) q^{20} +(-0.500000 + 0.363271i) q^{21} +(-6.85410 + 4.97980i) q^{22} +(1.16312 + 3.57971i) q^{23} +2.23607 q^{24} +(-4.04508 - 2.93893i) q^{25} -3.00000 q^{26} +(-1.54508 - 4.75528i) q^{27} +(-0.309017 + 0.224514i) q^{28} +(2.92705 - 2.12663i) q^{29} +(-2.92705 + 2.12663i) q^{30} +(2.42705 + 1.76336i) q^{31} +3.38197 q^{32} +(4.23607 + 3.07768i) q^{33} +(2.61803 - 8.05748i) q^{34} +(-0.427051 + 1.31433i) q^{35} +(-0.381966 - 1.17557i) q^{36} +(-0.0729490 + 0.224514i) q^{37} +(-0.427051 + 1.31433i) q^{38} +(0.572949 + 1.76336i) q^{39} +(4.04508 - 2.93893i) q^{40} +(-0.236068 + 0.726543i) q^{41} +(0.809017 + 0.587785i) q^{42} -4.85410 q^{43} +(2.61803 + 1.90211i) q^{44} +(-3.61803 - 2.62866i) q^{45} +(4.92705 - 3.57971i) q^{46} +(-0.500000 + 0.363271i) q^{47} +(-1.50000 - 4.61653i) q^{48} -6.61803 q^{49} +(-2.50000 + 7.69421i) q^{50} -5.23607 q^{51} +(0.354102 + 1.08981i) q^{52} +(2.80902 - 2.04087i) q^{53} +(-6.54508 + 4.75528i) q^{54} +11.7082 q^{55} +(-1.11803 - 0.812299i) q^{56} +0.854102 q^{57} +(-4.73607 - 3.44095i) q^{58} +(-3.35410 + 10.3229i) q^{59} +(1.11803 + 0.812299i) q^{60} +(2.69098 + 8.28199i) q^{61} +(1.50000 - 4.61653i) q^{62} +(-0.381966 + 1.17557i) q^{63} +(1.30902 + 4.02874i) q^{64} +(3.35410 + 2.43690i) q^{65} +(2.61803 - 8.05748i) q^{66} +(-3.85410 - 2.80017i) q^{67} -3.23607 q^{68} +(-3.04508 - 2.21238i) q^{69} +2.23607 q^{70} +(5.35410 - 3.88998i) q^{71} +(3.61803 - 2.62866i) q^{72} +(-2.78115 - 8.55951i) q^{73} +0.381966 q^{74} +5.00000 q^{75} +0.527864 q^{76} +(-1.00000 - 3.07768i) q^{77} +(2.42705 - 1.76336i) q^{78} +(6.54508 - 4.75528i) q^{79} +(-8.78115 - 6.37988i) q^{80} +(-0.809017 - 0.587785i) q^{81} +1.23607 q^{82} +(5.04508 + 3.66547i) q^{83} +(0.118034 - 0.363271i) q^{84} +(-9.47214 + 6.88191i) q^{85} +(2.42705 + 7.46969i) q^{86} +(-1.11803 + 3.44095i) q^{87} +(-3.61803 + 11.1352i) q^{88} +(-2.76393 - 8.50651i) q^{89} +(-2.23607 + 6.88191i) q^{90} +(0.354102 - 1.08981i) q^{91} +(-1.88197 - 1.36733i) q^{92} -3.00000 q^{93} +(0.809017 + 0.587785i) q^{94} +(1.54508 - 1.12257i) q^{95} +(-2.73607 + 1.98787i) q^{96} +(3.11803 - 2.26538i) q^{97} +(3.30902 + 10.1841i) q^{98} +10.4721 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} - 5 q^{5} + 3 q^{6} - 2 q^{7} - 5 q^{8} + 2 q^{9} + 10 q^{10} - 2 q^{11} + 3 q^{12} + 9 q^{13} + q^{14} - 5 q^{15} - 6 q^{16} + 8 q^{17} + 4 q^{18} - 5 q^{19} + 5 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 1.53884i −0.353553 1.08813i −0.956844 0.290604i \(-0.906144\pi\)
0.603290 0.797522i \(-0.293856\pi\)
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i −0.796305 0.604896i \(-0.793215\pi\)
0.329218 + 0.944254i \(0.393215\pi\)
\(4\) −0.500000 + 0.363271i −0.250000 + 0.181636i
\(5\) −0.690983 + 2.12663i −0.309017 + 0.951057i
\(6\) 1.30902 + 0.951057i 0.534404 + 0.388267i
\(7\) 0.618034 0.233595 0.116797 0.993156i \(-0.462737\pi\)
0.116797 + 0.993156i \(0.462737\pi\)
\(8\) −1.80902 1.31433i −0.639584 0.464685i
\(9\) −0.618034 + 1.90211i −0.206011 + 0.634038i
\(10\) 3.61803 1.14412
\(11\) −1.61803 4.97980i −0.487856 1.50147i −0.827802 0.561020i \(-0.810409\pi\)
0.339946 0.940445i \(-0.389591\pi\)
\(12\) 0.190983 0.587785i 0.0551320 0.169679i
\(13\) 0.572949 1.76336i 0.158907 0.489067i −0.839628 0.543161i \(-0.817227\pi\)
0.998536 + 0.0540944i \(0.0172272\pi\)
\(14\) −0.309017 0.951057i −0.0825883 0.254181i
\(15\) −0.690983 2.12663i −0.178411 0.549093i
\(16\) −1.50000 + 4.61653i −0.375000 + 1.15413i
\(17\) 4.23607 + 3.07768i 1.02740 + 0.746448i 0.967786 0.251774i \(-0.0810139\pi\)
0.0596113 + 0.998222i \(0.481014\pi\)
\(18\) 3.23607 0.762749
\(19\) −0.690983 0.502029i −0.158522 0.115173i 0.505696 0.862712i \(-0.331236\pi\)
−0.664219 + 0.747538i \(0.731236\pi\)
\(20\) −0.427051 1.31433i −0.0954915 0.293893i
\(21\) −0.500000 + 0.363271i −0.109109 + 0.0792723i
\(22\) −6.85410 + 4.97980i −1.46130 + 1.06170i
\(23\) 1.16312 + 3.57971i 0.242527 + 0.746422i 0.996033 + 0.0889808i \(0.0283610\pi\)
−0.753506 + 0.657441i \(0.771639\pi\)
\(24\) 2.23607 0.456435
\(25\) −4.04508 2.93893i −0.809017 0.587785i
\(26\) −3.00000 −0.588348
\(27\) −1.54508 4.75528i −0.297352 0.915155i
\(28\) −0.309017 + 0.224514i −0.0583987 + 0.0424292i
\(29\) 2.92705 2.12663i 0.543540 0.394905i −0.281858 0.959456i \(-0.590951\pi\)
0.825398 + 0.564551i \(0.190951\pi\)
\(30\) −2.92705 + 2.12663i −0.534404 + 0.388267i
\(31\) 2.42705 + 1.76336i 0.435911 + 0.316708i 0.784008 0.620750i \(-0.213172\pi\)
−0.348097 + 0.937459i \(0.613172\pi\)
\(32\) 3.38197 0.597853
\(33\) 4.23607 + 3.07768i 0.737405 + 0.535756i
\(34\) 2.61803 8.05748i 0.448989 1.38185i
\(35\) −0.427051 + 1.31433i −0.0721848 + 0.222162i
\(36\) −0.381966 1.17557i −0.0636610 0.195928i
\(37\) −0.0729490 + 0.224514i −0.0119927 + 0.0369099i −0.956874 0.290504i \(-0.906177\pi\)
0.944881 + 0.327414i \(0.106177\pi\)
\(38\) −0.427051 + 1.31433i −0.0692768 + 0.213212i
\(39\) 0.572949 + 1.76336i 0.0917453 + 0.282363i
\(40\) 4.04508 2.93893i 0.639584 0.464685i
\(41\) −0.236068 + 0.726543i −0.0368676 + 0.113467i −0.967797 0.251733i \(-0.918999\pi\)
0.930929 + 0.365200i \(0.118999\pi\)
\(42\) 0.809017 + 0.587785i 0.124834 + 0.0906972i
\(43\) −4.85410 −0.740244 −0.370122 0.928983i \(-0.620684\pi\)
−0.370122 + 0.928983i \(0.620684\pi\)
\(44\) 2.61803 + 1.90211i 0.394683 + 0.286754i
\(45\) −3.61803 2.62866i −0.539345 0.391857i
\(46\) 4.92705 3.57971i 0.726454 0.527800i
\(47\) −0.500000 + 0.363271i −0.0729325 + 0.0529886i −0.623654 0.781700i \(-0.714353\pi\)
0.550722 + 0.834689i \(0.314353\pi\)
\(48\) −1.50000 4.61653i −0.216506 0.666338i
\(49\) −6.61803 −0.945433
\(50\) −2.50000 + 7.69421i −0.353553 + 1.08813i
\(51\) −5.23607 −0.733196
\(52\) 0.354102 + 1.08981i 0.0491051 + 0.151130i
\(53\) 2.80902 2.04087i 0.385848 0.280335i −0.377904 0.925845i \(-0.623355\pi\)
0.763752 + 0.645510i \(0.223355\pi\)
\(54\) −6.54508 + 4.75528i −0.890673 + 0.647112i
\(55\) 11.7082 1.57873
\(56\) −1.11803 0.812299i −0.149404 0.108548i
\(57\) 0.854102 0.113129
\(58\) −4.73607 3.44095i −0.621876 0.451820i
\(59\) −3.35410 + 10.3229i −0.436667 + 1.34392i 0.454702 + 0.890644i \(0.349746\pi\)
−0.891369 + 0.453279i \(0.850254\pi\)
\(60\) 1.11803 + 0.812299i 0.144338 + 0.104867i
\(61\) 2.69098 + 8.28199i 0.344545 + 1.06040i 0.961827 + 0.273659i \(0.0882338\pi\)
−0.617282 + 0.786742i \(0.711766\pi\)
\(62\) 1.50000 4.61653i 0.190500 0.586299i
\(63\) −0.381966 + 1.17557i −0.0481232 + 0.148108i
\(64\) 1.30902 + 4.02874i 0.163627 + 0.503593i
\(65\) 3.35410 + 2.43690i 0.416025 + 0.302260i
\(66\) 2.61803 8.05748i 0.322258 0.991807i
\(67\) −3.85410 2.80017i −0.470853 0.342095i 0.326920 0.945052i \(-0.393989\pi\)
−0.797774 + 0.602957i \(0.793989\pi\)
\(68\) −3.23607 −0.392431
\(69\) −3.04508 2.21238i −0.366585 0.266340i
\(70\) 2.23607 0.267261
\(71\) 5.35410 3.88998i 0.635415 0.461656i −0.222857 0.974851i \(-0.571538\pi\)
0.858272 + 0.513195i \(0.171538\pi\)
\(72\) 3.61803 2.62866i 0.426389 0.309790i
\(73\) −2.78115 8.55951i −0.325509 1.00181i −0.971210 0.238224i \(-0.923435\pi\)
0.645701 0.763590i \(-0.276565\pi\)
\(74\) 0.381966 0.0444026
\(75\) 5.00000 0.577350
\(76\) 0.527864 0.0605502
\(77\) −1.00000 3.07768i −0.113961 0.350735i
\(78\) 2.42705 1.76336i 0.274809 0.199661i
\(79\) 6.54508 4.75528i 0.736380 0.535011i −0.155196 0.987884i \(-0.549601\pi\)
0.891575 + 0.452873i \(0.149601\pi\)
\(80\) −8.78115 6.37988i −0.981763 0.713292i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 1.23607 0.136501
\(83\) 5.04508 + 3.66547i 0.553770 + 0.402337i 0.829174 0.558991i \(-0.188811\pi\)
−0.275404 + 0.961329i \(0.588811\pi\)
\(84\) 0.118034 0.363271i 0.0128786 0.0396361i
\(85\) −9.47214 + 6.88191i −1.02740 + 0.746448i
\(86\) 2.42705 + 7.46969i 0.261716 + 0.805478i
\(87\) −1.11803 + 3.44095i −0.119866 + 0.368909i
\(88\) −3.61803 + 11.1352i −0.385684 + 1.18701i
\(89\) −2.76393 8.50651i −0.292976 0.901688i −0.983894 0.178754i \(-0.942793\pi\)
0.690918 0.722934i \(-0.257207\pi\)
\(90\) −2.23607 + 6.88191i −0.235702 + 0.725417i
\(91\) 0.354102 1.08981i 0.0371200 0.114244i
\(92\) −1.88197 1.36733i −0.196209 0.142554i
\(93\) −3.00000 −0.311086
\(94\) 0.809017 + 0.587785i 0.0834437 + 0.0606254i
\(95\) 1.54508 1.12257i 0.158522 0.115173i
\(96\) −2.73607 + 1.98787i −0.279249 + 0.202886i
\(97\) 3.11803 2.26538i 0.316588 0.230015i −0.418130 0.908387i \(-0.637314\pi\)
0.734718 + 0.678372i \(0.237314\pi\)
\(98\) 3.30902 + 10.1841i 0.334261 + 1.02875i
\(99\) 10.4721 1.05249
\(100\) 3.09017 0.309017
\(101\) 1.47214 0.146483 0.0732415 0.997314i \(-0.476666\pi\)
0.0732415 + 0.997314i \(0.476666\pi\)
\(102\) 2.61803 + 8.05748i 0.259224 + 0.797809i
\(103\) −6.92705 + 5.03280i −0.682543 + 0.495896i −0.874200 0.485566i \(-0.838614\pi\)
0.191658 + 0.981462i \(0.438614\pi\)
\(104\) −3.35410 + 2.43690i −0.328897 + 0.238957i
\(105\) −0.427051 1.31433i −0.0416759 0.128265i
\(106\) −4.54508 3.30220i −0.441458 0.320738i
\(107\) −16.4164 −1.58703 −0.793517 0.608548i \(-0.791752\pi\)
−0.793517 + 0.608548i \(0.791752\pi\)
\(108\) 2.50000 + 1.81636i 0.240563 + 0.174779i
\(109\) 3.09017 9.51057i 0.295985 0.910947i −0.686904 0.726748i \(-0.741031\pi\)
0.982889 0.184199i \(-0.0589691\pi\)
\(110\) −5.85410 18.0171i −0.558167 1.71786i
\(111\) −0.0729490 0.224514i −0.00692401 0.0213099i
\(112\) −0.927051 + 2.85317i −0.0875981 + 0.269599i
\(113\) 5.20820 16.0292i 0.489947 1.50790i −0.334740 0.942311i \(-0.608648\pi\)
0.824687 0.565590i \(-0.191352\pi\)
\(114\) −0.427051 1.31433i −0.0399970 0.123098i
\(115\) −8.41641 −0.784834
\(116\) −0.690983 + 2.12663i −0.0641562 + 0.197452i
\(117\) 3.00000 + 2.17963i 0.277350 + 0.201507i
\(118\) 17.5623 1.61674
\(119\) 2.61803 + 1.90211i 0.239995 + 0.174366i
\(120\) −1.54508 + 4.75528i −0.141046 + 0.434096i
\(121\) −13.2812 + 9.64932i −1.20738 + 0.877211i
\(122\) 11.3992 8.28199i 1.03203 0.749817i
\(123\) −0.236068 0.726543i −0.0212855 0.0655101i
\(124\) −1.85410 −0.166503
\(125\) 9.04508 6.57164i 0.809017 0.587785i
\(126\) 2.00000 0.178174
\(127\) 6.14590 + 18.9151i 0.545360 + 1.67845i 0.720132 + 0.693837i \(0.244081\pi\)
−0.174772 + 0.984609i \(0.555919\pi\)
\(128\) 11.0172 8.00448i 0.973794 0.707503i
\(129\) 3.92705 2.85317i 0.345758 0.251208i
\(130\) 2.07295 6.37988i 0.181810 0.559553i
\(131\) −5.50000 3.99598i −0.480537 0.349131i 0.320996 0.947080i \(-0.395982\pi\)
−0.801534 + 0.597950i \(0.795982\pi\)
\(132\) −3.23607 −0.281664
\(133\) −0.427051 0.310271i −0.0370300 0.0269039i
\(134\) −2.38197 + 7.33094i −0.205771 + 0.633297i
\(135\) 11.1803 0.962250
\(136\) −3.61803 11.1352i −0.310244 0.954832i
\(137\) −3.69098 + 11.3597i −0.315342 + 0.970523i 0.660271 + 0.751027i \(0.270441\pi\)
−0.975613 + 0.219496i \(0.929559\pi\)
\(138\) −1.88197 + 5.79210i −0.160204 + 0.493056i
\(139\) 1.54508 + 4.75528i 0.131052 + 0.403338i 0.994955 0.100321i \(-0.0319869\pi\)
−0.863903 + 0.503659i \(0.831987\pi\)
\(140\) −0.263932 0.812299i −0.0223063 0.0686518i
\(141\) 0.190983 0.587785i 0.0160837 0.0495004i
\(142\) −8.66312 6.29412i −0.726993 0.528191i
\(143\) −9.70820 −0.811841
\(144\) −7.85410 5.70634i −0.654508 0.475528i
\(145\) 2.50000 + 7.69421i 0.207614 + 0.638969i
\(146\) −11.7812 + 8.55951i −0.975015 + 0.708390i
\(147\) 5.35410 3.88998i 0.441599 0.320840i
\(148\) −0.0450850 0.138757i −0.00370596 0.0114058i
\(149\) −3.94427 −0.323127 −0.161564 0.986862i \(-0.551654\pi\)
−0.161564 + 0.986862i \(0.551654\pi\)
\(150\) −2.50000 7.69421i −0.204124 0.628230i
\(151\) 14.5623 1.18506 0.592532 0.805547i \(-0.298128\pi\)
0.592532 + 0.805547i \(0.298128\pi\)
\(152\) 0.590170 + 1.81636i 0.0478691 + 0.147326i
\(153\) −8.47214 + 6.15537i −0.684932 + 0.497632i
\(154\) −4.23607 + 3.07768i −0.341352 + 0.248007i
\(155\) −5.42705 + 3.94298i −0.435911 + 0.316708i
\(156\) −0.927051 0.673542i −0.0742235 0.0539265i
\(157\) 13.1803 1.05191 0.525953 0.850514i \(-0.323709\pi\)
0.525953 + 0.850514i \(0.323709\pi\)
\(158\) −10.5902 7.69421i −0.842509 0.612118i
\(159\) −1.07295 + 3.30220i −0.0850904 + 0.261881i
\(160\) −2.33688 + 7.19218i −0.184747 + 0.568592i
\(161\) 0.718847 + 2.21238i 0.0566531 + 0.174360i
\(162\) −0.500000 + 1.53884i −0.0392837 + 0.120903i
\(163\) 3.39919 10.4616i 0.266245 0.819417i −0.725159 0.688581i \(-0.758234\pi\)
0.991404 0.130836i \(-0.0417662\pi\)
\(164\) −0.145898 0.449028i −0.0113927 0.0350632i
\(165\) −9.47214 + 6.88191i −0.737405 + 0.535756i
\(166\) 3.11803 9.59632i 0.242006 0.744819i
\(167\) −11.7812 8.55951i −0.911653 0.662355i 0.0297794 0.999556i \(-0.490520\pi\)
−0.941432 + 0.337202i \(0.890520\pi\)
\(168\) 1.38197 0.106621
\(169\) 7.73607 + 5.62058i 0.595082 + 0.432352i
\(170\) 15.3262 + 11.1352i 1.17547 + 0.854028i
\(171\) 1.38197 1.00406i 0.105682 0.0767822i
\(172\) 2.42705 1.76336i 0.185061 0.134455i
\(173\) 5.83688 + 17.9641i 0.443770 + 1.36578i 0.883827 + 0.467813i \(0.154958\pi\)
−0.440057 + 0.897970i \(0.645042\pi\)
\(174\) 5.85410 0.443798
\(175\) −2.50000 1.81636i −0.188982 0.137304i
\(176\) 25.4164 1.91583
\(177\) −3.35410 10.3229i −0.252110 0.775914i
\(178\) −11.7082 + 8.50651i −0.877567 + 0.637590i
\(179\) 0.427051 0.310271i 0.0319193 0.0231907i −0.571711 0.820455i \(-0.693720\pi\)
0.603631 + 0.797264i \(0.293720\pi\)
\(180\) 2.76393 0.206011
\(181\) −0.236068 0.171513i −0.0175468 0.0127485i 0.578977 0.815344i \(-0.303452\pi\)
−0.596524 + 0.802595i \(0.703452\pi\)
\(182\) −1.85410 −0.137435
\(183\) −7.04508 5.11855i −0.520788 0.378374i
\(184\) 2.60081 8.00448i 0.191734 0.590098i
\(185\) −0.427051 0.310271i −0.0313974 0.0228116i
\(186\) 1.50000 + 4.61653i 0.109985 + 0.338500i
\(187\) 8.47214 26.0746i 0.619544 1.90676i
\(188\) 0.118034 0.363271i 0.00860851 0.0264943i
\(189\) −0.954915 2.93893i −0.0694598 0.213775i
\(190\) −2.50000 1.81636i −0.181369 0.131772i
\(191\) −0.562306 + 1.73060i −0.0406870 + 0.125222i −0.969337 0.245736i \(-0.920970\pi\)
0.928650 + 0.370958i \(0.120970\pi\)
\(192\) −3.42705 2.48990i −0.247326 0.179693i
\(193\) 7.70820 0.554849 0.277424 0.960747i \(-0.410519\pi\)
0.277424 + 0.960747i \(0.410519\pi\)
\(194\) −5.04508 3.66547i −0.362216 0.263165i
\(195\) −4.14590 −0.296894
\(196\) 3.30902 2.40414i 0.236358 0.171724i
\(197\) −3.00000 + 2.17963i −0.213741 + 0.155292i −0.689505 0.724281i \(-0.742172\pi\)
0.475764 + 0.879573i \(0.342172\pi\)
\(198\) −5.23607 16.1150i −0.372111 1.14524i
\(199\) −17.5623 −1.24496 −0.622479 0.782636i \(-0.713875\pi\)
−0.622479 + 0.782636i \(0.713875\pi\)
\(200\) 3.45492 + 10.6331i 0.244299 + 0.751876i
\(201\) 4.76393 0.336022
\(202\) −0.736068 2.26538i −0.0517896 0.159392i
\(203\) 1.80902 1.31433i 0.126968 0.0922477i
\(204\) 2.61803 1.90211i 0.183299 0.133175i
\(205\) −1.38197 1.00406i −0.0965207 0.0701264i
\(206\) 11.2082 + 8.14324i 0.780913 + 0.567366i
\(207\) −7.52786 −0.523223
\(208\) 7.28115 + 5.29007i 0.504857 + 0.366800i
\(209\) −1.38197 + 4.25325i −0.0955926 + 0.294204i
\(210\) −1.80902 + 1.31433i −0.124834 + 0.0906972i
\(211\) −2.83688 8.73102i −0.195299 0.601068i −0.999973 0.00735149i \(-0.997660\pi\)
0.804674 0.593717i \(-0.202340\pi\)
\(212\) −0.663119 + 2.04087i −0.0455432 + 0.140168i
\(213\) −2.04508 + 6.29412i −0.140127 + 0.431266i
\(214\) 8.20820 + 25.2623i 0.561101 + 1.72689i
\(215\) 3.35410 10.3229i 0.228748 0.704014i
\(216\) −3.45492 + 10.6331i −0.235077 + 0.723493i
\(217\) 1.50000 + 1.08981i 0.101827 + 0.0739814i
\(218\) −16.1803 −1.09587
\(219\) 7.28115 + 5.29007i 0.492015 + 0.357470i
\(220\) −5.85410 + 4.25325i −0.394683 + 0.286754i
\(221\) 7.85410 5.70634i 0.528324 0.383850i
\(222\) −0.309017 + 0.224514i −0.0207399 + 0.0150684i
\(223\) −0.0557281 0.171513i −0.00373183 0.0114854i 0.949173 0.314754i \(-0.101922\pi\)
−0.952905 + 0.303269i \(0.901922\pi\)
\(224\) 2.09017 0.139655
\(225\) 8.09017 5.87785i 0.539345 0.391857i
\(226\) −27.2705 −1.81401
\(227\) 4.56231 + 14.0413i 0.302811 + 0.931956i 0.980485 + 0.196594i \(0.0629880\pi\)
−0.677674 + 0.735362i \(0.737012\pi\)
\(228\) −0.427051 + 0.310271i −0.0282821 + 0.0205482i
\(229\) −17.5623 + 12.7598i −1.16055 + 0.843189i −0.989847 0.142134i \(-0.954604\pi\)
−0.170702 + 0.985323i \(0.554604\pi\)
\(230\) 4.20820 + 12.9515i 0.277481 + 0.853998i
\(231\) 2.61803 + 1.90211i 0.172254 + 0.125150i
\(232\) −8.09017 −0.531146
\(233\) 2.38197 + 1.73060i 0.156048 + 0.113375i 0.663069 0.748558i \(-0.269254\pi\)
−0.507021 + 0.861933i \(0.669254\pi\)
\(234\) 1.85410 5.70634i 0.121206 0.373035i
\(235\) −0.427051 1.31433i −0.0278577 0.0857373i
\(236\) −2.07295 6.37988i −0.134937 0.415295i
\(237\) −2.50000 + 7.69421i −0.162392 + 0.499793i
\(238\) 1.61803 4.97980i 0.104882 0.322792i
\(239\) −6.34346 19.5232i −0.410324 1.26285i −0.916367 0.400340i \(-0.868892\pi\)
0.506043 0.862508i \(-0.331108\pi\)
\(240\) 10.8541 0.700629
\(241\) 0.781153 2.40414i 0.0503185 0.154864i −0.922740 0.385423i \(-0.874055\pi\)
0.973058 + 0.230559i \(0.0740554\pi\)
\(242\) 21.4894 + 15.6129i 1.38139 + 1.00364i
\(243\) 16.0000 1.02640
\(244\) −4.35410 3.16344i −0.278743 0.202519i
\(245\) 4.57295 14.0741i 0.292155 0.899161i
\(246\) −1.00000 + 0.726543i −0.0637577 + 0.0463227i
\(247\) −1.28115 + 0.930812i −0.0815178 + 0.0592262i
\(248\) −2.07295 6.37988i −0.131632 0.405123i
\(249\) −6.23607 −0.395195
\(250\) −14.6353 10.6331i −0.925615 0.672499i
\(251\) −29.1803 −1.84185 −0.920923 0.389744i \(-0.872564\pi\)
−0.920923 + 0.389744i \(0.872564\pi\)
\(252\) −0.236068 0.726543i −0.0148709 0.0457679i
\(253\) 15.9443 11.5842i 1.00241 0.728292i
\(254\) 26.0344 18.9151i 1.63355 1.18684i
\(255\) 3.61803 11.1352i 0.226570 0.697311i
\(256\) −10.9721 7.97172i −0.685758 0.498233i
\(257\) 22.8541 1.42560 0.712800 0.701367i \(-0.247427\pi\)
0.712800 + 0.701367i \(0.247427\pi\)
\(258\) −6.35410 4.61653i −0.395589 0.287412i
\(259\) −0.0450850 + 0.138757i −0.00280144 + 0.00862196i
\(260\) −2.56231 −0.158907
\(261\) 2.23607 + 6.88191i 0.138409 + 0.425980i
\(262\) −3.39919 + 10.4616i −0.210002 + 0.646321i
\(263\) −3.37132 + 10.3759i −0.207885 + 0.639803i 0.791698 + 0.610913i \(0.209197\pi\)
−0.999583 + 0.0288905i \(0.990803\pi\)
\(264\) −3.61803 11.1352i −0.222675 0.685322i
\(265\) 2.39919 + 7.38394i 0.147381 + 0.453592i
\(266\) −0.263932 + 0.812299i −0.0161827 + 0.0498053i
\(267\) 7.23607 + 5.25731i 0.442840 + 0.321742i
\(268\) 2.94427 0.179850
\(269\) 10.3262 + 7.50245i 0.629602 + 0.457433i 0.856262 0.516541i \(-0.172781\pi\)
−0.226660 + 0.973974i \(0.572781\pi\)
\(270\) −5.59017 17.2048i −0.340207 1.04705i
\(271\) 6.47214 4.70228i 0.393154 0.285643i −0.373593 0.927593i \(-0.621874\pi\)
0.766747 + 0.641950i \(0.221874\pi\)
\(272\) −20.5623 + 14.9394i −1.24677 + 0.905834i
\(273\) 0.354102 + 1.08981i 0.0214312 + 0.0659585i
\(274\) 19.3262 1.16754
\(275\) −8.09017 + 24.8990i −0.487856 + 1.50147i
\(276\) 2.32624 0.140023
\(277\) −7.63525 23.4989i −0.458758 1.41191i −0.866666 0.498889i \(-0.833742\pi\)
0.407908 0.913023i \(-0.366258\pi\)
\(278\) 6.54508 4.75528i 0.392548 0.285203i
\(279\) −4.85410 + 3.52671i −0.290607 + 0.211139i
\(280\) 2.50000 1.81636i 0.149404 0.108548i
\(281\) −8.16312 5.93085i −0.486971 0.353805i 0.317047 0.948410i \(-0.397309\pi\)
−0.804018 + 0.594605i \(0.797309\pi\)
\(282\) −1.00000 −0.0595491
\(283\) 24.1525 + 17.5478i 1.43572 + 1.04311i 0.988916 + 0.148474i \(0.0474362\pi\)
0.446799 + 0.894634i \(0.352564\pi\)
\(284\) −1.26393 + 3.88998i −0.0750006 + 0.230828i
\(285\) −0.590170 + 1.81636i −0.0349587 + 0.107592i
\(286\) 4.85410 + 14.9394i 0.287029 + 0.883385i
\(287\) −0.145898 + 0.449028i −0.00861209 + 0.0265053i
\(288\) −2.09017 + 6.43288i −0.123164 + 0.379061i
\(289\) 3.21885 + 9.90659i 0.189344 + 0.582741i
\(290\) 10.5902 7.69421i 0.621876 0.451820i
\(291\) −1.19098 + 3.66547i −0.0698167 + 0.214874i
\(292\) 4.50000 + 3.26944i 0.263343 + 0.191330i
\(293\) −19.5279 −1.14083 −0.570415 0.821357i \(-0.693218\pi\)
−0.570415 + 0.821357i \(0.693218\pi\)
\(294\) −8.66312 6.29412i −0.505243 0.367081i
\(295\) −19.6353 14.2658i −1.14321 0.830590i
\(296\) 0.427051 0.310271i 0.0248218 0.0180341i
\(297\) −21.1803 + 15.3884i −1.22901 + 0.892927i
\(298\) 1.97214 + 6.06961i 0.114243 + 0.351603i
\(299\) 6.97871 0.403589
\(300\) −2.50000 + 1.81636i −0.144338 + 0.104867i
\(301\) −3.00000 −0.172917
\(302\) −7.28115 22.4091i −0.418983 1.28950i
\(303\) −1.19098 + 0.865300i −0.0684202 + 0.0497102i
\(304\) 3.35410 2.43690i 0.192371 0.139766i
\(305\) −19.4721 −1.11497
\(306\) 13.7082 + 9.95959i 0.783646 + 0.569352i
\(307\) 9.23607 0.527130 0.263565 0.964642i \(-0.415102\pi\)
0.263565 + 0.964642i \(0.415102\pi\)
\(308\) 1.61803 + 1.17557i 0.0921960 + 0.0669843i
\(309\) 2.64590 8.14324i 0.150520 0.463253i
\(310\) 8.78115 + 6.37988i 0.498736 + 0.362353i
\(311\) 2.62868 + 8.09024i 0.149059 + 0.458755i 0.997511 0.0705172i \(-0.0224650\pi\)
−0.848452 + 0.529272i \(0.822465\pi\)
\(312\) 1.28115 3.94298i 0.0725310 0.223227i
\(313\) −5.18034 + 15.9434i −0.292810 + 0.901177i 0.691138 + 0.722723i \(0.257110\pi\)
−0.983948 + 0.178454i \(0.942890\pi\)
\(314\) −6.59017 20.2825i −0.371905 1.14461i
\(315\) −2.23607 1.62460i −0.125988 0.0915358i
\(316\) −1.54508 + 4.75528i −0.0869178 + 0.267506i
\(317\) −6.19098 4.49801i −0.347720 0.252634i 0.400192 0.916431i \(-0.368944\pi\)
−0.747912 + 0.663798i \(0.768944\pi\)
\(318\) 5.61803 0.315044
\(319\) −15.3262 11.1352i −0.858105 0.623449i
\(320\) −9.47214 −0.529508
\(321\) 13.2812 9.64932i 0.741282 0.538573i
\(322\) 3.04508 2.21238i 0.169696 0.123291i
\(323\) −1.38197 4.25325i −0.0768946 0.236657i
\(324\) 0.618034 0.0343352
\(325\) −7.50000 + 5.44907i −0.416025 + 0.302260i
\(326\) −17.7984 −0.985761
\(327\) 3.09017 + 9.51057i 0.170887 + 0.525935i
\(328\) 1.38197 1.00406i 0.0763063 0.0554398i
\(329\) −0.309017 + 0.224514i −0.0170367 + 0.0123779i
\(330\) 15.3262 + 11.1352i 0.843682 + 0.612971i
\(331\) 18.7082 + 13.5923i 1.02830 + 0.747101i 0.967967 0.251078i \(-0.0807850\pi\)
0.0603290 + 0.998179i \(0.480785\pi\)
\(332\) −3.85410 −0.211521
\(333\) −0.381966 0.277515i −0.0209316 0.0152077i
\(334\) −7.28115 + 22.4091i −0.398407 + 1.22617i
\(335\) 8.61803 6.26137i 0.470853 0.342095i
\(336\) −0.927051 2.85317i −0.0505748 0.155653i
\(337\) 2.42705 7.46969i 0.132210 0.406900i −0.862936 0.505314i \(-0.831377\pi\)
0.995146 + 0.0984135i \(0.0313768\pi\)
\(338\) 4.78115 14.7149i 0.260060 0.800384i
\(339\) 5.20820 + 16.0292i 0.282871 + 0.870587i
\(340\) 2.23607 6.88191i 0.121268 0.373224i
\(341\) 4.85410 14.9394i 0.262864 0.809013i
\(342\) −2.23607 1.62460i −0.120913 0.0878482i
\(343\) −8.41641 −0.454443
\(344\) 8.78115 + 6.37988i 0.473448 + 0.343980i
\(345\) 6.80902 4.94704i 0.366585 0.266340i
\(346\) 24.7254 17.9641i 1.32925 0.965755i
\(347\) 16.1074 11.7027i 0.864690 0.628234i −0.0644668 0.997920i \(-0.520535\pi\)
0.929157 + 0.369686i \(0.120535\pi\)
\(348\) −0.690983 2.12663i −0.0370406 0.113999i
\(349\) 21.7082 1.16201 0.581007 0.813899i \(-0.302659\pi\)
0.581007 + 0.813899i \(0.302659\pi\)
\(350\) −1.54508 + 4.75528i −0.0825883 + 0.254181i
\(351\) −9.27051 −0.494823
\(352\) −5.47214 16.8415i −0.291666 0.897655i
\(353\) −10.4443 + 7.58821i −0.555893 + 0.403880i −0.829953 0.557833i \(-0.811633\pi\)
0.274061 + 0.961712i \(0.411633\pi\)
\(354\) −14.2082 + 10.3229i −0.755158 + 0.548654i
\(355\) 4.57295 + 14.0741i 0.242707 + 0.746975i
\(356\) 4.47214 + 3.24920i 0.237023 + 0.172207i
\(357\) −3.23607 −0.171271
\(358\) −0.690983 0.502029i −0.0365196 0.0265330i
\(359\) 4.24671 13.0700i 0.224133 0.689810i −0.774246 0.632885i \(-0.781870\pi\)
0.998378 0.0569247i \(-0.0181295\pi\)
\(360\) 3.09017 + 9.51057i 0.162866 + 0.501251i
\(361\) −5.64590 17.3763i −0.297153 0.914541i
\(362\) −0.145898 + 0.449028i −0.00766823 + 0.0236004i
\(363\) 5.07295 15.6129i 0.266261 0.819466i
\(364\) 0.218847 + 0.673542i 0.0114707 + 0.0353032i
\(365\) 20.1246 1.05337
\(366\) −4.35410 + 13.4005i −0.227593 + 0.700458i
\(367\) 20.6803 + 15.0251i 1.07950 + 0.784306i 0.977597 0.210488i \(-0.0675051\pi\)
0.101908 + 0.994794i \(0.467505\pi\)
\(368\) −18.2705 −0.952416
\(369\) −1.23607 0.898056i −0.0643471 0.0467509i
\(370\) −0.263932 + 0.812299i −0.0137212 + 0.0422294i
\(371\) 1.73607 1.26133i 0.0901322 0.0654848i
\(372\) 1.50000 1.08981i 0.0777714 0.0565042i
\(373\) −8.73607 26.8869i −0.452336 1.39215i −0.874234 0.485505i \(-0.838636\pi\)
0.421897 0.906644i \(-0.361364\pi\)
\(374\) −44.3607 −2.29384
\(375\) −3.45492 + 10.6331i −0.178411 + 0.549093i
\(376\) 1.38197 0.0712695
\(377\) −2.07295 6.37988i −0.106762 0.328581i
\(378\) −4.04508 + 2.93893i −0.208057 + 0.151162i
\(379\) −11.8090 + 8.57975i −0.606588 + 0.440712i −0.848211 0.529658i \(-0.822320\pi\)
0.241623 + 0.970370i \(0.422320\pi\)
\(380\) −0.364745 + 1.12257i −0.0187110 + 0.0575866i
\(381\) −16.0902 11.6902i −0.824324 0.598907i
\(382\) 2.94427 0.150642
\(383\) −26.9894 19.6089i −1.37909 1.00197i −0.996964 0.0778591i \(-0.975192\pi\)
−0.382127 0.924110i \(-0.624808\pi\)
\(384\) −4.20820 + 12.9515i −0.214749 + 0.660929i
\(385\) 7.23607 0.368784
\(386\) −3.85410 11.8617i −0.196169 0.603745i
\(387\) 3.00000 9.23305i 0.152499 0.469342i
\(388\) −0.736068 + 2.26538i −0.0373682 + 0.115007i
\(389\) 4.63525 + 14.2658i 0.235017 + 0.723307i 0.997119 + 0.0758507i \(0.0241672\pi\)
−0.762102 + 0.647456i \(0.775833\pi\)
\(390\) 2.07295 + 6.37988i 0.104968 + 0.323058i
\(391\) −6.09017 + 18.7436i −0.307993 + 0.947905i
\(392\) 11.9721 + 8.69827i 0.604684 + 0.439329i
\(393\) 6.79837 0.342933
\(394\) 4.85410 + 3.52671i 0.244546 + 0.177673i
\(395\) 5.59017 + 17.2048i 0.281272 + 0.865666i
\(396\) −5.23607 + 3.80423i −0.263122 + 0.191170i
\(397\) −23.4894 + 17.0660i −1.17890 + 0.856519i −0.992047 0.125870i \(-0.959828\pi\)
−0.186850 + 0.982388i \(0.559828\pi\)
\(398\) 8.78115 + 27.0256i 0.440159 + 1.35467i
\(399\) 0.527864 0.0264263
\(400\) 19.6353 14.2658i 0.981763 0.713292i
\(401\) 26.5967 1.32818 0.664089 0.747653i \(-0.268820\pi\)
0.664089 + 0.747653i \(0.268820\pi\)
\(402\) −2.38197 7.33094i −0.118802 0.365634i
\(403\) 4.50000 3.26944i 0.224161 0.162862i
\(404\) −0.736068 + 0.534785i −0.0366208 + 0.0266065i
\(405\) 1.80902 1.31433i 0.0898908 0.0653095i
\(406\) −2.92705 2.12663i −0.145267 0.105543i
\(407\) 1.23607 0.0612696
\(408\) 9.47214 + 6.88191i 0.468941 + 0.340705i
\(409\) 0.489357 1.50609i 0.0241971 0.0744711i −0.938229 0.346016i \(-0.887534\pi\)
0.962426 + 0.271544i \(0.0875344\pi\)
\(410\) −0.854102 + 2.62866i −0.0421811 + 0.129820i
\(411\) −3.69098 11.3597i −0.182063 0.560332i
\(412\) 1.63525 5.03280i 0.0805632 0.247948i
\(413\) −2.07295 + 6.37988i −0.102003 + 0.313933i
\(414\) 3.76393 + 11.5842i 0.184987 + 0.569332i
\(415\) −11.2812 + 8.19624i −0.553770 + 0.402337i
\(416\) 1.93769 5.96361i 0.0950033 0.292390i
\(417\) −4.04508 2.93893i −0.198089 0.143920i
\(418\) 7.23607 0.353928
\(419\) 7.66312 + 5.56758i 0.374368 + 0.271994i 0.759020 0.651068i \(-0.225679\pi\)
−0.384652 + 0.923062i \(0.625679\pi\)
\(420\) 0.690983 + 0.502029i 0.0337165 + 0.0244965i
\(421\) −25.8885 + 18.8091i −1.26173 + 0.916701i −0.998841 0.0481252i \(-0.984675\pi\)
−0.262889 + 0.964826i \(0.584675\pi\)
\(422\) −12.0172 + 8.73102i −0.584989 + 0.425020i
\(423\) −0.381966 1.17557i −0.0185718 0.0571582i
\(424\) −7.76393 −0.377050
\(425\) −8.09017 24.8990i −0.392431 1.20778i
\(426\) 10.7082 0.518814
\(427\) 1.66312 + 5.11855i 0.0804840 + 0.247704i
\(428\) 8.20820 5.96361i 0.396759 0.288262i
\(429\) 7.85410 5.70634i 0.379200 0.275505i
\(430\) −17.5623 −0.846930
\(431\) 24.1353 + 17.5353i 1.16255 + 0.844645i 0.990099 0.140372i \(-0.0448299\pi\)
0.172456 + 0.985017i \(0.444830\pi\)
\(432\) 24.2705 1.16772
\(433\) −21.7254 15.7844i −1.04406 0.758552i −0.0729839 0.997333i \(-0.523252\pi\)
−0.971073 + 0.238781i \(0.923252\pi\)
\(434\) 0.927051 2.85317i 0.0444999 0.136957i
\(435\) −6.54508 4.75528i −0.313813 0.227998i
\(436\) 1.90983 + 5.87785i 0.0914643 + 0.281498i
\(437\) 0.993422 3.05744i 0.0475218 0.146257i
\(438\) 4.50000 13.8496i 0.215018 0.661758i
\(439\) −12.6631 38.9731i −0.604378 1.86008i −0.501013 0.865440i \(-0.667039\pi\)
−0.103365 0.994644i \(-0.532961\pi\)
\(440\) −21.1803 15.3884i −1.00973 0.733614i
\(441\) 4.09017 12.5882i 0.194770 0.599440i
\(442\) −12.7082 9.23305i −0.604468 0.439171i
\(443\) 29.9443 1.42270 0.711348 0.702840i \(-0.248085\pi\)
0.711348 + 0.702840i \(0.248085\pi\)
\(444\) 0.118034 + 0.0857567i 0.00560165 + 0.00406983i
\(445\) 20.0000 0.948091
\(446\) −0.236068 + 0.171513i −0.0111781 + 0.00812140i
\(447\) 3.19098 2.31838i 0.150928 0.109656i
\(448\) 0.809017 + 2.48990i 0.0382225 + 0.117637i
\(449\) 4.67376 0.220568 0.110284 0.993900i \(-0.464824\pi\)
0.110284 + 0.993900i \(0.464824\pi\)
\(450\) −13.0902 9.51057i −0.617077 0.448332i
\(451\) 4.00000 0.188353
\(452\) 3.21885 + 9.90659i 0.151402 + 0.465967i
\(453\) −11.7812 + 8.55951i −0.553527 + 0.402161i
\(454\) 19.3262 14.0413i 0.907025 0.658992i
\(455\) 2.07295 + 1.50609i 0.0971813 + 0.0706064i
\(456\) −1.54508 1.12257i −0.0723552 0.0525692i
\(457\) −21.4164 −1.00182 −0.500909 0.865500i \(-0.667001\pi\)
−0.500909 + 0.865500i \(0.667001\pi\)
\(458\) 28.4164 + 20.6457i 1.32781 + 0.964712i
\(459\) 8.09017 24.8990i 0.377617 1.16218i
\(460\) 4.20820 3.05744i 0.196209 0.142554i
\(461\) 0.253289 + 0.779543i 0.0117968 + 0.0363069i 0.956782 0.290807i \(-0.0939238\pi\)
−0.944985 + 0.327114i \(0.893924\pi\)
\(462\) 1.61803 4.97980i 0.0752778 0.231681i
\(463\) −7.45492 + 22.9439i −0.346459 + 1.06629i 0.614339 + 0.789042i \(0.289423\pi\)
−0.960798 + 0.277250i \(0.910577\pi\)
\(464\) 5.42705 + 16.7027i 0.251945 + 0.775405i
\(465\) 2.07295 6.37988i 0.0961307 0.295860i
\(466\) 1.47214 4.53077i 0.0681954 0.209884i
\(467\) −22.2082 16.1352i −1.02767 0.746648i −0.0598315 0.998208i \(-0.519056\pi\)
−0.967842 + 0.251560i \(0.919056\pi\)
\(468\) −2.29180 −0.105938
\(469\) −2.38197 1.73060i −0.109989 0.0799117i
\(470\) −1.80902 + 1.31433i −0.0834437 + 0.0606254i
\(471\) −10.6631 + 7.74721i −0.491331 + 0.356973i
\(472\) 19.6353 14.2658i 0.903786 0.656639i
\(473\) 7.85410 + 24.1724i 0.361132 + 1.11145i
\(474\) 13.0902 0.601251
\(475\) 1.31966 + 4.06150i 0.0605502 + 0.186354i
\(476\) −2.00000 −0.0916698
\(477\) 2.14590 + 6.60440i 0.0982539 + 0.302394i
\(478\) −26.8713 + 19.5232i −1.22907 + 0.892969i
\(479\) 8.78115 6.37988i 0.401221 0.291504i −0.368817 0.929502i \(-0.620237\pi\)
0.770038 + 0.637998i \(0.220237\pi\)
\(480\) −2.33688 7.19218i −0.106664 0.328277i
\(481\) 0.354102 + 0.257270i 0.0161457 + 0.0117305i
\(482\) −4.09017 −0.186302
\(483\) −1.88197 1.36733i −0.0856324 0.0622156i
\(484\) 3.13525 9.64932i 0.142512 0.438606i
\(485\) 2.66312 + 8.19624i 0.120926 + 0.372172i
\(486\) −8.00000 24.6215i −0.362887 1.11685i
\(487\) −11.2533 + 34.6341i −0.509935 + 1.56942i 0.282377 + 0.959303i \(0.408877\pi\)
−0.792312 + 0.610116i \(0.791123\pi\)
\(488\) 6.01722 18.5191i 0.272387 0.838320i
\(489\) 3.39919 + 10.4616i 0.153717 + 0.473091i
\(490\) −23.9443 −1.08169
\(491\) −13.3647 + 41.1325i −0.603143 + 1.85628i −0.0940550 + 0.995567i \(0.529983\pi\)
−0.509088 + 0.860715i \(0.670017\pi\)
\(492\) 0.381966 + 0.277515i 0.0172204 + 0.0125113i
\(493\) 18.9443 0.853207
\(494\) 2.07295 + 1.50609i 0.0932664 + 0.0677620i
\(495\) −7.23607 + 22.2703i −0.325237 + 1.00098i
\(496\) −11.7812 + 8.55951i −0.528989 + 0.384333i
\(497\) 3.30902 2.40414i 0.148430 0.107840i
\(498\) 3.11803 + 9.59632i 0.139722 + 0.430021i
\(499\) 7.56231 0.338535 0.169268 0.985570i \(-0.445860\pi\)
0.169268 + 0.985570i \(0.445860\pi\)
\(500\) −2.13525 + 6.57164i −0.0954915 + 0.293893i
\(501\) 14.5623 0.650596
\(502\) 14.5902 + 44.9039i 0.651191 + 2.00416i
\(503\) 30.2705 21.9928i 1.34970 0.980611i 0.350669 0.936500i \(-0.385954\pi\)
0.999027 0.0441115i \(-0.0140457\pi\)
\(504\) 2.23607 1.62460i 0.0996024 0.0723654i
\(505\) −1.01722 + 3.13068i −0.0452657 + 0.139314i
\(506\) −25.7984 18.7436i −1.14688 0.833255i
\(507\) −9.56231 −0.424677
\(508\) −9.94427 7.22494i −0.441206 0.320555i
\(509\) −6.28115 + 19.3314i −0.278407 + 0.856849i 0.709891 + 0.704312i \(0.248744\pi\)
−0.988298 + 0.152537i \(0.951256\pi\)
\(510\) −18.9443 −0.838866
\(511\) −1.71885 5.29007i −0.0760373 0.234019i
\(512\) 1.63525 5.03280i 0.0722687 0.222420i
\(513\) −1.31966 + 4.06150i −0.0582644 + 0.179319i
\(514\) −11.4271 35.1688i −0.504026 1.55123i
\(515\) −5.91641 18.2088i −0.260708 0.802377i
\(516\) −0.927051 + 2.85317i −0.0408111 + 0.125604i
\(517\) 2.61803 + 1.90211i 0.115141 + 0.0836548i
\(518\) 0.236068 0.0103722
\(519\) −15.2812 11.1024i −0.670768 0.487342i
\(520\) −2.86475 8.81678i −0.125627 0.386641i
\(521\) −23.7533 + 17.2578i −1.04065 + 0.756077i −0.970412 0.241453i \(-0.922376\pi\)
−0.0702381 + 0.997530i \(0.522376\pi\)
\(522\) 9.47214 6.88191i 0.414584 0.301213i
\(523\) −4.06231 12.5025i −0.177632 0.546696i 0.822112 0.569326i \(-0.192796\pi\)
−0.999744 + 0.0226305i \(0.992796\pi\)
\(524\) 4.20163 0.183549
\(525\) 3.09017 0.134866
\(526\) 17.6525 0.769685
\(527\) 4.85410 + 14.9394i 0.211448 + 0.650770i
\(528\) −20.5623 + 14.9394i −0.894860 + 0.650153i
\(529\) 7.14590 5.19180i 0.310691 0.225730i
\(530\) 10.1631 7.38394i 0.441458 0.320738i
\(531\) −17.5623 12.7598i −0.762139 0.553727i
\(532\) 0.326238 0.0141442
\(533\) 1.14590 + 0.832544i 0.0496344 + 0.0360615i
\(534\) 4.47214 13.7638i 0.193528 0.595619i
\(535\) 11.3435 34.9116i 0.490420 1.50936i
\(536\) 3.29180 + 10.1311i 0.142184 + 0.437597i
\(537\) −0.163119 + 0.502029i −0.00703910 + 0.0216641i
\(538\) 6.38197 19.6417i 0.275146 0.846813i
\(539\) 10.7082 + 32.9565i 0.461235 + 1.41954i
\(540\) −5.59017 + 4.06150i −0.240563 + 0.174779i
\(541\) 8.38197 25.7970i 0.360369 1.10910i −0.592462 0.805599i \(-0.701844\pi\)
0.952831 0.303503i \(-0.0981561\pi\)
\(542\) −10.4721 7.60845i −0.449817 0.326811i
\(543\) 0.291796 0.0125222
\(544\) 14.3262 + 10.4086i 0.614232 + 0.446266i
\(545\) 18.0902 + 13.1433i 0.774898 + 0.562996i
\(546\) 1.50000 1.08981i 0.0641941 0.0466397i
\(547\) 17.2254 12.5150i 0.736506 0.535103i −0.155109 0.987897i \(-0.549573\pi\)
0.891615 + 0.452794i \(0.149573\pi\)
\(548\) −2.28115 7.02067i −0.0974460 0.299908i
\(549\) −17.4164 −0.743314
\(550\) 42.3607 1.80627
\(551\) −3.09017 −0.131646
\(552\) 2.60081 + 8.00448i 0.110698 + 0.340693i
\(553\) 4.04508 2.93893i 0.172015 0.124976i
\(554\) −32.3435 + 23.4989i −1.37414 + 0.998373i
\(555\) 0.527864 0.0224066
\(556\) −2.50000 1.81636i −0.106024 0.0770307i
\(557\) 4.76393 0.201854 0.100927 0.994894i \(-0.467819\pi\)
0.100927 + 0.994894i \(0.467819\pi\)
\(558\) 7.85410 + 5.70634i 0.332491 + 0.241569i
\(559\) −2.78115 + 8.55951i −0.117630 + 0.362029i
\(560\) −5.42705 3.94298i −0.229335 0.166621i
\(561\) 8.47214 + 26.0746i 0.357694 + 1.10087i
\(562\) −5.04508 + 15.5272i −0.212814 + 0.654974i
\(563\) 2.28115 7.02067i 0.0961391 0.295886i −0.891410 0.453198i \(-0.850283\pi\)
0.987549 + 0.157312i \(0.0502830\pi\)
\(564\) 0.118034 + 0.363271i 0.00497013 + 0.0152965i
\(565\) 30.4894 + 22.1518i 1.28270 + 0.931934i
\(566\) 14.9271 45.9407i 0.627431 1.93103i
\(567\) −0.500000 0.363271i −0.0209980 0.0152560i
\(568\) −14.7984 −0.620926
\(569\) −16.6074 12.0660i −0.696218 0.505832i 0.182480 0.983210i \(-0.441587\pi\)
−0.878698 + 0.477377i \(0.841587\pi\)
\(570\) 3.09017 0.129433
\(571\) 6.57295 4.77553i 0.275069 0.199850i −0.441695 0.897165i \(-0.645623\pi\)
0.716764 + 0.697316i \(0.245623\pi\)
\(572\) 4.85410 3.52671i 0.202960 0.147459i
\(573\) −0.562306 1.73060i −0.0234907 0.0722968i
\(574\) 0.763932 0.0318859
\(575\) 5.81559 17.8986i 0.242527 0.746422i
\(576\) −8.47214 −0.353006
\(577\) −10.4377 32.1239i −0.434527 1.33734i −0.893571 0.448923i \(-0.851808\pi\)
0.459044 0.888414i \(-0.348192\pi\)
\(578\) 13.6353 9.90659i 0.567152 0.412060i
\(579\) −6.23607 + 4.53077i −0.259162 + 0.188292i
\(580\) −4.04508 2.93893i −0.167963 0.122032i
\(581\) 3.11803 + 2.26538i 0.129358 + 0.0939840i
\(582\) 6.23607 0.258493
\(583\) −14.7082 10.6861i −0.609152 0.442575i
\(584\) −6.21885 + 19.1396i −0.257338 + 0.792004i
\(585\) −6.70820 + 4.87380i −0.277350 + 0.201507i
\(586\) 9.76393 + 30.0503i 0.403344 + 1.24137i
\(587\) 1.63525 5.03280i 0.0674942 0.207726i −0.911621 0.411032i \(-0.865169\pi\)
0.979115 + 0.203306i \(0.0651686\pi\)
\(588\) −1.26393 + 3.88998i −0.0521237 + 0.160420i
\(589\) −0.791796 2.43690i −0.0326254 0.100411i
\(590\) −12.1353 + 37.3485i −0.499601 + 1.53761i
\(591\) 1.14590 3.52671i 0.0471359 0.145070i
\(592\) −0.927051 0.673542i −0.0381016 0.0276824i
\(593\) −10.9098 −0.448013 −0.224007 0.974588i \(-0.571914\pi\)
−0.224007 + 0.974588i \(0.571914\pi\)
\(594\) 34.2705 + 24.8990i 1.40614 + 1.02162i
\(595\) −5.85410 + 4.25325i −0.239995 + 0.174366i
\(596\) 1.97214 1.43284i 0.0807818 0.0586914i
\(597\) 14.2082 10.3229i 0.581503 0.422487i
\(598\) −3.48936 10.7391i −0.142690 0.439156i
\(599\) −9.47214 −0.387021 −0.193510 0.981098i \(-0.561987\pi\)
−0.193510 + 0.981098i \(0.561987\pi\)
\(600\) −9.04508 6.57164i −0.369264 0.268286i
\(601\) 2.72949 0.111338 0.0556691 0.998449i \(-0.482271\pi\)
0.0556691 + 0.998449i \(0.482271\pi\)
\(602\) 1.50000 + 4.61653i 0.0611354 + 0.188156i
\(603\) 7.70820 5.60034i 0.313902 0.228063i
\(604\) −7.28115 + 5.29007i −0.296266 + 0.215250i
\(605\) −11.3435 34.9116i −0.461177 1.41936i
\(606\) 1.92705 + 1.40008i 0.0782811 + 0.0568745i
\(607\) −35.5623 −1.44343 −0.721715 0.692191i \(-0.756646\pi\)
−0.721715 + 0.692191i \(0.756646\pi\)
\(608\) −2.33688 1.69784i −0.0947730 0.0688566i
\(609\) −0.690983 + 2.12663i −0.0280000 + 0.0861753i
\(610\) 9.73607 + 29.9645i 0.394202 + 1.21323i
\(611\) 0.354102 + 1.08981i 0.0143254 + 0.0440891i
\(612\) 2.00000 6.15537i 0.0808452 0.248816i
\(613\) −4.62868 + 14.2456i −0.186951 + 0.575374i −0.999977 0.00685287i \(-0.997819\pi\)
0.813026 + 0.582227i \(0.197819\pi\)
\(614\) −4.61803 14.2128i −0.186369 0.573584i
\(615\) 1.70820 0.0688814
\(616\) −2.23607 + 6.88191i −0.0900937 + 0.277280i
\(617\) −11.5172 8.36775i −0.463666 0.336873i 0.331302 0.943525i \(-0.392512\pi\)
−0.794968 + 0.606652i \(0.792512\pi\)
\(618\) −13.8541 −0.557294
\(619\) −24.6976 17.9438i −0.992679 0.721223i −0.0321727 0.999482i \(-0.510243\pi\)
−0.960506 + 0.278259i \(0.910243\pi\)
\(620\) 1.28115 3.94298i 0.0514523 0.158354i
\(621\) 15.2254 11.0619i 0.610975 0.443900i
\(622\) 11.1353 8.09024i 0.446483 0.324389i
\(623\) −1.70820 5.25731i −0.0684377 0.210630i
\(624\) −9.00000 −0.360288
\(625\) 7.72542 + 23.7764i 0.309017 + 0.951057i
\(626\) 27.1246 1.08412
\(627\) −1.38197 4.25325i −0.0551904 0.169859i
\(628\) −6.59017 + 4.78804i −0.262976 + 0.191064i
\(629\) −1.00000 + 0.726543i −0.0398726 + 0.0289691i
\(630\) −1.38197 + 4.25325i −0.0550588 + 0.169454i
\(631\) 8.28115 + 6.01661i 0.329667 + 0.239517i 0.740290 0.672288i \(-0.234688\pi\)
−0.410622 + 0.911806i \(0.634688\pi\)
\(632\) −18.0902 −0.719588
\(633\) 7.42705 + 5.39607i 0.295199 + 0.214474i
\(634\) −3.82624 + 11.7759i −0.151959 + 0.467683i
\(635\) −44.4721 −1.76482
\(636\) −0.663119 2.04087i −0.0262944 0.0809258i
\(637\) −3.79180 + 11.6699i −0.150236 + 0.462380i
\(638\) −9.47214 + 29.1522i −0.375005 + 1.15415i
\(639\) 4.09017 + 12.5882i 0.161805 + 0.497983i
\(640\) 9.40983 + 28.9605i 0.371956 + 1.14476i
\(641\) −0.336881 + 1.03681i −0.0133060 + 0.0409517i −0.957489 0.288470i \(-0.906854\pi\)
0.944183 + 0.329421i \(0.106854\pi\)
\(642\) −21.4894 15.6129i −0.848117 0.616193i
\(643\) −30.8328 −1.21593 −0.607964 0.793965i \(-0.708013\pi\)
−0.607964 + 0.793965i \(0.708013\pi\)
\(644\) −1.16312 0.845055i −0.0458333 0.0332998i
\(645\) 3.35410 + 10.3229i 0.132068 + 0.406462i
\(646\) −5.85410 + 4.25325i −0.230327 + 0.167342i
\(647\) 29.5623 21.4783i 1.16221 0.844398i 0.172158 0.985069i \(-0.444926\pi\)
0.990056 + 0.140671i \(0.0449261\pi\)
\(648\) 0.690983 + 2.12663i 0.0271444 + 0.0835418i
\(649\) 56.8328 2.23088
\(650\) 12.1353 + 8.81678i 0.475984 + 0.345823i
\(651\) −1.85410 −0.0726680
\(652\) 2.10081 + 6.46564i 0.0822742 + 0.253214i
\(653\) −15.4443 + 11.2209i −0.604381 + 0.439109i −0.847431 0.530905i \(-0.821852\pi\)
0.243050 + 0.970014i \(0.421852\pi\)
\(654\) 13.0902 9.51057i 0.511866 0.371893i
\(655\) 12.2984 8.93529i 0.480537 0.349131i
\(656\) −3.00000 2.17963i −0.117130 0.0851002i
\(657\) 18.0000 0.702247
\(658\) 0.500000 + 0.363271i 0.0194920 + 0.0141618i
\(659\) 4.79837 14.7679i 0.186918 0.575275i −0.813058 0.582183i \(-0.802199\pi\)
0.999976 + 0.00690786i \(0.00219886\pi\)
\(660\) 2.23607 6.88191i 0.0870388 0.267878i
\(661\) 6.08359 + 18.7234i 0.236624 + 0.728255i 0.996902 + 0.0786563i \(0.0250630\pi\)
−0.760277 + 0.649598i \(0.774937\pi\)
\(662\) 11.5623 35.5851i 0.449382 1.38305i
\(663\) −3.00000 + 9.23305i −0.116510 + 0.358582i
\(664\) −4.30902 13.2618i −0.167222 0.514657i
\(665\) 0.954915 0.693786i 0.0370300 0.0269039i
\(666\) −0.236068 + 0.726543i −0.00914745 + 0.0281530i
\(667\) 11.0172 + 8.00448i 0.426588 + 0.309935i
\(668\) 9.00000 0.348220
\(669\) 0.145898 + 0.106001i 0.00564074 + 0.00409824i
\(670\) −13.9443 10.1311i −0.538714 0.391399i
\(671\) 36.8885 26.8011i 1.42407 1.03464i
\(672\) −1.69098 + 1.22857i −0.0652311 + 0.0473932i
\(673\) 3.76393 + 11.5842i 0.145089 + 0.446538i 0.997022 0.0771122i \(-0.0245700\pi\)
−0.851934 + 0.523650i \(0.824570\pi\)
\(674\) −12.7082 −0.489502
\(675\) −7.72542 + 23.7764i −0.297352 + 0.915155i
\(676\) −5.90983 −0.227301
\(677\) 3.28115 + 10.0984i 0.126105 + 0.388111i 0.994101 0.108460i \(-0.0345921\pi\)
−0.867996 + 0.496571i \(0.834592\pi\)
\(678\) 22.0623 16.0292i 0.847298 0.615598i
\(679\) 1.92705 1.40008i 0.0739534 0.0537303i
\(680\) 26.1803 1.00397
\(681\) −11.9443 8.67802i −0.457705 0.332543i
\(682\) −25.4164 −0.973245
\(683\) 10.8992 + 7.91872i 0.417046 + 0.303002i 0.776448 0.630181i \(-0.217019\pi\)
−0.359402 + 0.933183i \(0.617019\pi\)
\(684\) −0.326238 + 1.00406i −0.0124740 + 0.0383911i
\(685\) −21.6074 15.6987i −0.825576 0.599816i
\(686\) 4.20820 + 12.9515i 0.160670 + 0.494491i
\(687\) 6.70820 20.6457i 0.255934 0.787684i
\(688\) 7.28115 22.4091i 0.277591 0.854338i
\(689\) −1.98936 6.12261i −0.0757885 0.233253i
\(690\) −11.0172 8.00448i −0.419418 0.304725i
\(691\) 11.2082 34.4953i 0.426380 1.31226i −0.475286 0.879831i \(-0.657656\pi\)
0.901667 0.432432i \(-0.142344\pi\)
\(692\) −9.44427 6.86167i −0.359017 0.260841i
\(693\) 6.47214 0.245856
\(694\) −26.0623 18.9354i −0.989312 0.718777i
\(695\) −11.1803 −0.424094
\(696\) 6.54508 4.75528i 0.248091 0.180249i
\(697\) −3.23607 + 2.35114i −0.122575 + 0.0890558i
\(698\) −10.8541 33.4055i −0.410834 1.26442i
\(699\) −2.94427 −0.111363
\(700\) 1.90983 0.0721848
\(701\) −41.0132 −1.54905 −0.774523 0.632546i \(-0.782010\pi\)
−0.774523 + 0.632546i \(0.782010\pi\)
\(702\) 4.63525 + 14.2658i 0.174946 + 0.538430i
\(703\) 0.163119 0.118513i 0.00615215 0.00446980i
\(704\) 17.9443 13.0373i 0.676300 0.491361i
\(705\) 1.11803 + 0.812299i 0.0421076 + 0.0305930i
\(706\) 16.8992 + 12.2780i 0.636009 + 0.462088i
\(707\) 0.909830 0.0342177
\(708\) 5.42705 + 3.94298i 0.203961 + 0.148186i
\(709\) −10.3647 + 31.8994i −0.389256 + 1.19801i 0.544089 + 0.839027i \(0.316875\pi\)
−0.933345 + 0.358980i \(0.883125\pi\)
\(710\) 19.3713 14.0741i 0.726993 0.528191i
\(711\) 5.00000 + 15.3884i 0.187515 + 0.577111i
\(712\) −6.18034 + 19.0211i −0.231618 + 0.712847i
\(713\) −3.48936 + 10.7391i −0.130677 + 0.402184i
\(714\) 1.61803 + 4.97980i 0.0605534 + 0.186364i
\(715\) 6.70820 20.6457i 0.250873 0.772106i
\(716\) −0.100813 + 0.310271i −0.00376756 + 0.0115954i
\(717\) 16.6074 + 12.0660i 0.620214 + 0.450612i
\(718\) −22.2361 −0.829843
\(719\) 18.8435 + 13.6906i 0.702742 + 0.510572i 0.880824 0.473443i \(-0.156989\pi\)
−0.178082 + 0.984016i \(0.556989\pi\)
\(720\) 17.5623 12.7598i 0.654508 0.475528i
\(721\) −4.28115 + 3.11044i −0.159438 + 0.115839i
\(722\) −23.9164 + 17.3763i −0.890077 + 0.646678i
\(723\) 0.781153 + 2.40414i 0.0290514 + 0.0894110i
\(724\) 0.180340 0.00670228
\(725\) −18.0902 −0.671852
\(726\) −26.5623 −0.985820
\(727\) 7.59017 + 23.3601i 0.281504 + 0.866380i 0.987425 + 0.158089i \(0.0505333\pi\)
−0.705921 + 0.708291i \(0.749467\pi\)
\(728\) −2.07295 + 1.50609i −0.0768286 + 0.0558192i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) −10.0623 30.9686i −0.372423 1.14620i
\(731\) −20.5623 14.9394i −0.760524 0.552553i
\(732\) 5.38197 0.198923
\(733\) 16.1631 + 11.7432i 0.596998 + 0.433745i 0.844812 0.535063i \(-0.179712\pi\)
−0.247814 + 0.968808i \(0.579712\pi\)
\(734\) 12.7812 39.3363i 0.471761 1.45193i
\(735\) 4.57295 + 14.0741i 0.168676 + 0.519131i
\(736\) 3.93363 + 12.1065i 0.144995 + 0.446250i
\(737\) −7.70820 + 23.7234i −0.283935 + 0.873863i
\(738\) −0.763932 + 2.35114i −0.0281207 + 0.0865467i
\(739\) 4.93769 + 15.1967i 0.181636 + 0.559018i 0.999874 0.0158612i \(-0.00504898\pi\)
−0.818238 + 0.574879i \(0.805049\pi\)
\(740\) 0.326238 0.0119927
\(741\) 0.489357 1.50609i 0.0179770 0.0553274i
\(742\) −2.80902 2.04087i −0.103122 0.0749227i
\(743\) 28.3607 1.04045 0.520226 0.854029i \(-0.325848\pi\)
0.520226 + 0.854029i \(0.325848\pi\)
\(744\) 5.42705 + 3.94298i 0.198965 + 0.144557i
\(745\) 2.72542 8.38800i 0.0998518 0.307312i
\(746\) −37.0066 + 26.8869i −1.35491 + 0.984398i
\(747\) −10.0902 + 7.33094i −0.369180 + 0.268225i
\(748\) 5.23607 + 16.1150i 0.191450 + 0.589221i
\(749\) −10.1459 −0.370723
\(750\) 18.0902 0.660560
\(751\) −5.11146 −0.186520 −0.0932598 0.995642i \(-0.529729\pi\)
−0.0932598 + 0.995642i \(0.529729\pi\)
\(752\) −0.927051 2.85317i −0.0338061 0.104044i
\(753\) 23.6074 17.1518i 0.860301 0.625045i
\(754\) −8.78115 + 6.37988i −0.319791 + 0.232342i
\(755\) −10.0623 + 30.9686i −0.366205 + 1.12706i
\(756\) 1.54508 + 1.12257i 0.0561942 + 0.0408275i
\(757\) 30.4164 1.10550 0.552752 0.833346i \(-0.313578\pi\)
0.552752 + 0.833346i \(0.313578\pi\)
\(758\) 19.1074 + 13.8823i 0.694012 + 0.504229i
\(759\) −6.09017 + 18.7436i −0.221059 + 0.680350i
\(760\) −4.27051 −0.154908
\(761\) −5.70163 17.5478i −0.206684 0.636107i −0.999640 0.0268287i \(-0.991459\pi\)
0.792956 0.609279i \(-0.208541\pi\)
\(762\) −9.94427 + 30.6053i −0.360243 + 1.10871i
\(763\) 1.90983 5.87785i 0.0691405 0.212793i
\(764\) −0.347524 1.06957i −0.0125730 0.0386957i
\(765\) −7.23607 22.2703i −0.261621 0.805185i
\(766\) −16.6803 + 51.3368i −0.602685 + 1.85487i
\(767\) 16.2812 + 11.8290i 0.587878 + 0.427119i
\(768\) 13.5623 0.489388
\(769\) −10.8541 7.88597i −0.391409 0.284375i 0.374624 0.927177i \(-0.377772\pi\)
−0.766033 + 0.642802i \(0.777772\pi\)
\(770\) −3.61803 11.1352i −0.130385 0.401283i
\(771\) −18.4894 + 13.4333i −0.665878 + 0.483789i
\(772\) −3.85410 + 2.80017i −0.138712 + 0.100780i
\(773\) −11.1738 34.3893i −0.401892 1.23690i −0.923462 0.383689i \(-0.874654\pi\)
0.521570 0.853208i \(-0.325346\pi\)
\(774\) −15.7082 −0.564620
\(775\) −4.63525 14.2658i −0.166503 0.512444i
\(776\) −8.61803 −0.309369
\(777\) −0.0450850 0.138757i −0.00161741 0.00497789i
\(778\) 19.6353 14.2658i 0.703958 0.511455i
\(779\) 0.527864 0.383516i 0.0189127 0.0137409i
\(780\) 2.07295 1.50609i 0.0742235 0.0539265i
\(781\) −28.0344 20.3682i −1.00315 0.728832i
\(782\) 31.8885 1.14033
\(783\) −14.6353 10.6331i −0.523021 0.379997i
\(784\) 9.92705 30.5523i 0.354538 1.09115i
\(785\) −9.10739 + 28.0297i −0.325057 + 1.00042i
\(786\) −3.39919 10.4616i −0.121245 0.373154i
\(787\) −3.65248 + 11.2412i −0.130197 + 0.400704i −0.994812 0.101730i \(-0.967562\pi\)
0.864615 + 0.502434i \(0.167562\pi\)
\(788\) 0.708204 2.17963i 0.0252287 0.0776460i
\(789\) −3.37132 10.3759i −0.120022 0.369391i
\(790\) 23.6803 17.2048i 0.842509 0.612118i
\(791\) 3.21885 9.90659i 0.114449 0.352238i
\(792\) −18.9443 13.7638i −0.673155 0.489076i
\(793\) 16.1459 0.573358
\(794\) 38.0066 + 27.6134i 1.34880 + 0.979963i
\(795\) −6.28115 4.56352i −0.222770 0.161852i
\(796\) 8.78115 6.37988i 0.311240 0.226129i
\(797\) −7.89919 + 5.73910i −0.279804 + 0.203289i −0.718832 0.695184i \(-0.755323\pi\)
0.439028 + 0.898473i \(0.355323\pi\)
\(798\) −0.263932 0.812299i −0.00934309 0.0287551i
\(799\) −3.23607 −0.114484
\(800\) −13.6803 9.93935i −0.483673 0.351409i
\(801\) 17.8885 0.632061
\(802\) −13.2984 40.9282i −0.469582 1.44522i
\(803\) −38.1246 + 27.6992i −1.34539 + 0.977482i
\(804\) −2.38197 + 1.73060i −0.0840055 + 0.0610335i
\(805\) −5.20163 −0.183333
\(806\) −7.28115 5.29007i −0.256468 0.186335i
\(807\) −12.7639 −0.449312
\(808\) −2.66312 1.93487i −0.0936882 0.0680685i
\(809\) 9.57295 29.4625i 0.336567 1.03585i −0.629378 0.777099i \(-0.716690\pi\)
0.965945 0.258747i \(-0.0833097\pi\)
\(810\) −2.92705 2.12663i −0.102846 0.0747221i
\(811\) −4.54508 13.9883i −0.159600 0.491197i 0.838998 0.544134i \(-0.183142\pi\)
−0.998598 + 0.0529372i \(0.983142\pi\)
\(812\) −0.427051 + 1.31433i −0.0149866 + 0.0461239i
\(813\) −2.47214 + 7.60845i −0.0867016 + 0.266840i
\(814\) −0.618034 1.90211i −0.0216621 0.0666690i
\(815\) 19.8992 + 14.4576i 0.697038 + 0.506428i
\(816\) 7.85410 24.1724i 0.274949 0.846205i
\(817\) 3.35410 + 2.43690i 0.117345 + 0.0852563i
\(818\) −2.56231 −0.0895889
\(819\) 1.85410 + 1.34708i 0.0647876 + 0.0470709i
\(820\) 1.05573 0.0368676
\(821\) 32.9164 23.9152i 1.14879 0.834645i 0.160471 0.987041i \(-0.448699\pi\)
0.988320 + 0.152395i \(0.0486987\pi\)
\(822\) −15.6353 + 11.3597i −0.545342 + 0.396214i
\(823\) 14.7426 + 45.3732i 0.513896 + 1.58161i 0.785281 + 0.619139i \(0.212518\pi\)
−0.271385 + 0.962471i \(0.587482\pi\)
\(824\) 19.1459 0.666979
\(825\) −8.09017 24.8990i −0.281664 0.866871i
\(826\) 10.8541 0.377663
\(827\) −0.298374 0.918300i −0.0103755 0.0319324i 0.945735 0.324940i \(-0.105344\pi\)
−0.956110 + 0.293007i \(0.905344\pi\)
\(828\) 3.76393 2.73466i 0.130806 0.0950359i
\(829\) 29.0066 21.0745i 1.00744 0.731948i 0.0437695 0.999042i \(-0.486063\pi\)
0.963671 + 0.267094i \(0.0860633\pi\)
\(830\) 18.2533 + 13.2618i 0.633581 + 0.460323i
\(831\) 19.9894 + 14.5231i 0.693423 + 0.503801i
\(832\) 7.85410 0.272292
\(833\) −28.0344 20.3682i −0.971336 0.705717i
\(834\) −2.50000 + 7.69421i −0.0865679 + 0.266429i
\(835\) 26.3435 19.1396i 0.911653 0.662355i
\(836\) −0.854102 2.62866i −0.0295397 0.0909140i
\(837\) 4.63525 14.2658i 0.160218 0.493100i
\(838\) 4.73607 14.5761i 0.163605 0.503524i
\(839\) 3.35410 + 10.3229i 0.115796 + 0.356385i 0.992112 0.125352i \(-0.0400061\pi\)
−0.876316 + 0.481737i \(0.840006\pi\)
\(840\) −0.954915 + 2.93893i −0.0329477 + 0.101403i
\(841\) −4.91641 + 15.1311i −0.169531 + 0.521764i
\(842\) 41.8885 + 30.4338i 1.44357 + 1.04882i
\(843\) 10.0902 0.347524
\(844\) 4.59017 + 3.33495i 0.158000 + 0.114794i
\(845\) −17.2984 + 12.5680i −0.595082 + 0.432352i
\(846\) −1.61803 + 1.17557i −0.0556292 + 0.0404169i
\(847\) −8.20820 + 5.96361i −0.282037 + 0.204912i
\(848\) 5.20820 + 16.0292i 0.178850 + 0.550445i
\(849\) −29.8541 −1.02459
\(850\) −34.2705 + 24.8990i −1.17547 + 0.854028i
\(851\) −0.888544 −0.0304589
\(852\) −1.26393 3.88998i −0.0433016 0.133269i
\(853\) 12.3820 8.99602i 0.423950 0.308018i −0.355275 0.934762i \(-0.615613\pi\)
0.779225 + 0.626744i \(0.215613\pi\)
\(854\) 7.04508 5.11855i 0.241078 0.175153i
\(855\) 1.18034 + 3.63271i 0.0403668 + 0.124236i
\(856\) 29.6976 + 21.5765i 1.01504 + 0.737471i
\(857\) 19.6869 0.672492 0.336246 0.941774i \(-0.390843\pi\)
0.336246 + 0.941774i \(0.390843\pi\)
\(858\) −12.7082 9.23305i −0.433851 0.315211i
\(859\) −0.489357 + 1.50609i −0.0166966 + 0.0513870i −0.959058 0.283211i \(-0.908600\pi\)
0.942361 + 0.334598i \(0.108600\pi\)
\(860\) 2.07295 + 6.37988i 0.0706870 + 0.217552i
\(861\) −0.145898 0.449028i −0.00497219 0.0153028i
\(862\) 14.9164 45.9080i 0.508055 1.56363i
\(863\) −6.62461 + 20.3885i −0.225504 + 0.694031i 0.772736 + 0.634728i \(0.218888\pi\)
−0.998240 + 0.0593032i \(0.981112\pi\)
\(864\) −5.22542 16.0822i −0.177773 0.547128i
\(865\) −42.2361 −1.43607
\(866\) −13.4271 + 41.3242i −0.456270 + 1.40425i
\(867\) −8.42705 6.12261i −0.286198 0.207935i
\(868\) −1.14590 −0.0388943
\(869\) −34.2705 24.8990i −1.16255 0.844640i
\(870\) −4.04508 + 12.4495i −0.137141 + 0.422077i
\(871\) −7.14590 + 5.19180i −0.242130 + 0.175917i
\(872\) −18.0902 + 13.1433i −0.612610 + 0.445088i
\(873\) 2.38197 + 7.33094i 0.0806173 + 0.248115i
\(874\) −5.20163 −0.175948
\(875\) 5.59017 4.06150i 0.188982 0.137304i
\(876\) −5.56231 −0.187933
\(877\) −11.2918 34.7526i −0.381297 1.17351i −0.939131 0.343559i \(-0.888368\pi\)
0.557834 0.829952i \(-0.311632\pi\)
\(878\) −53.6418 + 38.9731i −1.81032 + 1.31528i
\(879\) 15.7984 11.4782i 0.532866 0.387150i
\(880\) −17.5623 + 54.0512i −0.592025 + 1.82207i
\(881\) 32.6525 + 23.7234i 1.10009 + 0.799262i 0.981075 0.193630i \(-0.0620262\pi\)
0.119015 + 0.992892i \(0.462026\pi\)
\(882\) −21.4164 −0.721128
\(883\) 16.6525 + 12.0987i 0.560400 + 0.407155i 0.831605 0.555367i \(-0.187422\pi\)
−0.271205 + 0.962522i \(0.587422\pi\)
\(884\) −1.85410 + 5.70634i −0.0623602 + 0.191925i
\(885\) 24.2705 0.815844
\(886\) −14.9721 46.0795i −0.502999 1.54807i
\(887\) 9.23607 28.4257i 0.310117 0.954441i −0.667601 0.744519i \(-0.732679\pi\)
0.977718 0.209922i \(-0.0673211\pi\)
\(888\) −0.163119 + 0.502029i −0.00547391 + 0.0168470i
\(889\) 3.79837 + 11.6902i 0.127393 + 0.392076i
\(890\) −10.0000 30.7768i −0.335201 1.03164i
\(891\) −1.61803 + 4.97980i −0.0542062 + 0.166829i
\(892\) 0.0901699 + 0.0655123i 0.00301911 + 0.00219351i
\(893\) 0.527864 0.0176643
\(894\) −5.16312 3.75123i −0.172681 0.125460i
\(895\) 0.364745 + 1.12257i 0.0121921 + 0.0375234i
\(896\) 6.80902 4.94704i 0.227473 0.165269i
\(897\) −5.64590 + 4.10199i −0.188511 + 0.136961i
\(898\) −2.33688 7.19218i −0.0779827 0.240006i
\(899\) 10.8541 0.362005
\(900\) −1.90983 + 5.87785i −0.0636610 + 0.195928i
\(901\) 18.1803 0.605675
\(902\) −2.00000 6.15537i −0.0665927 0.204951i
\(903\) 2.42705 1.76336i 0.0807672 0.0586808i
\(904\) −30.4894 + 22.1518i −1.01406 + 0.736758i
\(905\) 0.527864 0.383516i 0.0175468 0.0127485i
\(906\) 19.0623 + 13.8496i 0.633303 + 0.460121i
\(907\) −33.2492 −1.10402 −0.552011 0.833837i \(-0.686139\pi\)
−0.552011 + 0.833837i \(0.686139\pi\)
\(908\) −7.38197 5.36331i −0.244979 0.177988i
\(909\) −0.909830 + 2.80017i −0.0301772 + 0.0928757i
\(910\) 1.28115 3.94298i 0.0424698 0.130709i
\(911\) −12.4336 38.2668i −0.411944 1.26783i −0.914955 0.403555i \(-0.867774\pi\)
0.503011 0.864280i \(-0.332226\pi\)
\(912\) −1.28115 + 3.94298i −0.0424232 + 0.130565i
\(913\) 10.0902 31.0543i 0.333936 1.02775i
\(914\) 10.7082 + 32.9565i 0.354196 + 1.09010i
\(915\) 15.7533 11.4454i 0.520788 0.378374i
\(916\) 4.14590 12.7598i 0.136984 0.421594i
\(917\) −3.39919 2.46965i −0.112251 0.0815552i
\(918\) −42.3607 −1.39811
\(919\) 43.0517 + 31.2789i 1.42014 + 1.03179i 0.991748 + 0.128203i \(0.0409209\pi\)
0.428395 + 0.903591i \(0.359079\pi\)
\(920\) 15.2254 + 11.0619i 0.501967 + 0.364701i
\(921\) −7.47214 + 5.42882i −0.246215 + 0.178886i
\(922\) 1.07295 0.779543i 0.0353357 0.0256729i
\(923\) −3.79180 11.6699i −0.124808 0.384121i
\(924\) −2.00000 −0.0657952
\(925\) 0.954915 0.693786i 0.0313974 0.0228116i
\(926\) 39.0344 1.28275
\(927\) −5.29180 16.2865i −0.173805 0.534918i
\(928\) 9.89919 7.19218i 0.324957 0.236095i
\(929\) −33.6803 + 24.4702i −1.10502 + 0.802841i −0.981872 0.189548i \(-0.939298\pi\)
−0.123145 + 0.992389i \(0.539298\pi\)
\(930\) −10.8541 −0.355920
\(931\) 4.57295 + 3.32244i 0.149872 + 0.108889i
\(932\) −1.81966 −0.0596049
\(933\) −6.88197 5.00004i −0.225305 0.163694i
\(934\) −13.7254 + 42.2425i −0.449110 + 1.38222i
\(935\) 49.5967 + 36.0341i 1.62199 + 1.17844i
\(936\) −2.56231 7.88597i −0.0837516 0.257761i
\(937\) 5.47871 16.8617i 0.178982 0.550849i −0.820811 0.571200i \(-0.806478\pi\)
0.999793 + 0.0203504i \(0.00647819\pi\)
\(938\) −1.47214 + 4.53077i −0.0480669 + 0.147935i
\(939\) −5.18034 15.9434i −0.169054 0.520295i
\(940\) 0.690983 + 0.502029i 0.0225374 + 0.0163744i
\(941\) −14.3435 + 44.1446i −0.467583 + 1.43907i 0.388121 + 0.921608i \(0.373124\pi\)
−0.855704 + 0.517465i \(0.826876\pi\)
\(942\) 17.2533 + 12.5352i 0.562143 + 0.408420i
\(943\) −2.87539 −0.0936355
\(944\) −42.6246 30.9686i −1.38731 1.00794i
\(945\) 6.90983 0.224777
\(946\) 33.2705 24.1724i 1.08172 0.785914i
\(947\) −2.14590 + 1.55909i −0.0697323 + 0.0506635i −0.622105 0.782934i \(-0.713722\pi\)
0.552373 + 0.833597i \(0.313722\pi\)
\(948\) −1.54508 4.75528i −0.0501820 0.154444i
\(949\) −16.6869 −0.541680
\(950\) 5.59017 4.06150i 0.181369 0.131772i
\(951\) 7.65248 0.248149
\(952\) −2.23607 6.88191i −0.0724714 0.223044i
\(953\) 6.26393 4.55101i 0.202909 0.147422i −0.481691 0.876341i \(-0.659977\pi\)
0.684599 + 0.728919i \(0.259977\pi\)
\(954\) 9.09017 6.60440i 0.294305 0.213825i
\(955\) −3.29180 2.39163i −0.106520 0.0773913i
\(956\) 10.2639 + 7.45718i 0.331959 + 0.241183i
\(957\) 18.9443 0.612381
\(958\) −14.2082 10.3229i −0.459046 0.333517i
\(959\) −2.28115 + 7.02067i −0.0736623 + 0.226709i
\(960\) 7.66312 5.56758i 0.247326 0.179693i
\(961\) −6.79837 20.9232i −0.219302 0.674943i
\(962\) 0.218847 0.673542i 0.00705591 0.0217159i
\(963\) 10.1459 31.2259i 0.326947 1.00624i
\(964\) 0.482779 + 1.48584i 0.0155493 + 0.0478557i
\(965\) −5.32624 + 16.3925i −0.171458 + 0.527692i
\(966\) −1.16312 + 3.57971i −0.0374227 + 0.115175i
\(967\) −3.32624 2.41665i −0.106965 0.0777143i 0.533017 0.846104i \(-0.321058\pi\)
−0.639982 + 0.768390i \(0.721058\pi\)
\(968\) 36.7082 1.17985
\(969\) 3.61803 + 2.62866i 0.116228 + 0.0844446i
\(970\) 11.2812 8.19624i 0.362216 0.263165i
\(971\) −4.54508 + 3.30220i −0.145859 + 0.105973i −0.658321 0.752737i \(-0.728733\pi\)
0.512463 + 0.858709i \(0.328733\pi\)
\(972\) −8.00000 + 5.81234i −0.256600 + 0.186431i
\(973\) 0.954915 + 2.93893i 0.0306132 + 0.0942177i
\(974\) 58.9230 1.88801
\(975\) 2.86475 8.81678i 0.0917453 0.282363i
\(976\) −42.2705 −1.35305
\(977\) −0.725425 2.23263i −0.0232084 0.0714281i 0.938782 0.344513i \(-0.111956\pi\)
−0.961990 + 0.273085i \(0.911956\pi\)
\(978\) 14.3992 10.4616i 0.460435 0.334526i
\(979\) −37.8885 + 27.5276i −1.21092 + 0.879787i
\(980\) 2.82624 + 8.69827i 0.0902809 + 0.277856i
\(981\) 16.1803 + 11.7557i 0.516598 + 0.375331i
\(982\) 69.9787 2.23311
\(983\) −7.78115 5.65334i −0.248180 0.180313i 0.456740 0.889600i \(-0.349017\pi\)
−0.704920 + 0.709287i \(0.749017\pi\)
\(984\) −0.527864 + 1.62460i −0.0168277 + 0.0517903i
\(985\) −2.56231 7.88597i −0.0816419 0.251268i
\(986\) −9.47214 29.1522i −0.301654 0.928396i
\(987\) 0.118034 0.363271i 0.00375706 0.0115631i
\(988\) 0.302439 0.930812i 0.00962187 0.0296131i
\(989\) −5.64590 17.3763i −0.179529 0.552534i
\(990\) 37.8885 1.20418
\(991\) −4.74671 + 14.6089i −0.150784 + 0.464066i −0.997709 0.0676459i \(-0.978451\pi\)
0.846925 + 0.531712i \(0.178451\pi\)
\(992\) 8.20820 + 5.96361i 0.260611 + 0.189345i
\(993\) −23.1246 −0.733837
\(994\) −5.35410 3.88998i −0.169822 0.123383i
\(995\) 12.1353 37.3485i 0.384713 1.18403i
\(996\) 3.11803 2.26538i 0.0987987 0.0717814i
\(997\) −20.1353 + 14.6291i −0.637690 + 0.463309i −0.859056 0.511882i \(-0.828949\pi\)
0.221366 + 0.975191i \(0.428949\pi\)
\(998\) −3.78115 11.6372i −0.119690 0.368369i
\(999\) 1.18034 0.0373443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 25.2.d.a.6.1 4
3.2 odd 2 225.2.h.b.181.1 4
4.3 odd 2 400.2.u.b.81.1 4
5.2 odd 4 125.2.e.a.99.2 8
5.3 odd 4 125.2.e.a.99.1 8
5.4 even 2 125.2.d.a.26.1 4
25.2 odd 20 625.2.b.a.624.1 4
25.3 odd 20 125.2.e.a.24.2 8
25.4 even 10 125.2.d.a.101.1 4
25.6 even 5 625.2.d.h.376.1 4
25.8 odd 20 625.2.e.c.249.2 8
25.9 even 10 625.2.d.b.251.1 4
25.11 even 5 625.2.a.b.1.1 2
25.12 odd 20 625.2.e.c.374.2 8
25.13 odd 20 625.2.e.c.374.1 8
25.14 even 10 625.2.a.c.1.2 2
25.16 even 5 625.2.d.h.251.1 4
25.17 odd 20 625.2.e.c.249.1 8
25.19 even 10 625.2.d.b.376.1 4
25.21 even 5 inner 25.2.d.a.21.1 yes 4
25.22 odd 20 125.2.e.a.24.1 8
25.23 odd 20 625.2.b.a.624.4 4
75.11 odd 10 5625.2.a.f.1.2 2
75.14 odd 10 5625.2.a.d.1.1 2
75.71 odd 10 225.2.h.b.46.1 4
100.11 odd 10 10000.2.a.c.1.1 2
100.39 odd 10 10000.2.a.l.1.2 2
100.71 odd 10 400.2.u.b.321.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.d.a.6.1 4 1.1 even 1 trivial
25.2.d.a.21.1 yes 4 25.21 even 5 inner
125.2.d.a.26.1 4 5.4 even 2
125.2.d.a.101.1 4 25.4 even 10
125.2.e.a.24.1 8 25.22 odd 20
125.2.e.a.24.2 8 25.3 odd 20
125.2.e.a.99.1 8 5.3 odd 4
125.2.e.a.99.2 8 5.2 odd 4
225.2.h.b.46.1 4 75.71 odd 10
225.2.h.b.181.1 4 3.2 odd 2
400.2.u.b.81.1 4 4.3 odd 2
400.2.u.b.321.1 4 100.71 odd 10
625.2.a.b.1.1 2 25.11 even 5
625.2.a.c.1.2 2 25.14 even 10
625.2.b.a.624.1 4 25.2 odd 20
625.2.b.a.624.4 4 25.23 odd 20
625.2.d.b.251.1 4 25.9 even 10
625.2.d.b.376.1 4 25.19 even 10
625.2.d.h.251.1 4 25.16 even 5
625.2.d.h.376.1 4 25.6 even 5
625.2.e.c.249.1 8 25.17 odd 20
625.2.e.c.249.2 8 25.8 odd 20
625.2.e.c.374.1 8 25.13 odd 20
625.2.e.c.374.2 8 25.12 odd 20
5625.2.a.d.1.1 2 75.14 odd 10
5625.2.a.f.1.2 2 75.11 odd 10
10000.2.a.c.1.1 2 100.11 odd 10
10000.2.a.l.1.2 2 100.39 odd 10