Properties

Label 625.2.d.b.251.1
Level $625$
Weight $2$
Character 625.251
Analytic conductor $4.991$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(126,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 251.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 625.251
Dual form 625.2.d.b.376.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 + 0.951057i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.190983 - 0.587785i) q^{4} +(-0.500000 - 1.53884i) q^{6} -0.618034 q^{7} +(-0.690983 - 2.12663i) q^{8} +(1.61803 + 1.17557i) q^{9} +(4.23607 - 3.07768i) q^{11} +(0.500000 + 0.363271i) q^{12} +(1.50000 + 1.08981i) q^{13} +(0.809017 - 0.587785i) q^{14} +(3.92705 + 2.85317i) q^{16} +(1.61803 + 4.97980i) q^{17} -3.23607 q^{18} +(0.263932 + 0.812299i) q^{19} +(0.190983 - 0.587785i) q^{21} +(-2.61803 + 8.05748i) q^{22} +(3.04508 - 2.21238i) q^{23} +2.23607 q^{24} -3.00000 q^{26} +(-4.04508 + 2.93893i) q^{27} +(-0.118034 + 0.363271i) q^{28} +(-1.11803 + 3.44095i) q^{29} +(-0.927051 - 2.85317i) q^{31} -3.38197 q^{32} +(1.61803 + 4.97980i) q^{33} +(-6.85410 - 4.97980i) q^{34} +(1.00000 - 0.726543i) q^{36} +(-0.190983 - 0.138757i) q^{37} +(-1.11803 - 0.812299i) q^{38} +(-1.50000 + 1.08981i) q^{39} +(0.618034 + 0.449028i) q^{41} +(0.309017 + 0.951057i) q^{42} +4.85410 q^{43} +(-1.00000 - 3.07768i) q^{44} +(-1.88197 + 5.79210i) q^{46} +(-0.190983 + 0.587785i) q^{47} +(-3.92705 + 2.85317i) q^{48} -6.61803 q^{49} -5.23607 q^{51} +(0.927051 - 0.673542i) q^{52} +(1.07295 - 3.30220i) q^{53} +(2.50000 - 7.69421i) q^{54} +(0.427051 + 1.31433i) q^{56} -0.854102 q^{57} +(-1.80902 - 5.56758i) q^{58} +(8.78115 + 6.37988i) q^{59} +(-7.04508 + 5.11855i) q^{61} +(3.92705 + 2.85317i) q^{62} +(-1.00000 - 0.726543i) q^{63} +(-3.42705 + 2.48990i) q^{64} +(-6.85410 - 4.97980i) q^{66} +(-1.47214 - 4.53077i) q^{67} +3.23607 q^{68} +(1.16312 + 3.57971i) q^{69} +(-2.04508 + 6.29412i) q^{71} +(1.38197 - 4.25325i) q^{72} +(-7.28115 + 5.29007i) q^{73} +0.381966 q^{74} +0.527864 q^{76} +(-2.61803 + 1.90211i) q^{77} +(0.927051 - 2.85317i) q^{78} +(-2.50000 + 7.69421i) q^{79} +(0.309017 + 0.951057i) q^{81} -1.23607 q^{82} +(1.92705 + 5.93085i) q^{83} +(-0.309017 - 0.224514i) q^{84} +(-6.35410 + 4.61653i) q^{86} +(-2.92705 - 2.12663i) q^{87} +(-9.47214 - 6.88191i) q^{88} +(7.23607 - 5.25731i) q^{89} +(-0.927051 - 0.673542i) q^{91} +(-0.718847 - 2.21238i) q^{92} +3.00000 q^{93} +(-0.309017 - 0.951057i) q^{94} +(1.04508 - 3.21644i) q^{96} +(1.19098 - 3.66547i) q^{97} +(8.66312 - 6.29412i) q^{98} +10.4721 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + q^{3} + 3 q^{4} - 2 q^{6} + 2 q^{7} - 5 q^{8} + 2 q^{9} + 8 q^{11} + 2 q^{12} + 6 q^{13} + q^{14} + 9 q^{16} + 2 q^{17} - 4 q^{18} + 10 q^{19} + 3 q^{21} - 6 q^{22} + q^{23} - 12 q^{26}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 + 0.951057i −0.925615 + 0.672499i −0.944915 0.327315i \(-0.893856\pi\)
0.0193004 + 0.999814i \(0.493856\pi\)
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i −0.999773 0.0213149i \(-0.993215\pi\)
0.821362 + 0.570408i \(0.193215\pi\)
\(4\) 0.190983 0.587785i 0.0954915 0.293893i
\(5\) 0 0
\(6\) −0.500000 1.53884i −0.204124 0.628230i
\(7\) −0.618034 −0.233595 −0.116797 0.993156i \(-0.537263\pi\)
−0.116797 + 0.993156i \(0.537263\pi\)
\(8\) −0.690983 2.12663i −0.244299 0.751876i
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) 0 0
\(11\) 4.23607 3.07768i 1.27722 0.927957i 0.277757 0.960651i \(-0.410409\pi\)
0.999465 + 0.0326948i \(0.0104089\pi\)
\(12\) 0.500000 + 0.363271i 0.144338 + 0.104867i
\(13\) 1.50000 + 1.08981i 0.416025 + 0.302260i 0.776037 0.630688i \(-0.217227\pi\)
−0.360011 + 0.932948i \(0.617227\pi\)
\(14\) 0.809017 0.587785i 0.216219 0.157092i
\(15\) 0 0
\(16\) 3.92705 + 2.85317i 0.981763 + 0.713292i
\(17\) 1.61803 + 4.97980i 0.392431 + 1.20778i 0.930944 + 0.365161i \(0.118986\pi\)
−0.538513 + 0.842617i \(0.681014\pi\)
\(18\) −3.23607 −0.762749
\(19\) 0.263932 + 0.812299i 0.0605502 + 0.186354i 0.976756 0.214353i \(-0.0687644\pi\)
−0.916206 + 0.400707i \(0.868764\pi\)
\(20\) 0 0
\(21\) 0.190983 0.587785i 0.0416759 0.128265i
\(22\) −2.61803 + 8.05748i −0.558167 + 1.71786i
\(23\) 3.04508 2.21238i 0.634944 0.461314i −0.223165 0.974781i \(-0.571639\pi\)
0.858110 + 0.513467i \(0.171639\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) −4.04508 + 2.93893i −0.778477 + 0.565597i
\(28\) −0.118034 + 0.363271i −0.0223063 + 0.0686518i
\(29\) −1.11803 + 3.44095i −0.207614 + 0.638969i 0.791982 + 0.610544i \(0.209049\pi\)
−0.999596 + 0.0284251i \(0.990951\pi\)
\(30\) 0 0
\(31\) −0.927051 2.85317i −0.166503 0.512444i 0.832641 0.553814i \(-0.186828\pi\)
−0.999144 + 0.0413693i \(0.986828\pi\)
\(32\) −3.38197 −0.597853
\(33\) 1.61803 + 4.97980i 0.281664 + 0.866871i
\(34\) −6.85410 4.97980i −1.17547 0.854028i
\(35\) 0 0
\(36\) 1.00000 0.726543i 0.166667 0.121090i
\(37\) −0.190983 0.138757i −0.0313974 0.0228116i 0.571976 0.820270i \(-0.306177\pi\)
−0.603373 + 0.797459i \(0.706177\pi\)
\(38\) −1.11803 0.812299i −0.181369 0.131772i
\(39\) −1.50000 + 1.08981i −0.240192 + 0.174510i
\(40\) 0 0
\(41\) 0.618034 + 0.449028i 0.0965207 + 0.0701264i 0.634999 0.772513i \(-0.281001\pi\)
−0.538478 + 0.842639i \(0.681001\pi\)
\(42\) 0.309017 + 0.951057i 0.0476824 + 0.146751i
\(43\) 4.85410 0.740244 0.370122 0.928983i \(-0.379316\pi\)
0.370122 + 0.928983i \(0.379316\pi\)
\(44\) −1.00000 3.07768i −0.150756 0.463978i
\(45\) 0 0
\(46\) −1.88197 + 5.79210i −0.277481 + 0.853998i
\(47\) −0.190983 + 0.587785i −0.0278577 + 0.0857373i −0.964019 0.265834i \(-0.914353\pi\)
0.936161 + 0.351572i \(0.114353\pi\)
\(48\) −3.92705 + 2.85317i −0.566821 + 0.411820i
\(49\) −6.61803 −0.945433
\(50\) 0 0
\(51\) −5.23607 −0.733196
\(52\) 0.927051 0.673542i 0.128559 0.0934035i
\(53\) 1.07295 3.30220i 0.147381 0.453592i −0.849929 0.526898i \(-0.823355\pi\)
0.997309 + 0.0733062i \(0.0233550\pi\)
\(54\) 2.50000 7.69421i 0.340207 1.04705i
\(55\) 0 0
\(56\) 0.427051 + 1.31433i 0.0570671 + 0.175634i
\(57\) −0.854102 −0.113129
\(58\) −1.80902 5.56758i −0.237536 0.731059i
\(59\) 8.78115 + 6.37988i 1.14321 + 0.830590i 0.987563 0.157223i \(-0.0502542\pi\)
0.155646 + 0.987813i \(0.450254\pi\)
\(60\) 0 0
\(61\) −7.04508 + 5.11855i −0.902031 + 0.655364i −0.938987 0.343953i \(-0.888234\pi\)
0.0369561 + 0.999317i \(0.488234\pi\)
\(62\) 3.92705 + 2.85317i 0.498736 + 0.362353i
\(63\) −1.00000 0.726543i −0.125988 0.0915358i
\(64\) −3.42705 + 2.48990i −0.428381 + 0.311237i
\(65\) 0 0
\(66\) −6.85410 4.97980i −0.843682 0.612971i
\(67\) −1.47214 4.53077i −0.179850 0.553521i 0.819972 0.572404i \(-0.193989\pi\)
−0.999822 + 0.0188826i \(0.993989\pi\)
\(68\) 3.23607 0.392431
\(69\) 1.16312 + 3.57971i 0.140023 + 0.430947i
\(70\) 0 0
\(71\) −2.04508 + 6.29412i −0.242707 + 0.746975i 0.753298 + 0.657679i \(0.228462\pi\)
−0.996005 + 0.0892960i \(0.971538\pi\)
\(72\) 1.38197 4.25325i 0.162866 0.501251i
\(73\) −7.28115 + 5.29007i −0.852194 + 0.619156i −0.925750 0.378136i \(-0.876565\pi\)
0.0735557 + 0.997291i \(0.476565\pi\)
\(74\) 0.381966 0.0444026
\(75\) 0 0
\(76\) 0.527864 0.0605502
\(77\) −2.61803 + 1.90211i −0.298353 + 0.216766i
\(78\) 0.927051 2.85317i 0.104968 0.323058i
\(79\) −2.50000 + 7.69421i −0.281272 + 0.865666i 0.706219 + 0.707993i \(0.250399\pi\)
−0.987491 + 0.157673i \(0.949601\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −1.23607 −0.136501
\(83\) 1.92705 + 5.93085i 0.211521 + 0.650996i 0.999382 + 0.0351426i \(0.0111885\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(84\) −0.309017 0.224514i −0.0337165 0.0244965i
\(85\) 0 0
\(86\) −6.35410 + 4.61653i −0.685180 + 0.497813i
\(87\) −2.92705 2.12663i −0.313813 0.227998i
\(88\) −9.47214 6.88191i −1.00973 0.733614i
\(89\) 7.23607 5.25731i 0.767022 0.557274i −0.134034 0.990977i \(-0.542793\pi\)
0.901056 + 0.433703i \(0.142793\pi\)
\(90\) 0 0
\(91\) −0.927051 0.673542i −0.0971813 0.0706064i
\(92\) −0.718847 2.21238i −0.0749450 0.230657i
\(93\) 3.00000 0.311086
\(94\) −0.309017 0.951057i −0.0318727 0.0980940i
\(95\) 0 0
\(96\) 1.04508 3.21644i 0.106664 0.328277i
\(97\) 1.19098 3.66547i 0.120926 0.372172i −0.872211 0.489130i \(-0.837314\pi\)
0.993137 + 0.116958i \(0.0373143\pi\)
\(98\) 8.66312 6.29412i 0.875107 0.635803i
\(99\) 10.4721 1.05249
\(100\) 0 0
\(101\) 1.47214 0.146483 0.0732415 0.997314i \(-0.476666\pi\)
0.0732415 + 0.997314i \(0.476666\pi\)
\(102\) 6.85410 4.97980i 0.678657 0.493073i
\(103\) −2.64590 + 8.14324i −0.260708 + 0.802377i 0.731943 + 0.681366i \(0.238614\pi\)
−0.992651 + 0.121011i \(0.961386\pi\)
\(104\) 1.28115 3.94298i 0.125627 0.386641i
\(105\) 0 0
\(106\) 1.73607 + 5.34307i 0.168622 + 0.518965i
\(107\) 16.4164 1.58703 0.793517 0.608548i \(-0.208248\pi\)
0.793517 + 0.608548i \(0.208248\pi\)
\(108\) 0.954915 + 2.93893i 0.0918867 + 0.282798i
\(109\) −8.09017 5.87785i −0.774898 0.562996i 0.128546 0.991704i \(-0.458969\pi\)
−0.903443 + 0.428707i \(0.858969\pi\)
\(110\) 0 0
\(111\) 0.190983 0.138757i 0.0181273 0.0131703i
\(112\) −2.42705 1.76336i −0.229335 0.166621i
\(113\) 13.6353 + 9.90659i 1.28270 + 0.931934i 0.999631 0.0271666i \(-0.00864846\pi\)
0.283066 + 0.959100i \(0.408648\pi\)
\(114\) 1.11803 0.812299i 0.104713 0.0760788i
\(115\) 0 0
\(116\) 1.80902 + 1.31433i 0.167963 + 0.122032i
\(117\) 1.14590 + 3.52671i 0.105938 + 0.326045i
\(118\) −17.5623 −1.61674
\(119\) −1.00000 3.07768i −0.0916698 0.282131i
\(120\) 0 0
\(121\) 5.07295 15.6129i 0.461177 1.41936i
\(122\) 4.35410 13.4005i 0.394202 1.21323i
\(123\) −0.618034 + 0.449028i −0.0557262 + 0.0404875i
\(124\) −1.85410 −0.166503
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 16.0902 11.6902i 1.42777 1.03734i 0.437346 0.899294i \(-0.355919\pi\)
0.990426 0.138043i \(-0.0440813\pi\)
\(128\) 4.20820 12.9515i 0.371956 1.14476i
\(129\) −1.50000 + 4.61653i −0.132068 + 0.406462i
\(130\) 0 0
\(131\) 2.10081 + 6.46564i 0.183549 + 0.564905i 0.999920 0.0126218i \(-0.00401775\pi\)
−0.816371 + 0.577527i \(0.804018\pi\)
\(132\) 3.23607 0.281664
\(133\) −0.163119 0.502029i −0.0141442 0.0435314i
\(134\) 6.23607 + 4.53077i 0.538714 + 0.391399i
\(135\) 0 0
\(136\) 9.47214 6.88191i 0.812229 0.590119i
\(137\) −9.66312 7.02067i −0.825576 0.599816i 0.0927283 0.995691i \(-0.470441\pi\)
−0.918304 + 0.395875i \(0.870441\pi\)
\(138\) −4.92705 3.57971i −0.419418 0.304725i
\(139\) −4.04508 + 2.93893i −0.343100 + 0.249276i −0.745968 0.665981i \(-0.768013\pi\)
0.402869 + 0.915258i \(0.368013\pi\)
\(140\) 0 0
\(141\) −0.500000 0.363271i −0.0421076 0.0305930i
\(142\) −3.30902 10.1841i −0.277687 0.854631i
\(143\) 9.70820 0.811841
\(144\) 3.00000 + 9.23305i 0.250000 + 0.769421i
\(145\) 0 0
\(146\) 4.50000 13.8496i 0.372423 1.14620i
\(147\) 2.04508 6.29412i 0.168676 0.519131i
\(148\) −0.118034 + 0.0857567i −0.00970233 + 0.00704916i
\(149\) −3.94427 −0.323127 −0.161564 0.986862i \(-0.551654\pi\)
−0.161564 + 0.986862i \(0.551654\pi\)
\(150\) 0 0
\(151\) 14.5623 1.18506 0.592532 0.805547i \(-0.298128\pi\)
0.592532 + 0.805547i \(0.298128\pi\)
\(152\) 1.54508 1.12257i 0.125323 0.0910524i
\(153\) −3.23607 + 9.95959i −0.261621 + 0.805185i
\(154\) 1.61803 4.97980i 0.130385 0.401283i
\(155\) 0 0
\(156\) 0.354102 + 1.08981i 0.0283508 + 0.0872549i
\(157\) −13.1803 −1.05191 −0.525953 0.850514i \(-0.676291\pi\)
−0.525953 + 0.850514i \(0.676291\pi\)
\(158\) −4.04508 12.4495i −0.321810 0.990428i
\(159\) 2.80902 + 2.04087i 0.222770 + 0.161852i
\(160\) 0 0
\(161\) −1.88197 + 1.36733i −0.148320 + 0.107761i
\(162\) −1.30902 0.951057i −0.102846 0.0747221i
\(163\) 8.89919 + 6.46564i 0.697038 + 0.506428i 0.878966 0.476884i \(-0.158234\pi\)
−0.181928 + 0.983312i \(0.558234\pi\)
\(164\) 0.381966 0.277515i 0.0298265 0.0216702i
\(165\) 0 0
\(166\) −8.16312 5.93085i −0.633581 0.460323i
\(167\) −4.50000 13.8496i −0.348220 1.07171i −0.959837 0.280558i \(-0.909480\pi\)
0.611617 0.791154i \(-0.290520\pi\)
\(168\) −1.38197 −0.106621
\(169\) −2.95492 9.09429i −0.227301 0.699561i
\(170\) 0 0
\(171\) −0.527864 + 1.62460i −0.0403668 + 0.124236i
\(172\) 0.927051 2.85317i 0.0706870 0.217552i
\(173\) 15.2812 11.1024i 1.16180 0.844100i 0.171799 0.985132i \(-0.445042\pi\)
0.990005 + 0.141032i \(0.0450419\pi\)
\(174\) 5.85410 0.443798
\(175\) 0 0
\(176\) 25.4164 1.91583
\(177\) −8.78115 + 6.37988i −0.660032 + 0.479541i
\(178\) −4.47214 + 13.7638i −0.335201 + 1.03164i
\(179\) −0.163119 + 0.502029i −0.0121921 + 0.0375234i −0.956967 0.290195i \(-0.906280\pi\)
0.944775 + 0.327719i \(0.106280\pi\)
\(180\) 0 0
\(181\) 0.0901699 + 0.277515i 0.00670228 + 0.0206275i 0.954352 0.298685i \(-0.0965480\pi\)
−0.947649 + 0.319313i \(0.896548\pi\)
\(182\) 1.85410 0.137435
\(183\) −2.69098 8.28199i −0.198923 0.612223i
\(184\) −6.80902 4.94704i −0.501967 0.364701i
\(185\) 0 0
\(186\) −3.92705 + 2.85317i −0.287945 + 0.209205i
\(187\) 22.1803 + 16.1150i 1.62199 + 1.17844i
\(188\) 0.309017 + 0.224514i 0.0225374 + 0.0163744i
\(189\) 2.50000 1.81636i 0.181848 0.132120i
\(190\) 0 0
\(191\) 1.47214 + 1.06957i 0.106520 + 0.0773913i 0.639770 0.768566i \(-0.279030\pi\)
−0.533250 + 0.845958i \(0.679030\pi\)
\(192\) −1.30902 4.02874i −0.0944702 0.290749i
\(193\) −7.70820 −0.554849 −0.277424 0.960747i \(-0.589481\pi\)
−0.277424 + 0.960747i \(0.589481\pi\)
\(194\) 1.92705 + 5.93085i 0.138354 + 0.425810i
\(195\) 0 0
\(196\) −1.26393 + 3.88998i −0.0902809 + 0.277856i
\(197\) −1.14590 + 3.52671i −0.0816419 + 0.251268i −0.983543 0.180675i \(-0.942172\pi\)
0.901901 + 0.431943i \(0.142172\pi\)
\(198\) −13.7082 + 9.95959i −0.974200 + 0.707797i
\(199\) −17.5623 −1.24496 −0.622479 0.782636i \(-0.713875\pi\)
−0.622479 + 0.782636i \(0.713875\pi\)
\(200\) 0 0
\(201\) 4.76393 0.336022
\(202\) −1.92705 + 1.40008i −0.135587 + 0.0985096i
\(203\) 0.690983 2.12663i 0.0484975 0.149260i
\(204\) −1.00000 + 3.07768i −0.0700140 + 0.215481i
\(205\) 0 0
\(206\) −4.28115 13.1760i −0.298282 0.918018i
\(207\) 7.52786 0.523223
\(208\) 2.78115 + 8.55951i 0.192838 + 0.593495i
\(209\) 3.61803 + 2.62866i 0.250265 + 0.181828i
\(210\) 0 0
\(211\) 7.42705 5.39607i 0.511299 0.371481i −0.302017 0.953303i \(-0.597660\pi\)
0.813316 + 0.581822i \(0.197660\pi\)
\(212\) −1.73607 1.26133i −0.119234 0.0866283i
\(213\) −5.35410 3.88998i −0.366857 0.266537i
\(214\) −21.4894 + 15.6129i −1.46898 + 1.06728i
\(215\) 0 0
\(216\) 9.04508 + 6.57164i 0.615440 + 0.447143i
\(217\) 0.572949 + 1.76336i 0.0388943 + 0.119704i
\(218\) 16.1803 1.09587
\(219\) −2.78115 8.55951i −0.187933 0.578398i
\(220\) 0 0
\(221\) −3.00000 + 9.23305i −0.201802 + 0.621082i
\(222\) −0.118034 + 0.363271i −0.00792192 + 0.0243812i
\(223\) −0.145898 + 0.106001i −0.00977005 + 0.00709836i −0.592660 0.805453i \(-0.701922\pi\)
0.582890 + 0.812551i \(0.301922\pi\)
\(224\) 2.09017 0.139655
\(225\) 0 0
\(226\) −27.2705 −1.81401
\(227\) 11.9443 8.67802i 0.792769 0.575981i −0.116015 0.993247i \(-0.537012\pi\)
0.908784 + 0.417267i \(0.137012\pi\)
\(228\) −0.163119 + 0.502029i −0.0108028 + 0.0332477i
\(229\) 6.70820 20.6457i 0.443291 1.36431i −0.441057 0.897479i \(-0.645396\pi\)
0.884348 0.466829i \(-0.154604\pi\)
\(230\) 0 0
\(231\) −1.00000 3.07768i −0.0657952 0.202497i
\(232\) 8.09017 0.531146
\(233\) 0.909830 + 2.80017i 0.0596049 + 0.183445i 0.976426 0.215854i \(-0.0692535\pi\)
−0.916821 + 0.399299i \(0.869254\pi\)
\(234\) −4.85410 3.52671i −0.317323 0.230548i
\(235\) 0 0
\(236\) 5.42705 3.94298i 0.353271 0.256666i
\(237\) −6.54508 4.75528i −0.425149 0.308889i
\(238\) 4.23607 + 3.07768i 0.274584 + 0.199497i
\(239\) 16.6074 12.0660i 1.07424 0.780483i 0.0975727 0.995228i \(-0.468892\pi\)
0.976670 + 0.214745i \(0.0688921\pi\)
\(240\) 0 0
\(241\) −2.04508 1.48584i −0.131736 0.0957114i 0.519966 0.854187i \(-0.325945\pi\)
−0.651702 + 0.758475i \(0.725945\pi\)
\(242\) 8.20820 + 25.2623i 0.527643 + 1.62392i
\(243\) −16.0000 −1.02640
\(244\) 1.66312 + 5.11855i 0.106470 + 0.327682i
\(245\) 0 0
\(246\) 0.381966 1.17557i 0.0243533 0.0749516i
\(247\) −0.489357 + 1.50609i −0.0311370 + 0.0958299i
\(248\) −5.42705 + 3.94298i −0.344618 + 0.250380i
\(249\) −6.23607 −0.395195
\(250\) 0 0
\(251\) −29.1803 −1.84185 −0.920923 0.389744i \(-0.872564\pi\)
−0.920923 + 0.389744i \(0.872564\pi\)
\(252\) −0.618034 + 0.449028i −0.0389325 + 0.0282861i
\(253\) 6.09017 18.7436i 0.382886 1.17840i
\(254\) −9.94427 + 30.6053i −0.623959 + 1.92035i
\(255\) 0 0
\(256\) 4.19098 + 12.8985i 0.261936 + 0.806157i
\(257\) −22.8541 −1.42560 −0.712800 0.701367i \(-0.752573\pi\)
−0.712800 + 0.701367i \(0.752573\pi\)
\(258\) −2.42705 7.46969i −0.151102 0.465043i
\(259\) 0.118034 + 0.0857567i 0.00733428 + 0.00532866i
\(260\) 0 0
\(261\) −5.85410 + 4.25325i −0.362360 + 0.263270i
\(262\) −8.89919 6.46564i −0.549794 0.399448i
\(263\) −8.82624 6.41264i −0.544249 0.395420i 0.281412 0.959587i \(-0.409197\pi\)
−0.825661 + 0.564167i \(0.809197\pi\)
\(264\) 9.47214 6.88191i 0.582970 0.423552i
\(265\) 0 0
\(266\) 0.690983 + 0.502029i 0.0423669 + 0.0307813i
\(267\) 2.76393 + 8.50651i 0.169150 + 0.520590i
\(268\) −2.94427 −0.179850
\(269\) −3.94427 12.1392i −0.240487 0.740141i −0.996346 0.0854076i \(-0.972781\pi\)
0.755860 0.654734i \(-0.227219\pi\)
\(270\) 0 0
\(271\) −2.47214 + 7.60845i −0.150172 + 0.462181i −0.997640 0.0686657i \(-0.978126\pi\)
0.847468 + 0.530846i \(0.178126\pi\)
\(272\) −7.85410 + 24.1724i −0.476225 + 1.46567i
\(273\) 0.927051 0.673542i 0.0561077 0.0407646i
\(274\) 19.3262 1.16754
\(275\) 0 0
\(276\) 2.32624 0.140023
\(277\) −19.9894 + 14.5231i −1.20104 + 0.872610i −0.994387 0.105804i \(-0.966258\pi\)
−0.206657 + 0.978413i \(0.566258\pi\)
\(278\) 2.50000 7.69421i 0.149940 0.461468i
\(279\) 1.85410 5.70634i 0.111002 0.341630i
\(280\) 0 0
\(281\) 3.11803 + 9.59632i 0.186006 + 0.572469i 0.999964 0.00845524i \(-0.00269142\pi\)
−0.813958 + 0.580924i \(0.802691\pi\)
\(282\) 1.00000 0.0595491
\(283\) 9.22542 + 28.3929i 0.548395 + 1.68778i 0.712779 + 0.701389i \(0.247436\pi\)
−0.164384 + 0.986396i \(0.552564\pi\)
\(284\) 3.30902 + 2.40414i 0.196354 + 0.142660i
\(285\) 0 0
\(286\) −12.7082 + 9.23305i −0.751452 + 0.545962i
\(287\) −0.381966 0.277515i −0.0225467 0.0163812i
\(288\) −5.47214 3.97574i −0.322449 0.234273i
\(289\) −8.42705 + 6.12261i −0.495709 + 0.360154i
\(290\) 0 0
\(291\) 3.11803 + 2.26538i 0.182782 + 0.132799i
\(292\) 1.71885 + 5.29007i 0.100588 + 0.309578i
\(293\) 19.5279 1.14083 0.570415 0.821357i \(-0.306782\pi\)
0.570415 + 0.821357i \(0.306782\pi\)
\(294\) 3.30902 + 10.1841i 0.192986 + 0.593949i
\(295\) 0 0
\(296\) −0.163119 + 0.502029i −0.00948110 + 0.0291798i
\(297\) −8.09017 + 24.8990i −0.469439 + 1.44479i
\(298\) 5.16312 3.75123i 0.299091 0.217303i
\(299\) 6.97871 0.403589
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) −19.0623 + 13.8496i −1.09691 + 0.796954i
\(303\) −0.454915 + 1.40008i −0.0261342 + 0.0804328i
\(304\) −1.28115 + 3.94298i −0.0734792 + 0.226146i
\(305\) 0 0
\(306\) −5.23607 16.1150i −0.299326 0.921231i
\(307\) −9.23607 −0.527130 −0.263565 0.964642i \(-0.584898\pi\)
−0.263565 + 0.964642i \(0.584898\pi\)
\(308\) 0.618034 + 1.90211i 0.0352158 + 0.108383i
\(309\) −6.92705 5.03280i −0.394066 0.286306i
\(310\) 0 0
\(311\) −6.88197 + 5.00004i −0.390240 + 0.283526i −0.765554 0.643372i \(-0.777535\pi\)
0.375314 + 0.926898i \(0.377535\pi\)
\(312\) 3.35410 + 2.43690i 0.189889 + 0.137962i
\(313\) −13.5623 9.85359i −0.766587 0.556958i 0.134337 0.990936i \(-0.457110\pi\)
−0.900924 + 0.433978i \(0.857110\pi\)
\(314\) 17.2533 12.5352i 0.973659 0.707405i
\(315\) 0 0
\(316\) 4.04508 + 2.93893i 0.227554 + 0.165328i
\(317\) −2.36475 7.27794i −0.132817 0.408770i 0.862427 0.506182i \(-0.168944\pi\)
−0.995244 + 0.0974121i \(0.968944\pi\)
\(318\) −5.61803 −0.315044
\(319\) 5.85410 + 18.0171i 0.327767 + 1.00876i
\(320\) 0 0
\(321\) −5.07295 + 15.6129i −0.283144 + 0.871429i
\(322\) 1.16312 3.57971i 0.0648181 0.199490i
\(323\) −3.61803 + 2.62866i −0.201313 + 0.146262i
\(324\) 0.618034 0.0343352
\(325\) 0 0
\(326\) −17.7984 −0.985761
\(327\) 8.09017 5.87785i 0.447387 0.325046i
\(328\) 0.527864 1.62460i 0.0291464 0.0897034i
\(329\) 0.118034 0.363271i 0.00650742 0.0200278i
\(330\) 0 0
\(331\) −7.14590 21.9928i −0.392774 1.20883i −0.930682 0.365830i \(-0.880785\pi\)
0.537907 0.843004i \(-0.319215\pi\)
\(332\) 3.85410 0.211521
\(333\) −0.145898 0.449028i −0.00799516 0.0246066i
\(334\) 19.0623 + 13.8496i 1.04304 + 0.757815i
\(335\) 0 0
\(336\) 2.42705 1.76336i 0.132406 0.0961989i
\(337\) 6.35410 + 4.61653i 0.346130 + 0.251478i 0.747244 0.664550i \(-0.231377\pi\)
−0.401114 + 0.916028i \(0.631377\pi\)
\(338\) 12.5172 + 9.09429i 0.680847 + 0.494664i
\(339\) −13.6353 + 9.90659i −0.740565 + 0.538052i
\(340\) 0 0
\(341\) −12.7082 9.23305i −0.688188 0.499998i
\(342\) −0.854102 2.62866i −0.0461845 0.142141i
\(343\) 8.41641 0.454443
\(344\) −3.35410 10.3229i −0.180841 0.556572i
\(345\) 0 0
\(346\) −9.44427 + 29.0665i −0.507727 + 1.56262i
\(347\) 6.15248 18.9354i 0.330282 1.01650i −0.638717 0.769441i \(-0.720535\pi\)
0.969000 0.247063i \(-0.0794653\pi\)
\(348\) −1.80902 + 1.31433i −0.0969735 + 0.0704554i
\(349\) 21.7082 1.16201 0.581007 0.813899i \(-0.302659\pi\)
0.581007 + 0.813899i \(0.302659\pi\)
\(350\) 0 0
\(351\) −9.27051 −0.494823
\(352\) −14.3262 + 10.4086i −0.763591 + 0.554781i
\(353\) −3.98936 + 12.2780i −0.212332 + 0.653491i 0.787000 + 0.616953i \(0.211633\pi\)
−0.999332 + 0.0365381i \(0.988367\pi\)
\(354\) 5.42705 16.7027i 0.288445 0.887741i
\(355\) 0 0
\(356\) −1.70820 5.25731i −0.0905346 0.278637i
\(357\) 3.23607 0.171271
\(358\) −0.263932 0.812299i −0.0139492 0.0429313i
\(359\) −11.1180 8.07772i −0.586787 0.426326i 0.254377 0.967105i \(-0.418130\pi\)
−0.841165 + 0.540779i \(0.818130\pi\)
\(360\) 0 0
\(361\) 14.7812 10.7391i 0.777955 0.565218i
\(362\) −0.381966 0.277515i −0.0200757 0.0145858i
\(363\) 13.2812 + 9.64932i 0.697080 + 0.506458i
\(364\) −0.572949 + 0.416272i −0.0300307 + 0.0218186i
\(365\) 0 0
\(366\) 11.3992 + 8.28199i 0.595845 + 0.432907i
\(367\) 7.89919 + 24.3112i 0.412334 + 1.26903i 0.914614 + 0.404329i \(0.132495\pi\)
−0.502279 + 0.864705i \(0.667505\pi\)
\(368\) 18.2705 0.952416
\(369\) 0.472136 + 1.45309i 0.0245784 + 0.0756446i
\(370\) 0 0
\(371\) −0.663119 + 2.04087i −0.0344274 + 0.105957i
\(372\) 0.572949 1.76336i 0.0297060 0.0914257i
\(373\) −22.8713 + 16.6170i −1.18423 + 0.860395i −0.992643 0.121080i \(-0.961364\pi\)
−0.191589 + 0.981475i \(0.561364\pi\)
\(374\) −44.3607 −2.29384
\(375\) 0 0
\(376\) 1.38197 0.0712695
\(377\) −5.42705 + 3.94298i −0.279507 + 0.203074i
\(378\) −1.54508 + 4.75528i −0.0794706 + 0.244585i
\(379\) 4.51064 13.8823i 0.231696 0.713087i −0.765846 0.643024i \(-0.777680\pi\)
0.997543 0.0700639i \(-0.0223203\pi\)
\(380\) 0 0
\(381\) 6.14590 + 18.9151i 0.314864 + 0.969051i
\(382\) −2.94427 −0.150642
\(383\) −10.3090 31.7279i −0.526766 1.62122i −0.760797 0.648990i \(-0.775192\pi\)
0.234031 0.972229i \(-0.424808\pi\)
\(384\) 11.0172 + 8.00448i 0.562220 + 0.408477i
\(385\) 0 0
\(386\) 10.0902 7.33094i 0.513576 0.373135i
\(387\) 7.85410 + 5.70634i 0.399246 + 0.290070i
\(388\) −1.92705 1.40008i −0.0978312 0.0710785i
\(389\) −12.1353 + 8.81678i −0.615282 + 0.447028i −0.851270 0.524727i \(-0.824167\pi\)
0.235988 + 0.971756i \(0.424167\pi\)
\(390\) 0 0
\(391\) 15.9443 + 11.5842i 0.806336 + 0.585838i
\(392\) 4.57295 + 14.0741i 0.230969 + 0.710849i
\(393\) −6.79837 −0.342933
\(394\) −1.85410 5.70634i −0.0934083 0.287481i
\(395\) 0 0
\(396\) 2.00000 6.15537i 0.100504 0.309319i
\(397\) −8.97214 + 27.6134i −0.450299 + 1.38588i 0.426268 + 0.904597i \(0.359828\pi\)
−0.876567 + 0.481280i \(0.840172\pi\)
\(398\) 22.9894 16.7027i 1.15235 0.837233i
\(399\) 0.527864 0.0264263
\(400\) 0 0
\(401\) 26.5967 1.32818 0.664089 0.747653i \(-0.268820\pi\)
0.664089 + 0.747653i \(0.268820\pi\)
\(402\) −6.23607 + 4.53077i −0.311027 + 0.225974i
\(403\) 1.71885 5.29007i 0.0856219 0.263517i
\(404\) 0.281153 0.865300i 0.0139879 0.0430503i
\(405\) 0 0
\(406\) 1.11803 + 3.44095i 0.0554871 + 0.170772i
\(407\) −1.23607 −0.0612696
\(408\) 3.61803 + 11.1352i 0.179119 + 0.551273i
\(409\) −1.28115 0.930812i −0.0633489 0.0460257i 0.555660 0.831410i \(-0.312466\pi\)
−0.619009 + 0.785384i \(0.712466\pi\)
\(410\) 0 0
\(411\) 9.66312 7.02067i 0.476647 0.346304i
\(412\) 4.28115 + 3.11044i 0.210917 + 0.153240i
\(413\) −5.42705 3.94298i −0.267048 0.194022i
\(414\) −9.85410 + 7.15942i −0.484303 + 0.351867i
\(415\) 0 0
\(416\) −5.07295 3.68571i −0.248722 0.180707i
\(417\) −1.54508 4.75528i −0.0756631 0.232867i
\(418\) −7.23607 −0.353928
\(419\) −2.92705 9.00854i −0.142996 0.440096i 0.853752 0.520680i \(-0.174321\pi\)
−0.996748 + 0.0805840i \(0.974321\pi\)
\(420\) 0 0
\(421\) 9.88854 30.4338i 0.481938 1.48325i −0.354429 0.935083i \(-0.615325\pi\)
0.836367 0.548170i \(-0.184675\pi\)
\(422\) −4.59017 + 14.1271i −0.223446 + 0.687696i
\(423\) −1.00000 + 0.726543i −0.0486217 + 0.0353257i
\(424\) −7.76393 −0.377050
\(425\) 0 0
\(426\) 10.7082 0.518814
\(427\) 4.35410 3.16344i 0.210710 0.153090i
\(428\) 3.13525 9.64932i 0.151548 0.466418i
\(429\) −3.00000 + 9.23305i −0.144841 + 0.445776i
\(430\) 0 0
\(431\) −9.21885 28.3727i −0.444056 1.36666i −0.883515 0.468402i \(-0.844830\pi\)
0.439459 0.898263i \(-0.355170\pi\)
\(432\) −24.2705 −1.16772
\(433\) −8.29837 25.5398i −0.398794 1.22736i −0.925967 0.377605i \(-0.876748\pi\)
0.527173 0.849758i \(-0.323252\pi\)
\(434\) −2.42705 1.76336i −0.116502 0.0846438i
\(435\) 0 0
\(436\) −5.00000 + 3.63271i −0.239457 + 0.173975i
\(437\) 2.60081 + 1.88960i 0.124414 + 0.0903919i
\(438\) 11.7812 + 8.55951i 0.562925 + 0.408989i
\(439\) 33.1525 24.0867i 1.58228 1.14959i 0.668261 0.743927i \(-0.267039\pi\)
0.914021 0.405667i \(-0.132961\pi\)
\(440\) 0 0
\(441\) −10.7082 7.77997i −0.509914 0.370475i
\(442\) −4.85410 14.9394i −0.230886 0.710594i
\(443\) −29.9443 −1.42270 −0.711348 0.702840i \(-0.751915\pi\)
−0.711348 + 0.702840i \(0.751915\pi\)
\(444\) −0.0450850 0.138757i −0.00213964 0.00658513i
\(445\) 0 0
\(446\) 0.0901699 0.277515i 0.00426967 0.0131407i
\(447\) 1.21885 3.75123i 0.0576495 0.177427i
\(448\) 2.11803 1.53884i 0.100068 0.0727034i
\(449\) 4.67376 0.220568 0.110284 0.993900i \(-0.464824\pi\)
0.110284 + 0.993900i \(0.464824\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 8.42705 6.12261i 0.396375 0.287983i
\(453\) −4.50000 + 13.8496i −0.211428 + 0.650710i
\(454\) −7.38197 + 22.7194i −0.346453 + 1.06627i
\(455\) 0 0
\(456\) 0.590170 + 1.81636i 0.0276372 + 0.0850587i
\(457\) 21.4164 1.00182 0.500909 0.865500i \(-0.332999\pi\)
0.500909 + 0.865500i \(0.332999\pi\)
\(458\) 10.8541 + 33.4055i 0.507179 + 1.56094i
\(459\) −21.1803 15.3884i −0.988614 0.718270i
\(460\) 0 0
\(461\) −0.663119 + 0.481784i −0.0308845 + 0.0224389i −0.603120 0.797650i \(-0.706076\pi\)
0.572236 + 0.820089i \(0.306076\pi\)
\(462\) 4.23607 + 3.07768i 0.197080 + 0.143187i
\(463\) −19.5172 14.1801i −0.907042 0.659005i 0.0332229 0.999448i \(-0.489423\pi\)
−0.940265 + 0.340443i \(0.889423\pi\)
\(464\) −14.2082 + 10.3229i −0.659599 + 0.479227i
\(465\) 0 0
\(466\) −3.85410 2.80017i −0.178538 0.129715i
\(467\) −8.48278 26.1073i −0.392536 1.20810i −0.930864 0.365367i \(-0.880944\pi\)
0.538328 0.842736i \(-0.319056\pi\)
\(468\) 2.29180 0.105938
\(469\) 0.909830 + 2.80017i 0.0420120 + 0.129300i
\(470\) 0 0
\(471\) 4.07295 12.5352i 0.187672 0.577594i
\(472\) 7.50000 23.0826i 0.345215 1.06246i
\(473\) 20.5623 14.9394i 0.945456 0.686914i
\(474\) 13.0902 0.601251
\(475\) 0 0
\(476\) −2.00000 −0.0916698
\(477\) 5.61803 4.08174i 0.257232 0.186890i
\(478\) −10.2639 + 31.5891i −0.469461 + 1.44485i
\(479\) −3.35410 + 10.3229i −0.153253 + 0.471664i −0.997980 0.0635340i \(-0.979763\pi\)
0.844727 + 0.535198i \(0.179763\pi\)
\(480\) 0 0
\(481\) −0.135255 0.416272i −0.00616709 0.0189804i
\(482\) 4.09017 0.186302
\(483\) −0.718847 2.21238i −0.0327087 0.100667i
\(484\) −8.20820 5.96361i −0.373100 0.271073i
\(485\) 0 0
\(486\) 20.9443 15.2169i 0.950051 0.690253i
\(487\) −29.4615 21.4050i −1.33503 0.969954i −0.999611 0.0278844i \(-0.991123\pi\)
−0.335417 0.942070i \(-0.608877\pi\)
\(488\) 15.7533 + 11.4454i 0.713118 + 0.518110i
\(489\) −8.89919 + 6.46564i −0.402435 + 0.292386i
\(490\) 0 0
\(491\) 34.9894 + 25.4213i 1.57905 + 1.14725i 0.917776 + 0.397099i \(0.129983\pi\)
0.661272 + 0.750147i \(0.270017\pi\)
\(492\) 0.145898 + 0.449028i 0.00657759 + 0.0202437i
\(493\) −18.9443 −0.853207
\(494\) −0.791796 2.43690i −0.0356246 0.109641i
\(495\) 0 0
\(496\) 4.50000 13.8496i 0.202056 0.621864i
\(497\) 1.26393 3.88998i 0.0566951 0.174490i
\(498\) 8.16312 5.93085i 0.365798 0.265768i
\(499\) 7.56231 0.338535 0.169268 0.985570i \(-0.445860\pi\)
0.169268 + 0.985570i \(0.445860\pi\)
\(500\) 0 0
\(501\) 14.5623 0.650596
\(502\) 38.1976 27.7522i 1.70484 1.23864i
\(503\) 11.5623 35.5851i 0.515538 1.58666i −0.266764 0.963762i \(-0.585954\pi\)
0.782301 0.622900i \(-0.214046\pi\)
\(504\) −0.854102 + 2.62866i −0.0380447 + 0.117090i
\(505\) 0 0
\(506\) 9.85410 + 30.3278i 0.438068 + 1.34824i
\(507\) 9.56231 0.424677
\(508\) −3.79837 11.6902i −0.168526 0.518668i
\(509\) 16.4443 + 11.9475i 0.728880 + 0.529562i 0.889209 0.457502i \(-0.151256\pi\)
−0.160329 + 0.987064i \(0.551256\pi\)
\(510\) 0 0
\(511\) 4.50000 3.26944i 0.199068 0.144632i
\(512\) 4.28115 + 3.11044i 0.189202 + 0.137463i
\(513\) −3.45492 2.51014i −0.152538 0.110826i
\(514\) 29.9164 21.7355i 1.31956 0.958714i
\(515\) 0 0
\(516\) 2.42705 + 1.76336i 0.106845 + 0.0776274i
\(517\) 1.00000 + 3.07768i 0.0439799 + 0.135356i
\(518\) −0.236068 −0.0103722
\(519\) 5.83688 + 17.9641i 0.256211 + 0.788535i
\(520\) 0 0
\(521\) 9.07295 27.9237i 0.397493 1.22336i −0.529510 0.848304i \(-0.677624\pi\)
0.927003 0.375054i \(-0.122376\pi\)
\(522\) 3.61803 11.1352i 0.158357 0.487373i
\(523\) −10.6353 + 7.72696i −0.465047 + 0.337877i −0.795508 0.605943i \(-0.792796\pi\)
0.330461 + 0.943820i \(0.392796\pi\)
\(524\) 4.20163 0.183549
\(525\) 0 0
\(526\) 17.6525 0.769685
\(527\) 12.7082 9.23305i 0.553578 0.402198i
\(528\) −7.85410 + 24.1724i −0.341806 + 1.05197i
\(529\) −2.72949 + 8.40051i −0.118673 + 0.365239i
\(530\) 0 0
\(531\) 6.70820 + 20.6457i 0.291111 + 0.895948i
\(532\) −0.326238 −0.0141442
\(533\) 0.437694 + 1.34708i 0.0189586 + 0.0583487i
\(534\) −11.7082 8.50651i −0.506664 0.368113i
\(535\) 0 0
\(536\) −8.61803 + 6.26137i −0.372242 + 0.270450i
\(537\) −0.427051 0.310271i −0.0184286 0.0133892i
\(538\) 16.7082 + 12.1392i 0.720342 + 0.523359i
\(539\) −28.0344 + 20.3682i −1.20753 + 0.877321i
\(540\) 0 0
\(541\) −21.9443 15.9434i −0.943458 0.685462i 0.00579261 0.999983i \(-0.498156\pi\)
−0.949251 + 0.314521i \(0.898156\pi\)
\(542\) −4.00000 12.3107i −0.171815 0.528791i
\(543\) −0.291796 −0.0125222
\(544\) −5.47214 16.8415i −0.234616 0.722073i
\(545\) 0 0
\(546\) −0.572949 + 1.76336i −0.0245200 + 0.0754647i
\(547\) 6.57953 20.2497i 0.281320 0.865815i −0.706157 0.708055i \(-0.749573\pi\)
0.987478 0.157760i \(-0.0504271\pi\)
\(548\) −5.97214 + 4.33901i −0.255117 + 0.185353i
\(549\) −17.4164 −0.743314
\(550\) 0 0
\(551\) −3.09017 −0.131646
\(552\) 6.80902 4.94704i 0.289811 0.210560i
\(553\) 1.54508 4.75528i 0.0657037 0.202215i
\(554\) 12.3541 38.0220i 0.524875 1.61540i
\(555\) 0 0
\(556\) 0.954915 + 2.93893i 0.0404974 + 0.124638i
\(557\) −4.76393 −0.201854 −0.100927 0.994894i \(-0.532181\pi\)
−0.100927 + 0.994894i \(0.532181\pi\)
\(558\) 3.00000 + 9.23305i 0.127000 + 0.390866i
\(559\) 7.28115 + 5.29007i 0.307960 + 0.223746i
\(560\) 0 0
\(561\) −22.1803 + 16.1150i −0.936455 + 0.680374i
\(562\) −13.2082 9.59632i −0.557154 0.404796i
\(563\) 5.97214 + 4.33901i 0.251696 + 0.182868i 0.706478 0.707735i \(-0.250283\pi\)
−0.454782 + 0.890603i \(0.650283\pi\)
\(564\) −0.309017 + 0.224514i −0.0130120 + 0.00945374i
\(565\) 0 0
\(566\) −39.0795 28.3929i −1.64264 1.19344i
\(567\) −0.190983 0.587785i −0.00802053 0.0246847i
\(568\) 14.7984 0.620926
\(569\) 6.34346 + 19.5232i 0.265932 + 0.818453i 0.991477 + 0.130279i \(0.0415874\pi\)
−0.725546 + 0.688174i \(0.758413\pi\)
\(570\) 0 0
\(571\) −2.51064 + 7.72696i −0.105067 + 0.323363i −0.989746 0.142837i \(-0.954377\pi\)
0.884679 + 0.466201i \(0.154377\pi\)
\(572\) 1.85410 5.70634i 0.0775239 0.238594i
\(573\) −1.47214 + 1.06957i −0.0614994 + 0.0446819i
\(574\) 0.763932 0.0318859
\(575\) 0 0
\(576\) −8.47214 −0.353006
\(577\) −27.3262 + 19.8537i −1.13761 + 0.826519i −0.986784 0.162042i \(-0.948192\pi\)
−0.150822 + 0.988561i \(0.548192\pi\)
\(578\) 5.20820 16.0292i 0.216633 0.666727i
\(579\) 2.38197 7.33094i 0.0989911 0.304663i
\(580\) 0 0
\(581\) −1.19098 3.66547i −0.0494103 0.152069i
\(582\) −6.23607 −0.258493
\(583\) −5.61803 17.2905i −0.232675 0.716101i
\(584\) 16.2812 + 11.8290i 0.673719 + 0.489485i
\(585\) 0 0
\(586\) −25.5623 + 18.5721i −1.05597 + 0.767206i
\(587\) 4.28115 + 3.11044i 0.176702 + 0.128382i 0.672621 0.739987i \(-0.265169\pi\)
−0.495919 + 0.868369i \(0.665169\pi\)
\(588\) −3.30902 2.40414i −0.136462 0.0991451i
\(589\) 2.07295 1.50609i 0.0854144 0.0620572i
\(590\) 0 0
\(591\) −3.00000 2.17963i −0.123404 0.0896579i
\(592\) −0.354102 1.08981i −0.0145535 0.0447911i
\(593\) 10.9098 0.448013 0.224007 0.974588i \(-0.428086\pi\)
0.224007 + 0.974588i \(0.428086\pi\)
\(594\) −13.0902 40.2874i −0.537096 1.65301i
\(595\) 0 0
\(596\) −0.753289 + 2.31838i −0.0308559 + 0.0949647i
\(597\) 5.42705 16.7027i 0.222114 0.683598i
\(598\) −9.13525 + 6.63715i −0.373568 + 0.271413i
\(599\) −9.47214 −0.387021 −0.193510 0.981098i \(-0.561987\pi\)
−0.193510 + 0.981098i \(0.561987\pi\)
\(600\) 0 0
\(601\) 2.72949 0.111338 0.0556691 0.998449i \(-0.482271\pi\)
0.0556691 + 0.998449i \(0.482271\pi\)
\(602\) 3.92705 2.85317i 0.160055 0.116287i
\(603\) 2.94427 9.06154i 0.119900 0.369014i
\(604\) 2.78115 8.55951i 0.113164 0.348281i
\(605\) 0 0
\(606\) −0.736068 2.26538i −0.0299007 0.0920249i
\(607\) 35.5623 1.44343 0.721715 0.692191i \(-0.243354\pi\)
0.721715 + 0.692191i \(0.243354\pi\)
\(608\) −0.892609 2.74717i −0.0362001 0.111412i
\(609\) 1.80902 + 1.31433i 0.0733051 + 0.0532592i
\(610\) 0 0
\(611\) −0.927051 + 0.673542i −0.0375045 + 0.0272486i
\(612\) 5.23607 + 3.80423i 0.211656 + 0.153777i
\(613\) −12.1180 8.80427i −0.489443 0.355601i 0.315527 0.948917i \(-0.397819\pi\)
−0.804970 + 0.593316i \(0.797819\pi\)
\(614\) 12.0902 8.78402i 0.487920 0.354494i
\(615\) 0 0
\(616\) 5.85410 + 4.25325i 0.235868 + 0.171368i
\(617\) −4.39919 13.5393i −0.177105 0.545072i 0.822619 0.568593i \(-0.192512\pi\)
−0.999723 + 0.0235215i \(0.992512\pi\)
\(618\) 13.8541 0.557294
\(619\) 9.43363 + 29.0337i 0.379170 + 1.16696i 0.940622 + 0.339455i \(0.110243\pi\)
−0.561453 + 0.827509i \(0.689757\pi\)
\(620\) 0 0
\(621\) −5.81559 + 17.8986i −0.233372 + 0.718244i
\(622\) 4.25329 13.0903i 0.170541 0.524872i
\(623\) −4.47214 + 3.24920i −0.179172 + 0.130176i
\(624\) −9.00000 −0.360288
\(625\) 0 0
\(626\) 27.1246 1.08412
\(627\) −3.61803 + 2.62866i −0.144490 + 0.104978i
\(628\) −2.51722 + 7.74721i −0.100448 + 0.309147i
\(629\) 0.381966 1.17557i 0.0152300 0.0468731i
\(630\) 0 0
\(631\) −3.16312 9.73508i −0.125922 0.387547i 0.868146 0.496309i \(-0.165312\pi\)
−0.994068 + 0.108761i \(0.965312\pi\)
\(632\) 18.0902 0.719588
\(633\) 2.83688 + 8.73102i 0.112756 + 0.347027i
\(634\) 10.0172 + 7.27794i 0.397835 + 0.289044i
\(635\) 0 0
\(636\) 1.73607 1.26133i 0.0688396 0.0500149i
\(637\) −9.92705 7.21242i −0.393324 0.285767i
\(638\) −24.7984 18.0171i −0.981777 0.713303i
\(639\) −10.7082 + 7.77997i −0.423610 + 0.307771i
\(640\) 0 0
\(641\) 0.881966 + 0.640786i 0.0348356 + 0.0253095i 0.605067 0.796175i \(-0.293146\pi\)
−0.570231 + 0.821484i \(0.693146\pi\)
\(642\) −8.20820 25.2623i −0.323952 0.997022i
\(643\) 30.8328 1.21593 0.607964 0.793965i \(-0.291987\pi\)
0.607964 + 0.793965i \(0.291987\pi\)
\(644\) 0.444272 + 1.36733i 0.0175068 + 0.0538803i
\(645\) 0 0
\(646\) 2.23607 6.88191i 0.0879769 0.270765i
\(647\) 11.2918 34.7526i 0.443926 1.36626i −0.439731 0.898130i \(-0.644926\pi\)
0.883657 0.468135i \(-0.155074\pi\)
\(648\) 1.80902 1.31433i 0.0710649 0.0516317i
\(649\) 56.8328 2.23088
\(650\) 0 0
\(651\) −1.85410 −0.0726680
\(652\) 5.50000 3.99598i 0.215397 0.156495i
\(653\) −5.89919 + 18.1558i −0.230853 + 0.710493i 0.766791 + 0.641896i \(0.221852\pi\)
−0.997645 + 0.0685963i \(0.978148\pi\)
\(654\) −5.00000 + 15.3884i −0.195515 + 0.601735i
\(655\) 0 0
\(656\) 1.14590 + 3.52671i 0.0447398 + 0.137695i
\(657\) −18.0000 −0.702247
\(658\) 0.190983 + 0.587785i 0.00744529 + 0.0229143i
\(659\) −12.5623 9.12705i −0.489358 0.355539i 0.315579 0.948899i \(-0.397801\pi\)
−0.804937 + 0.593360i \(0.797801\pi\)
\(660\) 0 0
\(661\) −15.9271 + 11.5717i −0.619490 + 0.450086i −0.852744 0.522330i \(-0.825063\pi\)
0.233253 + 0.972416i \(0.425063\pi\)
\(662\) 30.2705 + 21.9928i 1.17650 + 0.854775i
\(663\) −7.85410 5.70634i −0.305028 0.221616i
\(664\) 11.2812 8.19624i 0.437794 0.318076i
\(665\) 0 0
\(666\) 0.618034 + 0.449028i 0.0239483 + 0.0173995i
\(667\) 4.20820 + 12.9515i 0.162942 + 0.501485i
\(668\) −9.00000 −0.348220
\(669\) −0.0557281 0.171513i −0.00215457 0.00663109i
\(670\) 0 0
\(671\) −14.0902 + 43.3651i −0.543945 + 1.67409i
\(672\) −0.645898 + 1.98787i −0.0249161 + 0.0766837i
\(673\) 9.85410 7.15942i 0.379848 0.275976i −0.381435 0.924396i \(-0.624570\pi\)
0.761283 + 0.648420i \(0.224570\pi\)
\(674\) −12.7082 −0.489502
\(675\) 0 0
\(676\) −5.90983 −0.227301
\(677\) 8.59017 6.24112i 0.330147 0.239866i −0.410346 0.911930i \(-0.634592\pi\)
0.740493 + 0.672064i \(0.234592\pi\)
\(678\) 8.42705 25.9358i 0.323639 0.996058i
\(679\) −0.736068 + 2.26538i −0.0282477 + 0.0869375i
\(680\) 0 0
\(681\) 4.56231 + 14.0413i 0.174828 + 0.538065i
\(682\) 25.4164 0.973245
\(683\) 4.16312 + 12.8128i 0.159297 + 0.490267i 0.998571 0.0534426i \(-0.0170194\pi\)
−0.839274 + 0.543709i \(0.817019\pi\)
\(684\) 0.854102 + 0.620541i 0.0326574 + 0.0237270i
\(685\) 0 0
\(686\) −11.0172 + 8.00448i −0.420639 + 0.305612i
\(687\) 17.5623 + 12.7598i 0.670044 + 0.486815i
\(688\) 19.0623 + 13.8496i 0.726744 + 0.528010i
\(689\) 5.20820 3.78398i 0.198417 0.144158i
\(690\) 0 0
\(691\) −29.3435 21.3193i −1.11628 0.811023i −0.132637 0.991165i \(-0.542344\pi\)
−0.983641 + 0.180141i \(0.942344\pi\)
\(692\) −3.60739 11.1024i −0.137132 0.422050i
\(693\) −6.47214 −0.245856
\(694\) 9.95492 + 30.6381i 0.377883 + 1.16301i
\(695\) 0 0
\(696\) −2.50000 + 7.69421i −0.0947623 + 0.291648i
\(697\) −1.23607 + 3.80423i −0.0468194 + 0.144095i
\(698\) −28.4164 + 20.6457i −1.07558 + 0.781452i
\(699\) −2.94427 −0.111363
\(700\) 0 0
\(701\) −41.0132 −1.54905 −0.774523 0.632546i \(-0.782010\pi\)
−0.774523 + 0.632546i \(0.782010\pi\)
\(702\) 12.1353 8.81678i 0.458016 0.332768i
\(703\) 0.0623059 0.191758i 0.00234991 0.00723228i
\(704\) −6.85410 + 21.0948i −0.258324 + 0.795039i
\(705\) 0 0
\(706\) −6.45492 19.8662i −0.242934 0.747674i
\(707\) −0.909830 −0.0342177
\(708\) 2.07295 + 6.37988i 0.0779062 + 0.239771i
\(709\) 27.1353 + 19.7149i 1.01909 + 0.740409i 0.966095 0.258186i \(-0.0831247\pi\)
0.0529906 + 0.998595i \(0.483125\pi\)
\(710\) 0 0
\(711\) −13.0902 + 9.51057i −0.490920 + 0.356674i
\(712\) −16.1803 11.7557i −0.606384 0.440564i
\(713\) −9.13525 6.63715i −0.342118 0.248563i
\(714\) −4.23607 + 3.07768i −0.158531 + 0.115179i
\(715\) 0 0
\(716\) 0.263932 + 0.191758i 0.00986360 + 0.00716633i
\(717\) 6.34346 + 19.5232i 0.236901 + 0.729106i
\(718\) 22.2361 0.829843
\(719\) −7.19756 22.1518i −0.268424 0.826123i −0.990885 0.134712i \(-0.956989\pi\)
0.722461 0.691412i \(-0.243011\pi\)
\(720\) 0 0
\(721\) 1.63525 5.03280i 0.0609001 0.187431i
\(722\) −9.13525 + 28.1154i −0.339979 + 1.04635i
\(723\) 2.04508 1.48584i 0.0760575 0.0552590i
\(724\) 0.180340 0.00670228
\(725\) 0 0
\(726\) −26.5623 −0.985820
\(727\) 19.8713 14.4374i 0.736987 0.535452i −0.154779 0.987949i \(-0.549467\pi\)
0.891766 + 0.452497i \(0.149467\pi\)
\(728\) −0.791796 + 2.43690i −0.0293459 + 0.0903174i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 0 0
\(731\) 7.85410 + 24.1724i 0.290494 + 0.894050i
\(732\) −5.38197 −0.198923
\(733\) 6.17376 + 19.0009i 0.228033 + 0.701814i 0.997970 + 0.0636931i \(0.0202879\pi\)
−0.769936 + 0.638121i \(0.779712\pi\)
\(734\) −33.4615 24.3112i −1.23509 0.897343i
\(735\) 0 0
\(736\) −10.2984 + 7.48221i −0.379603 + 0.275798i
\(737\) −20.1803 14.6619i −0.743352 0.540077i
\(738\) −2.00000 1.45309i −0.0736210 0.0534888i
\(739\) −12.9271 + 9.39205i −0.475529 + 0.345492i −0.799592 0.600543i \(-0.794951\pi\)
0.324063 + 0.946036i \(0.394951\pi\)
\(740\) 0 0
\(741\) −1.28115 0.930812i −0.0470643 0.0341942i
\(742\) −1.07295 3.30220i −0.0393892 0.121227i
\(743\) −28.3607 −1.04045 −0.520226 0.854029i \(-0.674152\pi\)
−0.520226 + 0.854029i \(0.674152\pi\)
\(744\) −2.07295 6.37988i −0.0759980 0.233898i
\(745\) 0 0
\(746\) 14.1353 43.5038i 0.517528 1.59279i
\(747\) −3.85410 + 11.8617i −0.141014 + 0.433997i
\(748\) 13.7082 9.95959i 0.501222 0.364159i
\(749\) −10.1459 −0.370723
\(750\) 0 0
\(751\) −5.11146 −0.186520 −0.0932598 0.995642i \(-0.529729\pi\)
−0.0932598 + 0.995642i \(0.529729\pi\)
\(752\) −2.42705 + 1.76336i −0.0885054 + 0.0643030i
\(753\) 9.01722 27.7522i 0.328606 1.01134i
\(754\) 3.35410 10.3229i 0.122149 0.375937i
\(755\) 0 0
\(756\) −0.590170 1.81636i −0.0214643 0.0660602i
\(757\) −30.4164 −1.10550 −0.552752 0.833346i \(-0.686422\pi\)
−0.552752 + 0.833346i \(0.686422\pi\)
\(758\) 7.29837 + 22.4621i 0.265089 + 0.815860i
\(759\) 15.9443 + 11.5842i 0.578740 + 0.420480i
\(760\) 0 0
\(761\) 14.9271 10.8451i 0.541105 0.393136i −0.283390 0.959005i \(-0.591459\pi\)
0.824495 + 0.565869i \(0.191459\pi\)
\(762\) −26.0344 18.9151i −0.943128 0.685223i
\(763\) 5.00000 + 3.63271i 0.181012 + 0.131513i
\(764\) 0.909830 0.661030i 0.0329165 0.0239152i
\(765\) 0 0
\(766\) 43.6697 + 31.7279i 1.57785 + 1.14638i
\(767\) 6.21885 + 19.1396i 0.224550 + 0.691092i
\(768\) −13.5623 −0.489388
\(769\) 4.14590 + 12.7598i 0.149505 + 0.460129i 0.997563 0.0697749i \(-0.0222281\pi\)
−0.848058 + 0.529904i \(0.822228\pi\)
\(770\) 0 0
\(771\) 7.06231 21.7355i 0.254343 0.782786i
\(772\) −1.47214 + 4.53077i −0.0529833 + 0.163066i
\(773\) −29.2533 + 21.2538i −1.05217 + 0.764445i −0.972623 0.232387i \(-0.925346\pi\)
−0.0795442 + 0.996831i \(0.525346\pi\)
\(774\) −15.7082 −0.564620
\(775\) 0 0
\(776\) −8.61803 −0.309369
\(777\) −0.118034 + 0.0857567i −0.00423445 + 0.00307650i
\(778\) 7.50000 23.0826i 0.268888 0.827552i
\(779\) −0.201626 + 0.620541i −0.00722401 + 0.0222332i
\(780\) 0 0
\(781\) 10.7082 + 32.9565i 0.383170 + 1.17927i
\(782\) −31.8885 −1.14033
\(783\) −5.59017 17.2048i −0.199776 0.614848i
\(784\) −25.9894 18.8824i −0.928191 0.674370i
\(785\) 0 0
\(786\) 8.89919 6.46564i 0.317423 0.230622i
\(787\) −9.56231 6.94742i −0.340859 0.247649i 0.404165 0.914686i \(-0.367562\pi\)
−0.745024 + 0.667037i \(0.767562\pi\)
\(788\) 1.85410 + 1.34708i 0.0660496 + 0.0479879i
\(789\) 8.82624 6.41264i 0.314222 0.228296i
\(790\) 0 0
\(791\) −8.42705 6.12261i −0.299631 0.217695i
\(792\) −7.23607 22.2703i −0.257122 0.791342i
\(793\) −16.1459 −0.573358
\(794\) −14.5172 44.6794i −0.515197 1.58561i
\(795\) 0 0
\(796\) −3.35410 + 10.3229i −0.118883 + 0.365884i
\(797\) −3.01722 + 9.28605i −0.106875 + 0.328929i −0.990166 0.139897i \(-0.955323\pi\)
0.883291 + 0.468826i \(0.155323\pi\)
\(798\) −0.690983 + 0.502029i −0.0244605 + 0.0177716i
\(799\) −3.23607 −0.114484
\(800\) 0 0
\(801\) 17.8885 0.632061
\(802\) −34.8156 + 25.2950i −1.22938 + 0.893198i
\(803\) −14.5623 + 44.8182i −0.513893 + 1.58160i
\(804\) 0.909830 2.80017i 0.0320872 0.0987543i
\(805\) 0 0
\(806\) 2.78115 + 8.55951i 0.0979619 + 0.301496i
\(807\) 12.7639 0.449312
\(808\) −1.01722 3.13068i −0.0357857 0.110137i
\(809\) −25.0623 18.2088i −0.881144 0.640188i 0.0524101 0.998626i \(-0.483310\pi\)
−0.933554 + 0.358437i \(0.883310\pi\)
\(810\) 0 0
\(811\) 11.8992 8.64527i 0.417837 0.303576i −0.358930 0.933364i \(-0.616858\pi\)
0.776767 + 0.629788i \(0.216858\pi\)
\(812\) −1.11803 0.812299i −0.0392353 0.0285061i
\(813\) −6.47214 4.70228i −0.226988 0.164916i
\(814\) 1.61803 1.17557i 0.0567121 0.0412037i
\(815\) 0 0
\(816\) −20.5623 14.9394i −0.719825 0.522983i
\(817\) 1.28115 + 3.94298i 0.0448219 + 0.137948i
\(818\) 2.56231 0.0895889
\(819\) −0.708204 2.17963i −0.0247466 0.0761624i
\(820\) 0 0
\(821\) −12.5729 + 38.6956i −0.438799 + 1.35048i 0.450344 + 0.892855i \(0.351301\pi\)
−0.889143 + 0.457629i \(0.848699\pi\)
\(822\) −5.97214 + 18.3803i −0.208302 + 0.641088i
\(823\) 38.5967 28.0422i 1.34540 0.977489i 0.346171 0.938171i \(-0.387482\pi\)
0.999227 0.0393176i \(-0.0125184\pi\)
\(824\) 19.1459 0.666979
\(825\) 0 0
\(826\) 10.8541 0.377663
\(827\) −0.781153 + 0.567541i −0.0271633 + 0.0197353i −0.601284 0.799035i \(-0.705344\pi\)
0.574121 + 0.818771i \(0.305344\pi\)
\(828\) 1.43769 4.42477i 0.0499633 0.153771i
\(829\) −11.0795 + 34.0993i −0.384808 + 1.18432i 0.551812 + 0.833969i \(0.313937\pi\)
−0.936620 + 0.350348i \(0.886063\pi\)
\(830\) 0 0
\(831\) −7.63525 23.4989i −0.264864 0.815168i
\(832\) −7.85410 −0.272292
\(833\) −10.7082 32.9565i −0.371017 1.14187i
\(834\) 6.54508 + 4.75528i 0.226638 + 0.164662i
\(835\) 0 0
\(836\) 2.23607 1.62460i 0.0773360 0.0561879i
\(837\) 12.1353 + 8.81678i 0.419456 + 0.304752i
\(838\) 12.3992 + 9.00854i 0.428323 + 0.311195i
\(839\) −8.78115 + 6.37988i −0.303159 + 0.220258i −0.728956 0.684561i \(-0.759994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(840\) 0 0
\(841\) 12.8713 + 9.35156i 0.443839 + 0.322468i
\(842\) 16.0000 + 49.2429i 0.551396 + 1.69702i
\(843\) −10.0902 −0.347524
\(844\) −1.75329 5.39607i −0.0603507 0.185740i
\(845\) 0 0
\(846\) 0.618034 1.90211i 0.0212484 0.0653960i
\(847\) −3.13525 + 9.64932i −0.107729 + 0.331555i
\(848\) 13.6353 9.90659i 0.468237 0.340194i
\(849\) −29.8541 −1.02459
\(850\) 0 0
\(851\) −0.888544 −0.0304589
\(852\) −3.30902 + 2.40414i −0.113365 + 0.0823645i
\(853\) 4.72949 14.5559i 0.161935 0.498384i −0.836863 0.547413i \(-0.815613\pi\)
0.998797 + 0.0490292i \(0.0156127\pi\)
\(854\) −2.69098 + 8.28199i −0.0920835 + 0.283404i
\(855\) 0 0
\(856\) −11.3435 34.9116i −0.387711 1.19325i
\(857\) −19.6869 −0.672492 −0.336246 0.941774i \(-0.609157\pi\)
−0.336246 + 0.941774i \(0.609157\pi\)
\(858\) −4.85410 14.9394i −0.165716 0.510022i
\(859\) 1.28115 + 0.930812i 0.0437124 + 0.0317589i 0.609427 0.792842i \(-0.291400\pi\)
−0.565715 + 0.824601i \(0.691400\pi\)
\(860\) 0 0
\(861\) 0.381966 0.277515i 0.0130174 0.00945767i
\(862\) 39.0517 + 28.3727i 1.33010 + 0.966378i
\(863\) −17.3435 12.6008i −0.590378 0.428935i 0.252072 0.967708i \(-0.418888\pi\)
−0.842451 + 0.538773i \(0.818888\pi\)
\(864\) 13.6803 9.93935i 0.465415 0.338144i
\(865\) 0 0
\(866\) 35.1525 + 25.5398i 1.19453 + 0.867877i
\(867\) −3.21885 9.90659i −0.109318 0.336446i
\(868\) 1.14590 0.0388943
\(869\) 13.0902 + 40.2874i 0.444054 + 1.36666i
\(870\) 0 0
\(871\) 2.72949 8.40051i 0.0924852 0.284640i
\(872\) −6.90983 + 21.2663i −0.233996 + 0.720167i
\(873\) 6.23607 4.53077i 0.211059 0.153343i
\(874\) −5.20163 −0.175948
\(875\) 0 0
\(876\) −5.56231 −0.187933
\(877\) −29.5623 + 21.4783i −0.998248 + 0.725270i −0.961712 0.274063i \(-0.911632\pi\)
−0.0365363 + 0.999332i \(0.511632\pi\)
\(878\) −20.4894 + 63.0598i −0.691482 + 2.12816i
\(879\) −6.03444 + 18.5721i −0.203537 + 0.626421i
\(880\) 0 0
\(881\) −12.4721 38.3853i −0.420197 1.29323i −0.907519 0.420011i \(-0.862026\pi\)
0.487322 0.873222i \(-0.337974\pi\)
\(882\) 21.4164 0.721128
\(883\) 6.36068 + 19.5762i 0.214054 + 0.658790i 0.999219 + 0.0395042i \(0.0125779\pi\)
−0.785165 + 0.619286i \(0.787422\pi\)
\(884\) 4.85410 + 3.52671i 0.163261 + 0.118616i
\(885\) 0 0
\(886\) 39.1976 28.4787i 1.31687 0.956760i
\(887\) 24.1803 + 17.5680i 0.811896 + 0.589877i 0.914380 0.404857i \(-0.132679\pi\)
−0.102483 + 0.994735i \(0.532679\pi\)
\(888\) −0.427051 0.310271i −0.0143309 0.0104120i
\(889\) −9.94427 + 7.22494i −0.333520 + 0.242317i
\(890\) 0 0
\(891\) 4.23607 + 3.07768i 0.141914 + 0.103106i
\(892\) 0.0344419 + 0.106001i 0.00115320 + 0.00354918i
\(893\) −0.527864 −0.0176643
\(894\) 1.97214 + 6.06961i 0.0659581 + 0.202998i
\(895\) 0 0
\(896\) −2.60081 + 8.00448i −0.0868871 + 0.267411i
\(897\) −2.15654 + 6.63715i −0.0720048 + 0.221608i
\(898\) −6.11803 + 4.44501i −0.204161 + 0.148332i
\(899\) 10.8541 0.362005
\(900\) 0 0
\(901\) 18.1803 0.605675
\(902\) −5.23607 + 3.80423i −0.174342 + 0.126667i
\(903\) 0.927051 2.85317i 0.0308503 0.0949475i
\(904\) 11.6459 35.8424i 0.387337 1.19210i
\(905\) 0 0
\(906\) −7.28115 22.4091i −0.241900 0.744492i
\(907\) 33.2492 1.10402 0.552011 0.833837i \(-0.313861\pi\)
0.552011 + 0.833837i \(0.313861\pi\)
\(908\) −2.81966 8.67802i −0.0935737 0.287990i
\(909\) 2.38197 + 1.73060i 0.0790048 + 0.0574004i
\(910\) 0 0
\(911\) 32.5517 23.6502i 1.07848 0.783565i 0.101067 0.994880i \(-0.467774\pi\)
0.977418 + 0.211315i \(0.0677745\pi\)
\(912\) −3.35410 2.43690i −0.111065 0.0806937i
\(913\) 26.4164 + 19.1926i 0.874255 + 0.635184i
\(914\) −28.0344 + 20.3682i −0.927297 + 0.673721i
\(915\) 0 0
\(916\) −10.8541 7.88597i −0.358630 0.260560i
\(917\) −1.29837 3.99598i −0.0428761 0.131959i
\(918\) 42.3607 1.39811
\(919\) −16.4443 50.6103i −0.542446 1.66948i −0.726985 0.686653i \(-0.759079\pi\)
0.184539 0.982825i \(-0.440921\pi\)
\(920\) 0 0
\(921\) 2.85410 8.78402i 0.0940459 0.289443i
\(922\) 0.409830 1.26133i 0.0134970 0.0415396i
\(923\) −9.92705 + 7.21242i −0.326753 + 0.237400i
\(924\) −2.00000 −0.0657952
\(925\) 0 0
\(926\) 39.0344 1.28275
\(927\) −13.8541 + 10.0656i −0.455028 + 0.330597i
\(928\) 3.78115 11.6372i 0.124122 0.382010i
\(929\) 12.8647 39.5936i 0.422079 1.29902i −0.483685 0.875242i \(-0.660702\pi\)
0.905764 0.423782i \(-0.139298\pi\)
\(930\) 0 0
\(931\) −1.74671 5.37582i −0.0572461 0.176186i
\(932\) 1.81966 0.0596049
\(933\) −2.62868 8.09024i −0.0860590 0.264862i
\(934\) 35.9336 + 26.1073i 1.17578 + 0.854257i
\(935\) 0 0
\(936\) 6.70820 4.87380i 0.219265 0.159305i
\(937\) 14.3435 + 10.4211i 0.468580 + 0.340444i 0.796888 0.604127i \(-0.206478\pi\)
−0.328307 + 0.944571i \(0.606478\pi\)
\(938\) −3.85410 2.80017i −0.125841 0.0914288i
\(939\) 13.5623 9.85359i 0.442589 0.321560i
\(940\) 0 0
\(941\) 37.5517 + 27.2829i 1.22415 + 0.889396i 0.996438 0.0843322i \(-0.0268757\pi\)
0.227712 + 0.973729i \(0.426876\pi\)
\(942\) 6.59017 + 20.2825i 0.214719 + 0.660838i
\(943\) 2.87539 0.0936355
\(944\) 16.2812 + 50.1082i 0.529906 + 1.63088i
\(945\) 0 0
\(946\) −12.7082 + 39.1118i −0.413179 + 1.27164i
\(947\) −0.819660 + 2.52265i −0.0266354 + 0.0819753i −0.963491 0.267742i \(-0.913722\pi\)
0.936855 + 0.349718i \(0.113722\pi\)
\(948\) −4.04508 + 2.93893i −0.131378 + 0.0954519i
\(949\) −16.6869 −0.541680
\(950\) 0 0
\(951\) 7.65248 0.248149
\(952\) −5.85410 + 4.25325i −0.189733 + 0.137849i
\(953\) 2.39261 7.36369i 0.0775042 0.238533i −0.904796 0.425844i \(-0.859977\pi\)
0.982301 + 0.187311i \(0.0599772\pi\)
\(954\) −3.47214 + 10.6861i −0.112415 + 0.345976i
\(955\) 0 0
\(956\) −3.92047 12.0660i −0.126797 0.390242i
\(957\) −18.9443 −0.612381
\(958\) −5.42705 16.7027i −0.175340 0.539641i
\(959\) 5.97214 + 4.33901i 0.192850 + 0.140114i
\(960\) 0 0
\(961\) 17.7984 12.9313i 0.574141 0.417138i
\(962\) 0.572949 + 0.416272i 0.0184726 + 0.0134211i
\(963\) 26.5623 + 19.2986i 0.855958 + 0.621890i
\(964\) −1.26393 + 0.918300i −0.0407085 + 0.0295765i
\(965\) 0 0
\(966\) 3.04508 + 2.21238i 0.0979740 + 0.0711823i
\(967\) −1.27051 3.91023i −0.0408568 0.125744i 0.928548 0.371213i \(-0.121058\pi\)
−0.969404 + 0.245469i \(0.921058\pi\)
\(968\) −36.7082 −1.17985
\(969\) −1.38197 4.25325i −0.0443951 0.136634i
\(970\) 0 0
\(971\) 1.73607 5.34307i 0.0557131 0.171467i −0.919328 0.393492i \(-0.871267\pi\)
0.975041 + 0.222025i \(0.0712667\pi\)
\(972\) −3.05573 + 9.40456i −0.0980125 + 0.301652i
\(973\) 2.50000 1.81636i 0.0801463 0.0582297i
\(974\) 58.9230 1.88801
\(975\) 0 0
\(976\) −42.2705 −1.35305
\(977\) −1.89919 + 1.37984i −0.0607604 + 0.0441450i −0.617751 0.786374i \(-0.711956\pi\)
0.556990 + 0.830519i \(0.311956\pi\)
\(978\) 5.50000 16.9273i 0.175871 0.541274i
\(979\) 14.4721 44.5407i 0.462531 1.42353i
\(980\) 0 0
\(981\) −6.18034 19.0211i −0.197323 0.607298i
\(982\) −69.9787 −2.23311
\(983\) −2.97214 9.14729i −0.0947964 0.291753i 0.892404 0.451237i \(-0.149017\pi\)
−0.987201 + 0.159484i \(0.949017\pi\)
\(984\) 1.38197 + 1.00406i 0.0440555 + 0.0320082i
\(985\) 0 0
\(986\) 24.7984 18.0171i 0.789741 0.573781i
\(987\) 0.309017 + 0.224514i 0.00983612 + 0.00714636i
\(988\) 0.791796 + 0.575274i 0.0251904 + 0.0183019i
\(989\) 14.7812 10.7391i 0.470013 0.341485i
\(990\) 0 0
\(991\) 12.4271 + 9.02878i 0.394758 + 0.286809i 0.767403 0.641166i \(-0.221549\pi\)
−0.372644 + 0.927974i \(0.621549\pi\)
\(992\) 3.13525 + 9.64932i 0.0995444 + 0.306366i
\(993\) 23.1246 0.733837
\(994\) 2.04508 + 6.29412i 0.0648662 + 0.199638i
\(995\) 0 0
\(996\) −1.19098 + 3.66547i −0.0377377 + 0.116145i
\(997\) −7.69098 + 23.6704i −0.243576 + 0.749649i 0.752292 + 0.658830i \(0.228949\pi\)
−0.995867 + 0.0908191i \(0.971051\pi\)
\(998\) −9.89919 + 7.19218i −0.313353 + 0.227664i
\(999\) 1.18034 0.0373443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.b.251.1 4
5.2 odd 4 625.2.e.c.374.1 8
5.3 odd 4 625.2.e.c.374.2 8
5.4 even 2 625.2.d.h.251.1 4
25.2 odd 20 125.2.e.a.99.1 8
25.3 odd 20 625.2.b.a.624.1 4
25.4 even 10 625.2.a.b.1.1 2
25.6 even 5 125.2.d.a.101.1 4
25.8 odd 20 125.2.e.a.24.1 8
25.9 even 10 625.2.d.h.376.1 4
25.11 even 5 125.2.d.a.26.1 4
25.12 odd 20 625.2.e.c.249.2 8
25.13 odd 20 625.2.e.c.249.1 8
25.14 even 10 25.2.d.a.6.1 4
25.16 even 5 inner 625.2.d.b.376.1 4
25.17 odd 20 125.2.e.a.24.2 8
25.19 even 10 25.2.d.a.21.1 yes 4
25.21 even 5 625.2.a.c.1.2 2
25.22 odd 20 625.2.b.a.624.4 4
25.23 odd 20 125.2.e.a.99.2 8
75.14 odd 10 225.2.h.b.181.1 4
75.29 odd 10 5625.2.a.f.1.2 2
75.44 odd 10 225.2.h.b.46.1 4
75.71 odd 10 5625.2.a.d.1.1 2
100.19 odd 10 400.2.u.b.321.1 4
100.39 odd 10 400.2.u.b.81.1 4
100.71 odd 10 10000.2.a.l.1.2 2
100.79 odd 10 10000.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.d.a.6.1 4 25.14 even 10
25.2.d.a.21.1 yes 4 25.19 even 10
125.2.d.a.26.1 4 25.11 even 5
125.2.d.a.101.1 4 25.6 even 5
125.2.e.a.24.1 8 25.8 odd 20
125.2.e.a.24.2 8 25.17 odd 20
125.2.e.a.99.1 8 25.2 odd 20
125.2.e.a.99.2 8 25.23 odd 20
225.2.h.b.46.1 4 75.44 odd 10
225.2.h.b.181.1 4 75.14 odd 10
400.2.u.b.81.1 4 100.39 odd 10
400.2.u.b.321.1 4 100.19 odd 10
625.2.a.b.1.1 2 25.4 even 10
625.2.a.c.1.2 2 25.21 even 5
625.2.b.a.624.1 4 25.3 odd 20
625.2.b.a.624.4 4 25.22 odd 20
625.2.d.b.251.1 4 1.1 even 1 trivial
625.2.d.b.376.1 4 25.16 even 5 inner
625.2.d.h.251.1 4 5.4 even 2
625.2.d.h.376.1 4 25.9 even 10
625.2.e.c.249.1 8 25.13 odd 20
625.2.e.c.249.2 8 25.12 odd 20
625.2.e.c.374.1 8 5.2 odd 4
625.2.e.c.374.2 8 5.3 odd 4
5625.2.a.d.1.1 2 75.71 odd 10
5625.2.a.f.1.2 2 75.29 odd 10
10000.2.a.c.1.1 2 100.79 odd 10
10000.2.a.l.1.2 2 100.71 odd 10