Properties

Label 250.2.e.c.49.4
Level $250$
Weight $2$
Character 250.49
Analytic conductor $1.996$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [250,2,Mod(49,250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("250.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 250 = 2 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 250.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.99626005053\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.4
Root \(-0.917186 - 1.66637i\) of defining polynomial
Character \(\chi\) \(=\) 250.49
Dual form 250.2.e.c.199.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.587785 - 0.809017i) q^{2} +(1.63079 - 0.529876i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(0.529876 - 1.63079i) q^{6} -2.77447i q^{7} +(-0.951057 - 0.309017i) q^{8} +(-0.0483405 + 0.0351215i) q^{9} +(-2.24459 - 1.63079i) q^{11} +(-1.00788 - 1.38723i) q^{12} +(3.33732 + 4.59343i) q^{13} +(-2.24459 - 1.63079i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(4.90406 + 1.59343i) q^{17} +0.0597522i q^{18} +(-0.436451 + 1.34326i) q^{19} +(-1.47012 - 4.52458i) q^{21} +(-2.63868 + 0.857358i) q^{22} +(0.384978 - 0.529876i) q^{23} -1.71472 q^{24} +5.67779 q^{26} +(-3.08388 + 4.24459i) q^{27} +(-2.63868 + 0.857358i) q^{28} +(-1.26594 - 3.89618i) q^{29} +(-2.20239 + 6.77827i) q^{31} +1.00000i q^{32} +(-4.52458 - 1.47012i) q^{33} +(4.17164 - 3.03088i) q^{34} +(0.0483405 + 0.0351215i) q^{36} +(0.615684 + 0.847416i) q^{37} +(0.830178 + 1.14264i) q^{38} +(7.87642 + 5.72255i) q^{39} +(-7.36789 + 5.35309i) q^{41} +(-4.52458 - 1.47012i) q^{42} -9.24660i q^{43} +(-0.857358 + 2.63868i) q^{44} +(-0.202395 - 0.622907i) q^{46} +(2.63868 - 0.857358i) q^{47} +(-1.00788 + 1.38723i) q^{48} -0.697669 q^{49} +8.84181 q^{51} +(3.33732 - 4.59343i) q^{52} +(-0.500362 + 0.162577i) q^{53} +(1.62129 + 4.98982i) q^{54} +(-0.857358 + 2.63868i) q^{56} +2.42184i q^{57} +(-3.89618 - 1.26594i) q^{58} +(-3.05975 + 2.22304i) q^{59} +(8.76365 + 6.36716i) q^{61} +(4.18920 + 5.76594i) q^{62} +(0.0974433 + 0.134119i) q^{63} +(0.809017 + 0.587785i) q^{64} +(-3.84883 + 2.79634i) q^{66} +(-4.11180 - 1.33600i) q^{67} -5.15643i q^{68} +(0.347049 - 1.06811i) q^{69} +(-4.09343 - 12.5983i) q^{71} +(0.0568277 - 0.0184644i) q^{72} +(-2.47648 + 3.40859i) q^{73} +1.04746 q^{74} +1.41238 q^{76} +(-4.52458 + 6.22754i) q^{77} +(9.25928 - 3.00852i) q^{78} +(3.05975 + 9.41695i) q^{79} +(-2.72466 + 8.38563i) q^{81} +9.10722i q^{82} +(-4.44717 - 1.44497i) q^{83} +(-3.84883 + 2.79634i) q^{84} +(-7.48066 - 5.43502i) q^{86} +(-4.12898 - 5.68305i) q^{87} +(1.63079 + 2.24459i) q^{88} +(-7.43002 - 5.39823i) q^{89} +(12.7443 - 9.25928i) q^{91} +(-0.622907 - 0.202395i) q^{92} +12.2209i q^{93} +(0.857358 - 2.63868i) q^{94} +(0.529876 + 1.63079i) q^{96} +(0.0857567 - 0.0278640i) q^{97} +(-0.410079 + 0.564426i) q^{98} +0.165781 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 6 q^{6} + 2 q^{9} + 2 q^{11} + 2 q^{14} - 4 q^{16} - 40 q^{19} - 38 q^{21} - 4 q^{24} + 44 q^{26} + 30 q^{29} - 18 q^{31} + 2 q^{34} - 2 q^{36} + 24 q^{39} - 18 q^{41} - 2 q^{44} + 14 q^{46}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/250\mathbb{Z}\right)^\times\).

\(n\) \(127\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 0.809017i 0.415627 0.572061i
\(3\) 1.63079 0.529876i 0.941538 0.305924i 0.202265 0.979331i \(-0.435170\pi\)
0.739272 + 0.673407i \(0.235170\pi\)
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) 0 0
\(6\) 0.529876 1.63079i 0.216321 0.665768i
\(7\) 2.77447i 1.04865i −0.851518 0.524325i \(-0.824318\pi\)
0.851518 0.524325i \(-0.175682\pi\)
\(8\) −0.951057 0.309017i −0.336249 0.109254i
\(9\) −0.0483405 + 0.0351215i −0.0161135 + 0.0117072i
\(10\) 0 0
\(11\) −2.24459 1.63079i −0.676770 0.491702i 0.195515 0.980701i \(-0.437362\pi\)
−0.872284 + 0.488999i \(0.837362\pi\)
\(12\) −1.00788 1.38723i −0.290951 0.400460i
\(13\) 3.33732 + 4.59343i 0.925606 + 1.27399i 0.961549 + 0.274633i \(0.0885564\pi\)
−0.0359433 + 0.999354i \(0.511444\pi\)
\(14\) −2.24459 1.63079i −0.599892 0.435847i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 4.90406 + 1.59343i 1.18941 + 0.386462i 0.835854 0.548951i \(-0.184973\pi\)
0.353555 + 0.935414i \(0.384973\pi\)
\(18\) 0.0597522i 0.0140837i
\(19\) −0.436451 + 1.34326i −0.100129 + 0.308164i −0.988556 0.150852i \(-0.951798\pi\)
0.888428 + 0.459017i \(0.151798\pi\)
\(20\) 0 0
\(21\) −1.47012 4.52458i −0.320807 0.987343i
\(22\) −2.63868 + 0.857358i −0.562567 + 0.182789i
\(23\) 0.384978 0.529876i 0.0802734 0.110487i −0.766992 0.641657i \(-0.778247\pi\)
0.847265 + 0.531170i \(0.178247\pi\)
\(24\) −1.71472 −0.350015
\(25\) 0 0
\(26\) 5.67779 1.11351
\(27\) −3.08388 + 4.24459i −0.593492 + 0.816872i
\(28\) −2.63868 + 0.857358i −0.498663 + 0.162025i
\(29\) −1.26594 3.89618i −0.235080 0.723502i −0.997111 0.0759609i \(-0.975798\pi\)
0.762031 0.647541i \(-0.224202\pi\)
\(30\) 0 0
\(31\) −2.20239 + 6.77827i −0.395562 + 1.21741i 0.532961 + 0.846140i \(0.321079\pi\)
−0.928523 + 0.371274i \(0.878921\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −4.52458 1.47012i −0.787628 0.255916i
\(34\) 4.17164 3.03088i 0.715431 0.519791i
\(35\) 0 0
\(36\) 0.0483405 + 0.0351215i 0.00805676 + 0.00585358i
\(37\) 0.615684 + 0.847416i 0.101218 + 0.139314i 0.856622 0.515945i \(-0.172559\pi\)
−0.755404 + 0.655260i \(0.772559\pi\)
\(38\) 0.830178 + 1.14264i 0.134673 + 0.185361i
\(39\) 7.87642 + 5.72255i 1.26124 + 0.916342i
\(40\) 0 0
\(41\) −7.36789 + 5.35309i −1.15067 + 0.836012i −0.988570 0.150762i \(-0.951827\pi\)
−0.162101 + 0.986774i \(0.551827\pi\)
\(42\) −4.52458 1.47012i −0.698157 0.226845i
\(43\) 9.24660i 1.41009i −0.709161 0.705047i \(-0.750926\pi\)
0.709161 0.705047i \(-0.249074\pi\)
\(44\) −0.857358 + 2.63868i −0.129252 + 0.397795i
\(45\) 0 0
\(46\) −0.202395 0.622907i −0.0298415 0.0918426i
\(47\) 2.63868 0.857358i 0.384890 0.125058i −0.110179 0.993912i \(-0.535143\pi\)
0.495070 + 0.868853i \(0.335143\pi\)
\(48\) −1.00788 + 1.38723i −0.145476 + 0.200230i
\(49\) −0.697669 −0.0996670
\(50\) 0 0
\(51\) 8.84181 1.23810
\(52\) 3.33732 4.59343i 0.462803 0.636994i
\(53\) −0.500362 + 0.162577i −0.0687299 + 0.0223317i −0.343180 0.939270i \(-0.611504\pi\)
0.274450 + 0.961601i \(0.411504\pi\)
\(54\) 1.62129 + 4.98982i 0.220630 + 0.679028i
\(55\) 0 0
\(56\) −0.857358 + 2.63868i −0.114569 + 0.352608i
\(57\) 2.42184i 0.320780i
\(58\) −3.89618 1.26594i −0.511593 0.166227i
\(59\) −3.05975 + 2.22304i −0.398346 + 0.289415i −0.768867 0.639409i \(-0.779179\pi\)
0.370521 + 0.928824i \(0.379179\pi\)
\(60\) 0 0
\(61\) 8.76365 + 6.36716i 1.12207 + 0.815232i 0.984522 0.175263i \(-0.0560776\pi\)
0.137549 + 0.990495i \(0.456078\pi\)
\(62\) 4.18920 + 5.76594i 0.532029 + 0.732276i
\(63\) 0.0974433 + 0.134119i 0.0122767 + 0.0168974i
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 0 0
\(66\) −3.84883 + 2.79634i −0.473759 + 0.344206i
\(67\) −4.11180 1.33600i −0.502336 0.163219i 0.0468778 0.998901i \(-0.485073\pi\)
−0.549214 + 0.835682i \(0.685073\pi\)
\(68\) 5.15643i 0.625309i
\(69\) 0.347049 1.06811i 0.0417798 0.128585i
\(70\) 0 0
\(71\) −4.09343 12.5983i −0.485800 1.49514i −0.830819 0.556543i \(-0.812127\pi\)
0.345018 0.938596i \(-0.387873\pi\)
\(72\) 0.0568277 0.0184644i 0.00669721 0.00217606i
\(73\) −2.47648 + 3.40859i −0.289850 + 0.398945i −0.928966 0.370166i \(-0.879301\pi\)
0.639115 + 0.769111i \(0.279301\pi\)
\(74\) 1.04746 0.121765
\(75\) 0 0
\(76\) 1.41238 0.162012
\(77\) −4.52458 + 6.22754i −0.515623 + 0.709695i
\(78\) 9.25928 3.00852i 1.04841 0.340648i
\(79\) 3.05975 + 9.41695i 0.344249 + 1.05949i 0.961985 + 0.273104i \(0.0880502\pi\)
−0.617736 + 0.786386i \(0.711950\pi\)
\(80\) 0 0
\(81\) −2.72466 + 8.38563i −0.302740 + 0.931737i
\(82\) 9.10722i 1.00572i
\(83\) −4.44717 1.44497i −0.488141 0.158606i 0.0545976 0.998508i \(-0.482612\pi\)
−0.542738 + 0.839902i \(0.682612\pi\)
\(84\) −3.84883 + 2.79634i −0.419942 + 0.305106i
\(85\) 0 0
\(86\) −7.48066 5.43502i −0.806660 0.586073i
\(87\) −4.12898 5.68305i −0.442673 0.609287i
\(88\) 1.63079 + 2.24459i 0.173843 + 0.239274i
\(89\) −7.43002 5.39823i −0.787581 0.572211i 0.119664 0.992814i \(-0.461818\pi\)
−0.907245 + 0.420603i \(0.861818\pi\)
\(90\) 0 0
\(91\) 12.7443 9.25928i 1.33597 0.970637i
\(92\) −0.622907 0.202395i −0.0649425 0.0211011i
\(93\) 12.2209i 1.26725i
\(94\) 0.857358 2.63868i 0.0884297 0.272159i
\(95\) 0 0
\(96\) 0.529876 + 1.63079i 0.0540803 + 0.166442i
\(97\) 0.0857567 0.0278640i 0.00870727 0.00282917i −0.304660 0.952461i \(-0.598543\pi\)
0.313367 + 0.949632i \(0.398543\pi\)
\(98\) −0.410079 + 0.564426i −0.0414243 + 0.0570156i
\(99\) 0.165781 0.0166616
\(100\) 0 0
\(101\) −7.90632 −0.786709 −0.393354 0.919387i \(-0.628685\pi\)
−0.393354 + 0.919387i \(0.628685\pi\)
\(102\) 5.19709 7.15318i 0.514588 0.708270i
\(103\) 7.45079 2.42091i 0.734148 0.238539i 0.0820014 0.996632i \(-0.473869\pi\)
0.652146 + 0.758093i \(0.273869\pi\)
\(104\) −1.75453 5.39990i −0.172046 0.529503i
\(105\) 0 0
\(106\) −0.162577 + 0.500362i −0.0157909 + 0.0485994i
\(107\) 10.2220i 0.988194i −0.869407 0.494097i \(-0.835499\pi\)
0.869407 0.494097i \(-0.164501\pi\)
\(108\) 4.98982 + 1.62129i 0.480145 + 0.156009i
\(109\) 3.16400 2.29878i 0.303056 0.220183i −0.425855 0.904791i \(-0.640027\pi\)
0.728911 + 0.684608i \(0.240027\pi\)
\(110\) 0 0
\(111\) 1.45308 + 1.05572i 0.137920 + 0.100205i
\(112\) 1.63079 + 2.24459i 0.154095 + 0.212094i
\(113\) −3.74740 5.15785i −0.352526 0.485210i 0.595522 0.803339i \(-0.296945\pi\)
−0.948047 + 0.318129i \(0.896945\pi\)
\(114\) 1.95931 + 1.42352i 0.183506 + 0.133325i
\(115\) 0 0
\(116\) −3.31428 + 2.40797i −0.307724 + 0.223574i
\(117\) −0.322656 0.104837i −0.0298295 0.00969220i
\(118\) 3.78206i 0.348167i
\(119\) 4.42091 13.6062i 0.405264 1.24727i
\(120\) 0 0
\(121\) −1.02048 3.14070i −0.0927706 0.285519i
\(122\) 10.3023 3.34742i 0.932725 0.303061i
\(123\) −9.17902 + 12.6338i −0.827644 + 1.13915i
\(124\) 7.12710 0.640032
\(125\) 0 0
\(126\) 0.165781 0.0147689
\(127\) 5.61272 7.72525i 0.498049 0.685505i −0.483798 0.875179i \(-0.660743\pi\)
0.981847 + 0.189674i \(0.0607432\pi\)
\(128\) 0.951057 0.309017i 0.0840623 0.0273135i
\(129\) −4.89955 15.0793i −0.431382 1.32766i
\(130\) 0 0
\(131\) 1.73026 5.32519i 0.151173 0.465264i −0.846580 0.532262i \(-0.821342\pi\)
0.997753 + 0.0669981i \(0.0213421\pi\)
\(132\) 4.75742i 0.414080i
\(133\) 3.72682 + 1.21092i 0.323156 + 0.105000i
\(134\) −3.49771 + 2.54123i −0.302156 + 0.219529i
\(135\) 0 0
\(136\) −4.17164 3.03088i −0.357715 0.259895i
\(137\) −4.69296 6.45931i −0.400947 0.551856i 0.560035 0.828469i \(-0.310788\pi\)
−0.960981 + 0.276613i \(0.910788\pi\)
\(138\) −0.660127 0.908587i −0.0561937 0.0773440i
\(139\) −17.8699 12.9832i −1.51571 1.10122i −0.963565 0.267473i \(-0.913811\pi\)
−0.552140 0.833751i \(-0.686189\pi\)
\(140\) 0 0
\(141\) 3.84883 2.79634i 0.324130 0.235494i
\(142\) −12.5983 4.09343i −1.05722 0.343513i
\(143\) 15.7528i 1.31732i
\(144\) 0.0184644 0.0568277i 0.00153870 0.00473564i
\(145\) 0 0
\(146\) 1.30196 + 4.00703i 0.107751 + 0.331624i
\(147\) −1.13775 + 0.369678i −0.0938402 + 0.0304905i
\(148\) 0.615684 0.847416i 0.0506089 0.0696572i
\(149\) −4.18401 −0.342768 −0.171384 0.985204i \(-0.554824\pi\)
−0.171384 + 0.985204i \(0.554824\pi\)
\(150\) 0 0
\(151\) −0.331561 −0.0269821 −0.0134910 0.999909i \(-0.504294\pi\)
−0.0134910 + 0.999909i \(0.504294\pi\)
\(152\) 0.830178 1.14264i 0.0673364 0.0926805i
\(153\) −0.293028 + 0.0952107i −0.0236899 + 0.00769733i
\(154\) 2.37871 + 7.32092i 0.191682 + 0.589936i
\(155\) 0 0
\(156\) 3.00852 9.25928i 0.240875 0.741336i
\(157\) 3.60750i 0.287910i 0.989584 + 0.143955i \(0.0459820\pi\)
−0.989584 + 0.143955i \(0.954018\pi\)
\(158\) 9.41695 + 3.05975i 0.749172 + 0.243421i
\(159\) −0.729839 + 0.530259i −0.0578800 + 0.0420523i
\(160\) 0 0
\(161\) −1.47012 1.06811i −0.115862 0.0841787i
\(162\) 5.18260 + 7.13324i 0.407184 + 0.560440i
\(163\) 2.99409 + 4.12101i 0.234515 + 0.322782i 0.910013 0.414580i \(-0.136071\pi\)
−0.675498 + 0.737362i \(0.736071\pi\)
\(164\) 7.36789 + 5.35309i 0.575336 + 0.418006i
\(165\) 0 0
\(166\) −3.78299 + 2.74850i −0.293617 + 0.213325i
\(167\) 19.8418 + 6.44699i 1.53540 + 0.498883i 0.950104 0.311934i \(-0.100977\pi\)
0.585300 + 0.810817i \(0.300977\pi\)
\(168\) 4.75742i 0.367043i
\(169\) −5.94464 + 18.2957i −0.457280 + 1.40736i
\(170\) 0 0
\(171\) −0.0260789 0.0802625i −0.00199430 0.00613783i
\(172\) −8.79404 + 2.85736i −0.670539 + 0.217871i
\(173\) 7.04620 9.69826i 0.535713 0.737345i −0.452275 0.891879i \(-0.649387\pi\)
0.987988 + 0.154533i \(0.0493874\pi\)
\(174\) −7.02464 −0.532537
\(175\) 0 0
\(176\) 2.77447 0.209133
\(177\) −3.81188 + 5.24660i −0.286518 + 0.394359i
\(178\) −8.73452 + 2.83802i −0.654680 + 0.212718i
\(179\) 2.63942 + 8.12330i 0.197279 + 0.607164i 0.999942 + 0.0107309i \(0.00341581\pi\)
−0.802663 + 0.596433i \(0.796584\pi\)
\(180\) 0 0
\(181\) 2.41912 7.44529i 0.179812 0.553404i −0.820009 0.572351i \(-0.806031\pi\)
0.999820 + 0.0189471i \(0.00603140\pi\)
\(182\) 15.7528i 1.16768i
\(183\) 17.6655 + 5.73987i 1.30587 + 0.424303i
\(184\) −0.529876 + 0.384978i −0.0390630 + 0.0283809i
\(185\) 0 0
\(186\) 9.88695 + 7.18329i 0.724946 + 0.526704i
\(187\) −8.40906 11.5741i −0.614932 0.846381i
\(188\) −1.63079 2.24459i −0.118938 0.163704i
\(189\) 11.7765 + 8.55611i 0.856613 + 0.622366i
\(190\) 0 0
\(191\) −2.72324 + 1.97855i −0.197047 + 0.143163i −0.681934 0.731414i \(-0.738861\pi\)
0.484887 + 0.874577i \(0.338861\pi\)
\(192\) 1.63079 + 0.529876i 0.117692 + 0.0382405i
\(193\) 15.4211i 1.11004i 0.831839 + 0.555018i \(0.187288\pi\)
−0.831839 + 0.555018i \(0.812712\pi\)
\(194\) 0.0278640 0.0857567i 0.00200052 0.00615697i
\(195\) 0 0
\(196\) 0.215591 + 0.663522i 0.0153994 + 0.0473945i
\(197\) −8.37394 + 2.72086i −0.596619 + 0.193853i −0.591732 0.806135i \(-0.701556\pi\)
−0.00488692 + 0.999988i \(0.501556\pi\)
\(198\) 0.0974433 0.134119i 0.00692500 0.00953144i
\(199\) 17.6222 1.24920 0.624601 0.780944i \(-0.285262\pi\)
0.624601 + 0.780944i \(0.285262\pi\)
\(200\) 0 0
\(201\) −7.41340 −0.522901
\(202\) −4.64722 + 6.39635i −0.326977 + 0.450046i
\(203\) −10.8098 + 3.51232i −0.758700 + 0.246517i
\(204\) −2.73227 8.40906i −0.191297 0.588752i
\(205\) 0 0
\(206\) 2.42091 7.45079i 0.168673 0.519121i
\(207\) 0.0391355i 0.00272010i
\(208\) −5.39990 1.75453i −0.374415 0.121655i
\(209\) 3.17022 2.30330i 0.219289 0.159323i
\(210\) 0 0
\(211\) −4.93617 3.58634i −0.339820 0.246894i 0.404766 0.914420i \(-0.367353\pi\)
−0.744586 + 0.667527i \(0.767353\pi\)
\(212\) 0.309240 + 0.425633i 0.0212387 + 0.0292326i
\(213\) −13.3510 18.3761i −0.914798 1.25911i
\(214\) −8.26974 6.00832i −0.565308 0.410720i
\(215\) 0 0
\(216\) 4.24459 3.08388i 0.288808 0.209831i
\(217\) 18.8061 + 6.11047i 1.27664 + 0.414806i
\(218\) 3.91091i 0.264880i
\(219\) −2.23250 + 6.87092i −0.150858 + 0.464294i
\(220\) 0 0
\(221\) 9.04713 + 27.8442i 0.608576 + 1.87300i
\(222\) 1.70820 0.555026i 0.114647 0.0372509i
\(223\) 2.95578 4.06828i 0.197933 0.272432i −0.698500 0.715610i \(-0.746149\pi\)
0.896434 + 0.443178i \(0.146149\pi\)
\(224\) 2.77447 0.185377
\(225\) 0 0
\(226\) −6.37545 −0.424089
\(227\) −10.4851 + 14.4314i −0.695918 + 0.957848i 0.304069 + 0.952650i \(0.401655\pi\)
−0.999986 + 0.00519840i \(0.998345\pi\)
\(228\) 2.30330 0.748388i 0.152540 0.0495632i
\(229\) 6.66137 + 20.5016i 0.440195 + 1.35478i 0.887668 + 0.460485i \(0.152324\pi\)
−0.447472 + 0.894298i \(0.647676\pi\)
\(230\) 0 0
\(231\) −4.07881 + 12.5533i −0.268366 + 0.825946i
\(232\) 4.09668i 0.268960i
\(233\) −13.9867 4.54454i −0.916297 0.297723i −0.187350 0.982293i \(-0.559990\pi\)
−0.728947 + 0.684570i \(0.759990\pi\)
\(234\) −0.274467 + 0.199412i −0.0179425 + 0.0130360i
\(235\) 0 0
\(236\) 3.05975 + 2.22304i 0.199173 + 0.144708i
\(237\) 9.97963 + 13.7358i 0.648247 + 0.892235i
\(238\) −8.40906 11.5741i −0.545079 0.750236i
\(239\) 5.61478 + 4.07938i 0.363190 + 0.263873i 0.754381 0.656436i \(-0.227937\pi\)
−0.391192 + 0.920309i \(0.627937\pi\)
\(240\) 0 0
\(241\) −2.67787 + 1.94559i −0.172497 + 0.125326i −0.670684 0.741743i \(-0.733999\pi\)
0.498187 + 0.867070i \(0.333999\pi\)
\(242\) −3.14070 1.02048i −0.201892 0.0655987i
\(243\) 0.620870i 0.0398288i
\(244\) 3.34742 10.3023i 0.214296 0.659536i
\(245\) 0 0
\(246\) 4.82570 + 14.8520i 0.307675 + 0.946927i
\(247\) −7.62672 + 2.47807i −0.485277 + 0.157676i
\(248\) 4.18920 5.76594i 0.266015 0.366138i
\(249\) −8.01806 −0.508124
\(250\) 0 0
\(251\) −9.46454 −0.597397 −0.298698 0.954348i \(-0.596552\pi\)
−0.298698 + 0.954348i \(0.596552\pi\)
\(252\) 0.0974433 0.134119i 0.00613835 0.00844872i
\(253\) −1.72823 + 0.561537i −0.108653 + 0.0353036i
\(254\) −2.95078 9.08158i −0.185149 0.569829i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 7.07963i 0.441615i −0.975317 0.220808i \(-0.929131\pi\)
0.975317 0.220808i \(-0.0708693\pi\)
\(258\) −15.0793 4.89955i −0.938795 0.305033i
\(259\) 2.35113 1.70820i 0.146092 0.106142i
\(260\) 0 0
\(261\) 0.198036 + 0.143881i 0.0122581 + 0.00890604i
\(262\) −3.29115 4.52988i −0.203328 0.279857i
\(263\) 0.842563 + 1.15969i 0.0519547 + 0.0715095i 0.834204 0.551456i \(-0.185928\pi\)
−0.782249 + 0.622966i \(0.785928\pi\)
\(264\) 3.84883 + 2.79634i 0.236879 + 0.172103i
\(265\) 0 0
\(266\) 3.17022 2.30330i 0.194379 0.141225i
\(267\) −14.9772 4.86639i −0.916590 0.297818i
\(268\) 4.32340i 0.264094i
\(269\) 4.41368 13.5839i 0.269107 0.828226i −0.721612 0.692298i \(-0.756598\pi\)
0.990719 0.135928i \(-0.0434015\pi\)
\(270\) 0 0
\(271\) 9.51325 + 29.2788i 0.577889 + 1.77856i 0.626125 + 0.779723i \(0.284640\pi\)
−0.0482363 + 0.998836i \(0.515360\pi\)
\(272\) −4.90406 + 1.59343i −0.297352 + 0.0966156i
\(273\) 15.8770 21.8529i 0.960922 1.32260i
\(274\) −7.98414 −0.482340
\(275\) 0 0
\(276\) −1.12307 −0.0676012
\(277\) 1.87485 2.58051i 0.112649 0.155048i −0.748970 0.662604i \(-0.769451\pi\)
0.861619 + 0.507556i \(0.169451\pi\)
\(278\) −21.0073 + 6.82570i −1.25994 + 0.409378i
\(279\) −0.131598 0.405017i −0.00787856 0.0242477i
\(280\) 0 0
\(281\) 6.30053 19.3910i 0.375858 1.15677i −0.567040 0.823690i \(-0.691912\pi\)
0.942898 0.333081i \(-0.108088\pi\)
\(282\) 4.75742i 0.283300i
\(283\) 12.6461 + 4.10897i 0.751733 + 0.244253i 0.659727 0.751506i \(-0.270672\pi\)
0.0920063 + 0.995758i \(0.470672\pi\)
\(284\) −10.7167 + 7.78616i −0.635921 + 0.462023i
\(285\) 0 0
\(286\) −12.7443 9.25928i −0.753587 0.547513i
\(287\) 14.8520 + 20.4420i 0.876684 + 1.20665i
\(288\) −0.0351215 0.0483405i −0.00206955 0.00284849i
\(289\) 7.75751 + 5.63616i 0.456324 + 0.331539i
\(290\) 0 0
\(291\) 0.125087 0.0908809i 0.00733272 0.00532753i
\(292\) 4.00703 + 1.30196i 0.234494 + 0.0761917i
\(293\) 26.0420i 1.52139i 0.649108 + 0.760696i \(0.275142\pi\)
−0.649108 + 0.760696i \(0.724858\pi\)
\(294\) −0.369678 + 1.13775i −0.0215601 + 0.0663550i
\(295\) 0 0
\(296\) −0.323684 0.996198i −0.0188138 0.0579028i
\(297\) 13.8441 4.49821i 0.803315 0.261013i
\(298\) −2.45930 + 3.38494i −0.142464 + 0.196084i
\(299\) 3.71874 0.215060
\(300\) 0 0
\(301\) −25.6544 −1.47869
\(302\) −0.194887 + 0.268239i −0.0112145 + 0.0154354i
\(303\) −12.8936 + 4.18937i −0.740716 + 0.240673i
\(304\) −0.436451 1.34326i −0.0250322 0.0770411i
\(305\) 0 0
\(306\) −0.0952107 + 0.293028i −0.00544283 + 0.0167513i
\(307\) 25.1000i 1.43253i 0.697826 + 0.716267i \(0.254151\pi\)
−0.697826 + 0.716267i \(0.745849\pi\)
\(308\) 7.32092 + 2.37871i 0.417148 + 0.135540i
\(309\) 10.8679 7.89599i 0.618253 0.449187i
\(310\) 0 0
\(311\) −0.585185 0.425162i −0.0331828 0.0241087i 0.571070 0.820901i \(-0.306528\pi\)
−0.604253 + 0.796792i \(0.706528\pi\)
\(312\) −5.72255 7.87642i −0.323976 0.445914i
\(313\) 12.7057 + 17.4879i 0.718170 + 0.988477i 0.999583 + 0.0288898i \(0.00919718\pi\)
−0.281412 + 0.959587i \(0.590803\pi\)
\(314\) 2.91853 + 2.12043i 0.164702 + 0.119663i
\(315\) 0 0
\(316\) 8.01054 5.81999i 0.450628 0.327400i
\(317\) −17.9119 5.81992i −1.00603 0.326879i −0.240758 0.970585i \(-0.577396\pi\)
−0.765273 + 0.643706i \(0.777396\pi\)
\(318\) 0.902131i 0.0505890i
\(319\) −3.51232 + 10.8098i −0.196652 + 0.605233i
\(320\) 0 0
\(321\) −5.41637 16.6699i −0.302312 0.930422i
\(322\) −1.72823 + 0.561537i −0.0963107 + 0.0312933i
\(323\) −4.28076 + 5.89196i −0.238188 + 0.327837i
\(324\) 8.81717 0.489843
\(325\) 0 0
\(326\) 5.09385 0.282122
\(327\) 3.94175 5.42535i 0.217979 0.300023i
\(328\) 8.66148 2.81428i 0.478250 0.155393i
\(329\) −2.37871 7.32092i −0.131143 0.403615i
\(330\) 0 0
\(331\) 5.21494 16.0499i 0.286639 0.882185i −0.699263 0.714864i \(-0.746489\pi\)
0.985903 0.167320i \(-0.0535115\pi\)
\(332\) 4.67603i 0.256631i
\(333\) −0.0595250 0.0193408i −0.00326195 0.00105987i
\(334\) 16.8784 12.2629i 0.923546 0.670996i
\(335\) 0 0
\(336\) 3.84883 + 2.79634i 0.209971 + 0.152553i
\(337\) −11.3749 15.6562i −0.619628 0.852845i 0.377698 0.925929i \(-0.376716\pi\)
−0.997326 + 0.0730841i \(0.976716\pi\)
\(338\) 11.3074 + 15.5633i 0.615040 + 0.846530i
\(339\) −8.84425 6.42572i −0.480353 0.348997i
\(340\) 0 0
\(341\) 15.9974 11.6228i 0.866309 0.629410i
\(342\) −0.0802625 0.0260789i −0.00434010 0.00141018i
\(343\) 17.4856i 0.944134i
\(344\) −2.85736 + 8.79404i −0.154058 + 0.474143i
\(345\) 0 0
\(346\) −3.70441 11.4010i −0.199150 0.612921i
\(347\) 8.59630 2.79311i 0.461473 0.149942i −0.0690480 0.997613i \(-0.521996\pi\)
0.530521 + 0.847672i \(0.321996\pi\)
\(348\) −4.12898 + 5.68305i −0.221337 + 0.304644i
\(349\) −36.7305 −1.96614 −0.983068 0.183240i \(-0.941342\pi\)
−0.983068 + 0.183240i \(0.941342\pi\)
\(350\) 0 0
\(351\) −29.7891 −1.59002
\(352\) 1.63079 2.24459i 0.0869214 0.119637i
\(353\) 17.4744 5.67779i 0.930070 0.302198i 0.195479 0.980708i \(-0.437374\pi\)
0.734591 + 0.678510i \(0.237374\pi\)
\(354\) 2.00402 + 6.16775i 0.106513 + 0.327812i
\(355\) 0 0
\(356\) −2.83802 + 8.73452i −0.150415 + 0.462928i
\(357\) 24.5313i 1.29834i
\(358\) 8.12330 + 2.63942i 0.429330 + 0.139498i
\(359\) −19.7609 + 14.3572i −1.04294 + 0.757742i −0.970858 0.239657i \(-0.922965\pi\)
−0.0720846 + 0.997399i \(0.522965\pi\)
\(360\) 0 0
\(361\) 13.7575 + 9.99539i 0.724078 + 0.526073i
\(362\) −4.60144 6.33334i −0.241846 0.332873i
\(363\) −3.32837 4.58111i −0.174694 0.240446i
\(364\) −12.7443 9.25928i −0.667983 0.485318i
\(365\) 0 0
\(366\) 15.0272 10.9179i 0.785482 0.570686i
\(367\) 13.8117 + 4.48768i 0.720963 + 0.234255i 0.646441 0.762964i \(-0.276257\pi\)
0.0745221 + 0.997219i \(0.476257\pi\)
\(368\) 0.654963i 0.0341423i
\(369\) 0.168160 0.517542i 0.00875404 0.0269422i
\(370\) 0 0
\(371\) 0.451065 + 1.38824i 0.0234182 + 0.0720737i
\(372\) 11.6228 3.77648i 0.602615 0.195801i
\(373\) 13.6888 18.8410i 0.708778 0.975549i −0.291044 0.956710i \(-0.594003\pi\)
0.999823 0.0188399i \(-0.00599728\pi\)
\(374\) −14.3064 −0.739764
\(375\) 0 0
\(376\) −2.77447 −0.143082
\(377\) 13.6719 18.8178i 0.704140 0.969166i
\(378\) 13.8441 4.49821i 0.712063 0.231363i
\(379\) −8.84332 27.2169i −0.454251 1.39804i −0.872013 0.489483i \(-0.837185\pi\)
0.417762 0.908556i \(-0.362815\pi\)
\(380\) 0 0
\(381\) 5.05975 15.5723i 0.259219 0.797794i
\(382\) 3.36611i 0.172225i
\(383\) 15.8025 + 5.13454i 0.807469 + 0.262363i 0.683526 0.729927i \(-0.260446\pi\)
0.123944 + 0.992289i \(0.460446\pi\)
\(384\) 1.38723 1.00788i 0.0707920 0.0514334i
\(385\) 0 0
\(386\) 12.4759 + 9.06430i 0.635008 + 0.461361i
\(387\) 0.324754 + 0.446986i 0.0165082 + 0.0227216i
\(388\) −0.0530006 0.0729490i −0.00269070 0.00370343i
\(389\) 21.3392 + 15.5039i 1.08194 + 0.786077i 0.978021 0.208508i \(-0.0668609\pi\)
0.103922 + 0.994585i \(0.466861\pi\)
\(390\) 0 0
\(391\) 2.73227 1.98511i 0.138177 0.100391i
\(392\) 0.663522 + 0.215591i 0.0335129 + 0.0108890i
\(393\) 9.60109i 0.484311i
\(394\) −2.72086 + 8.37394i −0.137075 + 0.421873i
\(395\) 0 0
\(396\) −0.0512290 0.157667i −0.00257435 0.00792305i
\(397\) 17.0321 5.53406i 0.854816 0.277747i 0.151354 0.988480i \(-0.451637\pi\)
0.703462 + 0.710733i \(0.251637\pi\)
\(398\) 10.3580 14.2566i 0.519202 0.714620i
\(399\) 6.71930 0.336386
\(400\) 0 0
\(401\) 32.0164 1.59882 0.799411 0.600785i \(-0.205145\pi\)
0.799411 + 0.600785i \(0.205145\pi\)
\(402\) −4.35749 + 5.99757i −0.217332 + 0.299132i
\(403\) −38.4856 + 12.5047i −1.91710 + 0.622905i
\(404\) 2.44319 + 7.51936i 0.121553 + 0.374102i
\(405\) 0 0
\(406\) −3.51232 + 10.8098i −0.174314 + 0.536482i
\(407\) 2.90615i 0.144053i
\(408\) −8.40906 2.73227i −0.416311 0.135268i
\(409\) 14.5901 10.6003i 0.721435 0.524153i −0.165407 0.986225i \(-0.552894\pi\)
0.886842 + 0.462072i \(0.152894\pi\)
\(410\) 0 0
\(411\) −11.0759 8.04709i −0.546332 0.396934i
\(412\) −4.60484 6.33802i −0.226864 0.312252i
\(413\) 6.16775 + 8.48918i 0.303495 + 0.417725i
\(414\) 0.0316613 + 0.0230033i 0.00155607 + 0.00113055i
\(415\) 0 0
\(416\) −4.59343 + 3.33732i −0.225211 + 0.163626i
\(417\) −36.0216 11.7041i −1.76398 0.573153i
\(418\) 3.91861i 0.191666i
\(419\) 6.03511 18.5742i 0.294834 0.907407i −0.688443 0.725291i \(-0.741705\pi\)
0.983277 0.182116i \(-0.0582947\pi\)
\(420\) 0 0
\(421\) −6.04242 18.5967i −0.294490 0.906346i −0.983392 0.181492i \(-0.941907\pi\)
0.688903 0.724854i \(-0.258093\pi\)
\(422\) −5.80281 + 1.88545i −0.282477 + 0.0917822i
\(423\) −0.0974433 + 0.134119i −0.00473786 + 0.00652110i
\(424\) 0.526111 0.0255502
\(425\) 0 0
\(426\) −22.7142 −1.10050
\(427\) 17.6655 24.3145i 0.854893 1.17666i
\(428\) −9.72166 + 3.15876i −0.469914 + 0.152684i
\(429\) −8.34705 25.6896i −0.402999 1.24030i
\(430\) 0 0
\(431\) −6.55002 + 20.1589i −0.315503 + 0.971019i 0.660044 + 0.751227i \(0.270538\pi\)
−0.975547 + 0.219792i \(0.929462\pi\)
\(432\) 5.24660i 0.252427i
\(433\) −8.13122 2.64199i −0.390761 0.126966i 0.107045 0.994254i \(-0.465861\pi\)
−0.497807 + 0.867288i \(0.665861\pi\)
\(434\) 15.9974 11.6228i 0.767901 0.557913i
\(435\) 0 0
\(436\) −3.16400 2.29878i −0.151528 0.110091i
\(437\) 0.543736 + 0.748388i 0.0260104 + 0.0358003i
\(438\) 4.24646 + 5.84475i 0.202904 + 0.279273i
\(439\) −22.7102 16.4999i −1.08390 0.787499i −0.105541 0.994415i \(-0.533657\pi\)
−0.978359 + 0.206916i \(0.933657\pi\)
\(440\) 0 0
\(441\) 0.0337257 0.0245031i 0.00160598 0.00116682i
\(442\) 27.8442 + 9.04713i 1.32441 + 0.430328i
\(443\) 33.0546i 1.57047i 0.619197 + 0.785236i \(0.287458\pi\)
−0.619197 + 0.785236i \(0.712542\pi\)
\(444\) 0.555026 1.70820i 0.0263404 0.0810673i
\(445\) 0 0
\(446\) −1.55394 4.78254i −0.0735813 0.226460i
\(447\) −6.82325 + 2.21701i −0.322729 + 0.104861i
\(448\) 1.63079 2.24459i 0.0770476 0.106047i
\(449\) 37.1628 1.75382 0.876911 0.480652i \(-0.159600\pi\)
0.876911 + 0.480652i \(0.159600\pi\)
\(450\) 0 0
\(451\) 25.2677 1.18981
\(452\) −3.74740 + 5.15785i −0.176263 + 0.242605i
\(453\) −0.540707 + 0.175686i −0.0254046 + 0.00825446i
\(454\) 5.51232 + 16.9652i 0.258706 + 0.796215i
\(455\) 0 0
\(456\) 0.748388 2.30330i 0.0350465 0.107862i
\(457\) 29.3139i 1.37125i 0.727956 + 0.685624i \(0.240471\pi\)
−0.727956 + 0.685624i \(0.759529\pi\)
\(458\) 20.5016 + 6.66137i 0.957976 + 0.311265i
\(459\) −21.8870 + 15.9018i −1.02160 + 0.742233i
\(460\) 0 0
\(461\) −7.20624 5.23564i −0.335628 0.243848i 0.407187 0.913345i \(-0.366510\pi\)
−0.742815 + 0.669497i \(0.766510\pi\)
\(462\) 7.75836 + 10.6785i 0.360952 + 0.496807i
\(463\) −10.7430 14.7865i −0.499271 0.687187i 0.482793 0.875734i \(-0.339622\pi\)
−0.982064 + 0.188547i \(0.939622\pi\)
\(464\) 3.31428 + 2.40797i 0.153862 + 0.111787i
\(465\) 0 0
\(466\) −11.8978 + 8.64424i −0.551154 + 0.400436i
\(467\) −34.8886 11.3360i −1.61445 0.524568i −0.643829 0.765169i \(-0.722655\pi\)
−0.970624 + 0.240601i \(0.922655\pi\)
\(468\) 0.339260i 0.0156823i
\(469\) −3.70670 + 11.4081i −0.171160 + 0.526775i
\(470\) 0 0
\(471\) 1.91153 + 5.88308i 0.0880785 + 0.271078i
\(472\) 3.59695 1.16872i 0.165563 0.0537948i
\(473\) −15.0793 + 20.7548i −0.693346 + 0.954309i
\(474\) 16.9784 0.779842
\(475\) 0 0
\(476\) −14.3064 −0.655731
\(477\) 0.0184778 0.0254325i 0.000846040 0.00116447i
\(478\) 6.60057 2.14465i 0.301903 0.0980942i
\(479\) 3.89046 + 11.9736i 0.177760 + 0.547088i 0.999749 0.0224155i \(-0.00713568\pi\)
−0.821989 + 0.569503i \(0.807136\pi\)
\(480\) 0 0
\(481\) −1.83781 + 5.65620i −0.0837969 + 0.257900i
\(482\) 3.31003i 0.150768i
\(483\) −2.96343 0.962877i −0.134841 0.0438124i
\(484\) −2.67164 + 1.94106i −0.121438 + 0.0882301i
\(485\) 0 0
\(486\) −0.502294 0.364938i −0.0227845 0.0165539i
\(487\) 10.7715 + 14.8257i 0.488103 + 0.671816i 0.980037 0.198816i \(-0.0637097\pi\)
−0.491934 + 0.870633i \(0.663710\pi\)
\(488\) −6.36716 8.76365i −0.288228 0.396712i
\(489\) 7.06635 + 5.13401i 0.319552 + 0.232168i
\(490\) 0 0
\(491\) −17.5595 + 12.7577i −0.792448 + 0.575747i −0.908689 0.417474i \(-0.862915\pi\)
0.116241 + 0.993221i \(0.462915\pi\)
\(492\) 14.8520 + 4.82570i 0.669578 + 0.217559i
\(493\) 21.1243i 0.951389i
\(494\) −2.47807 + 7.62672i −0.111494 + 0.343143i
\(495\) 0 0
\(496\) −2.20239 6.77827i −0.0988904 0.304353i
\(497\) −34.9535 + 11.3571i −1.56788 + 0.509434i
\(498\) −4.71290 + 6.48675i −0.211190 + 0.290678i
\(499\) −15.8391 −0.709055 −0.354527 0.935046i \(-0.615358\pi\)
−0.354527 + 0.935046i \(0.615358\pi\)
\(500\) 0 0
\(501\) 35.7739 1.59826
\(502\) −5.56312 + 7.65697i −0.248294 + 0.341748i
\(503\) 26.2044 8.51433i 1.16840 0.379635i 0.340353 0.940298i \(-0.389453\pi\)
0.828044 + 0.560662i \(0.189453\pi\)
\(504\) −0.0512290 0.157667i −0.00228192 0.00702303i
\(505\) 0 0
\(506\) −0.561537 + 1.72823i −0.0249634 + 0.0768294i
\(507\) 32.9864i 1.46498i
\(508\) −9.08158 2.95078i −0.402930 0.130920i
\(509\) −22.3386 + 16.2300i −0.990142 + 0.719380i −0.959952 0.280164i \(-0.909611\pi\)
−0.0301894 + 0.999544i \(0.509611\pi\)
\(510\) 0 0
\(511\) 9.45701 + 6.87092i 0.418354 + 0.303952i
\(512\) −0.587785 0.809017i −0.0259767 0.0357538i
\(513\) −4.35562 5.99499i −0.192305 0.264685i
\(514\) −5.72754 4.16130i −0.252631 0.183547i
\(515\) 0 0
\(516\) −12.8272 + 9.31951i −0.564686 + 0.410268i
\(517\) −7.32092 2.37871i −0.321974 0.104616i
\(518\) 2.90615i 0.127689i
\(519\) 6.35200 19.5495i 0.278822 0.858126i
\(520\) 0 0
\(521\) 5.28084 + 16.2527i 0.231358 + 0.712046i 0.997584 + 0.0694747i \(0.0221323\pi\)
−0.766226 + 0.642571i \(0.777868\pi\)
\(522\) 0.232805 0.0756429i 0.0101896 0.00331080i
\(523\) −21.3456 + 29.3796i −0.933376 + 1.28468i 0.0251516 + 0.999684i \(0.491993\pi\)
−0.958528 + 0.284999i \(0.908007\pi\)
\(524\) −5.59923 −0.244604
\(525\) 0 0
\(526\) 1.43345 0.0625016
\(527\) −21.6013 + 29.7317i −0.940970 + 1.29513i
\(528\) 4.52458 1.47012i 0.196907 0.0639789i
\(529\) 6.97483 + 21.4663i 0.303253 + 0.933318i
\(530\) 0 0
\(531\) 0.0698337 0.214926i 0.00303052 0.00932699i
\(532\) 3.91861i 0.169893i
\(533\) −49.1780 15.9789i −2.13014 0.692123i
\(534\) −12.7404 + 9.25642i −0.551330 + 0.400565i
\(535\) 0 0
\(536\) 3.49771 + 2.54123i 0.151078 + 0.109764i
\(537\) 8.60868 + 11.8488i 0.371492 + 0.511315i
\(538\) −8.39532 11.5552i −0.361948 0.498178i
\(539\) 1.56598 + 1.13775i 0.0674516 + 0.0490064i
\(540\) 0 0
\(541\) −20.1742 + 14.6574i −0.867355 + 0.630170i −0.929876 0.367873i \(-0.880086\pi\)
0.0625209 + 0.998044i \(0.480086\pi\)
\(542\) 29.2788 + 9.51325i 1.25763 + 0.408629i
\(543\) 13.4235i 0.576060i
\(544\) −1.59343 + 4.90406i −0.0683176 + 0.210260i
\(545\) 0 0
\(546\) −8.34705 25.6896i −0.357221 1.09941i
\(547\) −6.34546 + 2.06176i −0.271312 + 0.0881547i −0.441513 0.897255i \(-0.645558\pi\)
0.170201 + 0.985409i \(0.445558\pi\)
\(548\) −4.69296 + 6.45931i −0.200473 + 0.275928i
\(549\) −0.647264 −0.0276245
\(550\) 0 0
\(551\) 5.78609 0.246496
\(552\) −0.660127 + 0.908587i −0.0280969 + 0.0386720i
\(553\) 26.1270 8.48918i 1.11103 0.360997i
\(554\) −0.985668 3.03357i −0.0418770 0.128884i
\(555\) 0 0
\(556\) −6.82570 + 21.0073i −0.289474 + 0.890909i
\(557\) 20.4328i 0.865765i −0.901450 0.432882i \(-0.857497\pi\)
0.901450 0.432882i \(-0.142503\pi\)
\(558\) −0.405017 0.131598i −0.0171457 0.00557098i
\(559\) 42.4736 30.8589i 1.79644 1.30519i
\(560\) 0 0
\(561\) −19.8463 14.4192i −0.837910 0.608777i
\(562\) −11.9843 16.4950i −0.505528 0.695799i
\(563\) −0.354320 0.487680i −0.0149328 0.0205532i 0.801485 0.598014i \(-0.204043\pi\)
−0.816418 + 0.577461i \(0.804043\pi\)
\(564\) −3.84883 2.79634i −0.162065 0.117747i
\(565\) 0 0
\(566\) 10.7574 7.81572i 0.452168 0.328519i
\(567\) 23.2657 + 7.55947i 0.977066 + 0.317468i
\(568\) 13.2466i 0.555815i
\(569\) −10.4688 + 32.2195i −0.438873 + 1.35071i 0.450192 + 0.892932i \(0.351356\pi\)
−0.889065 + 0.457781i \(0.848644\pi\)
\(570\) 0 0
\(571\) −1.92521 5.92520i −0.0805677 0.247962i 0.902657 0.430361i \(-0.141614\pi\)
−0.983225 + 0.182399i \(0.941614\pi\)
\(572\) −14.9818 + 4.86789i −0.626422 + 0.203537i
\(573\) −3.39265 + 4.66958i −0.141730 + 0.195074i
\(574\) 25.2677 1.05465
\(575\) 0 0
\(576\) −0.0597522 −0.00248967
\(577\) 2.22244 3.05893i 0.0925214 0.127345i −0.760247 0.649634i \(-0.774922\pi\)
0.852768 + 0.522290i \(0.174922\pi\)
\(578\) 9.11949 2.96310i 0.379321 0.123249i
\(579\) 8.17127 + 25.1486i 0.339587 + 1.04514i
\(580\) 0 0
\(581\) −4.00903 + 12.3385i −0.166323 + 0.511889i
\(582\) 0.154616i 0.00640903i
\(583\) 1.38824 + 0.451065i 0.0574949 + 0.0186812i
\(584\) 3.40859 2.47648i 0.141048 0.102478i
\(585\) 0 0
\(586\) 21.0684 + 15.3071i 0.870330 + 0.632332i
\(587\) −9.61184 13.2296i −0.396723 0.546042i 0.563195 0.826324i \(-0.309572\pi\)
−0.959918 + 0.280282i \(0.909572\pi\)
\(588\) 0.703169 + 0.967829i 0.0289982 + 0.0399126i
\(589\) −8.14373 5.91676i −0.335556 0.243796i
\(590\) 0 0
\(591\) −12.2144 + 8.87430i −0.502435 + 0.365040i
\(592\) −0.996198 0.323684i −0.0409435 0.0133033i
\(593\) 9.53314i 0.391479i −0.980656 0.195740i \(-0.937289\pi\)
0.980656 0.195740i \(-0.0627107\pi\)
\(594\) 4.49821 13.8441i 0.184564 0.568030i
\(595\) 0 0
\(596\) 1.29293 + 3.97923i 0.0529605 + 0.162996i
\(597\) 28.7381 9.33756i 1.17617 0.382161i
\(598\) 2.18582 3.00852i 0.0893848 0.123028i
\(599\) 16.0682 0.656528 0.328264 0.944586i \(-0.393536\pi\)
0.328264 + 0.944586i \(0.393536\pi\)
\(600\) 0 0
\(601\) 15.0380 0.613413 0.306707 0.951804i \(-0.400773\pi\)
0.306707 + 0.951804i \(0.400773\pi\)
\(602\) −15.0793 + 20.7548i −0.614585 + 0.845904i
\(603\) 0.245689 0.0798292i 0.0100052 0.00325090i
\(604\) 0.102458 + 0.315333i 0.00416896 + 0.0128307i
\(605\) 0 0
\(606\) −4.18937 + 12.8936i −0.170182 + 0.523765i
\(607\) 44.8348i 1.81979i −0.414840 0.909894i \(-0.636163\pi\)
0.414840 0.909894i \(-0.363837\pi\)
\(608\) −1.34326 0.436451i −0.0544763 0.0177004i
\(609\) −15.7674 + 11.4557i −0.638929 + 0.464209i
\(610\) 0 0
\(611\) 12.7443 + 9.25928i 0.515580 + 0.374590i
\(612\) 0.181101 + 0.249265i 0.00732059 + 0.0100759i
\(613\) −9.13937 12.5793i −0.369136 0.508072i 0.583530 0.812092i \(-0.301671\pi\)
−0.952666 + 0.304020i \(0.901671\pi\)
\(614\) 20.3064 + 14.7534i 0.819498 + 0.595400i
\(615\) 0 0
\(616\) 6.22754 4.52458i 0.250915 0.182300i
\(617\) 16.7380 + 5.43852i 0.673848 + 0.218946i 0.625900 0.779903i \(-0.284732\pi\)
0.0479478 + 0.998850i \(0.484732\pi\)
\(618\) 13.4335i 0.540373i
\(619\) 11.5229 35.4637i 0.463143 1.42541i −0.398161 0.917316i \(-0.630351\pi\)
0.861303 0.508091i \(-0.169649\pi\)
\(620\) 0 0
\(621\) 1.06188 + 3.26814i 0.0426120 + 0.131146i
\(622\) −0.687926 + 0.223521i −0.0275833 + 0.00896236i
\(623\) −14.9772 + 20.6144i −0.600049 + 0.825897i
\(624\) −9.73579 −0.389743
\(625\) 0 0
\(626\) 21.6163 0.863960
\(627\) 3.94951 5.43603i 0.157728 0.217094i
\(628\) 3.43094 1.11478i 0.136909 0.0444845i
\(629\) 1.66906 + 5.13683i 0.0665496 + 0.204819i
\(630\) 0 0
\(631\) 2.64380 8.13677i 0.105248 0.323920i −0.884541 0.466463i \(-0.845528\pi\)
0.989789 + 0.142543i \(0.0455280\pi\)
\(632\) 9.90157i 0.393863i
\(633\) −9.95017 3.23301i −0.395484 0.128500i
\(634\) −15.2367 + 11.0701i −0.605129 + 0.439652i
\(635\) 0 0
\(636\) 0.729839 + 0.530259i 0.0289400 + 0.0210261i
\(637\) −2.32834 3.20469i −0.0922523 0.126974i
\(638\) 6.68083 + 9.19537i 0.264497 + 0.364048i
\(639\) 0.640348 + 0.465240i 0.0253318 + 0.0184046i
\(640\) 0 0
\(641\) 18.4582 13.4107i 0.729055 0.529690i −0.160209 0.987083i \(-0.551217\pi\)
0.889264 + 0.457394i \(0.151217\pi\)
\(642\) −16.6699 5.41637i −0.657908 0.213767i
\(643\) 34.7745i 1.37137i −0.727898 0.685686i \(-0.759503\pi\)
0.727898 0.685686i \(-0.240497\pi\)
\(644\) −0.561537 + 1.72823i −0.0221277 + 0.0681020i
\(645\) 0 0
\(646\) 2.25053 + 6.92641i 0.0885459 + 0.272516i
\(647\) 15.6526 5.08583i 0.615366 0.199945i 0.0152844 0.999883i \(-0.495135\pi\)
0.600082 + 0.799939i \(0.295135\pi\)
\(648\) 5.18260 7.13324i 0.203592 0.280220i
\(649\) 10.4932 0.411894
\(650\) 0 0
\(651\) 33.9066 1.32890
\(652\) 2.99409 4.12101i 0.117257 0.161391i
\(653\) 28.7306 9.33515i 1.12432 0.365313i 0.312903 0.949785i \(-0.398699\pi\)
0.811414 + 0.584473i \(0.198699\pi\)
\(654\) −2.07230 6.37788i −0.0810333 0.249395i
\(655\) 0 0
\(656\) 2.81428 8.66148i 0.109879 0.338174i
\(657\) 0.251751i 0.00982173i
\(658\) −7.32092 2.37871i −0.285399 0.0927318i
\(659\) −23.0523 + 16.7485i −0.897991 + 0.652428i −0.937949 0.346773i \(-0.887277\pi\)
0.0399585 + 0.999201i \(0.487277\pi\)
\(660\) 0 0
\(661\) −41.0448 29.8208i −1.59646 1.15990i −0.893897 0.448273i \(-0.852039\pi\)
−0.702562 0.711622i \(-0.747961\pi\)
\(662\) −9.91941 13.6529i −0.385529 0.530635i
\(663\) 29.5080 + 40.6142i 1.14599 + 1.57733i
\(664\) 3.78299 + 2.74850i 0.146809 + 0.106663i
\(665\) 0 0
\(666\) −0.0506350 + 0.0367885i −0.00196207 + 0.00142552i
\(667\) −2.55185 0.829146i −0.0988080 0.0321047i
\(668\) 20.8629i 0.807209i
\(669\) 2.66457 8.20070i 0.103018 0.317057i
\(670\) 0 0
\(671\) −9.28730 28.5834i −0.358532 1.10345i
\(672\) 4.52458 1.47012i 0.174539 0.0567113i
\(673\) 12.0171 16.5401i 0.463224 0.637573i −0.511949 0.859016i \(-0.671077\pi\)
0.975173 + 0.221442i \(0.0710765\pi\)
\(674\) −19.3521 −0.745414
\(675\) 0 0
\(676\) 19.2373 0.739894
\(677\) 5.01592 6.90383i 0.192778 0.265336i −0.701676 0.712496i \(-0.747565\pi\)
0.894454 + 0.447160i \(0.147565\pi\)
\(678\) −10.3970 + 3.37820i −0.399296 + 0.129739i
\(679\) −0.0773079 0.237929i −0.00296680 0.00913088i
\(680\) 0 0
\(681\) −9.45206 + 29.0904i −0.362204 + 1.11475i
\(682\) 19.7739i 0.757182i
\(683\) 46.1913 + 15.0085i 1.76746 + 0.574283i 0.997929 0.0643246i \(-0.0204893\pi\)
0.769532 + 0.638608i \(0.220489\pi\)
\(684\) −0.0682754 + 0.0496050i −0.00261058 + 0.00189669i
\(685\) 0 0
\(686\) −14.1462 10.2778i −0.540103 0.392408i
\(687\) 21.7266 + 29.9041i 0.828921 + 1.14091i
\(688\) 5.43502 + 7.48066i 0.207208 + 0.285197i
\(689\) −2.41665 1.75580i −0.0920671 0.0668907i
\(690\) 0 0
\(691\) −36.2501 + 26.3373i −1.37902 + 1.00192i −0.382048 + 0.924142i \(0.624781\pi\)
−0.996971 + 0.0777740i \(0.975219\pi\)
\(692\) −11.4010 3.70441i −0.433401 0.140820i
\(693\) 0.459953i 0.0174722i
\(694\) 2.79311 8.59630i 0.106025 0.326311i
\(695\) 0 0
\(696\) 2.17073 + 6.68083i 0.0822814 + 0.253236i
\(697\) −44.6623 + 14.5117i −1.69171 + 0.549669i
\(698\) −21.5896 + 29.7156i −0.817179 + 1.12475i
\(699\) −25.2174 −0.953809
\(700\) 0 0
\(701\) 2.21913 0.0838152 0.0419076 0.999121i \(-0.486656\pi\)
0.0419076 + 0.999121i \(0.486656\pi\)
\(702\) −17.5096 + 24.0999i −0.660857 + 0.909591i
\(703\) −1.40701 + 0.457166i −0.0530665 + 0.0172424i
\(704\) −0.857358 2.63868i −0.0323129 0.0994488i
\(705\) 0 0
\(706\) 5.67779 17.4744i 0.213686 0.657659i
\(707\) 21.9358i 0.824982i
\(708\) 6.16775 + 2.00402i 0.231798 + 0.0753158i
\(709\) 27.7968 20.1955i 1.04393 0.758459i 0.0728805 0.997341i \(-0.476781\pi\)
0.971049 + 0.238882i \(0.0767808\pi\)
\(710\) 0 0
\(711\) −0.478647 0.347757i −0.0179507 0.0130419i
\(712\) 5.39823 + 7.43002i 0.202307 + 0.278452i
\(713\) 2.74377 + 3.77648i 0.102755 + 0.141430i
\(714\) −19.8463 14.4192i −0.742728 0.539623i
\(715\) 0 0
\(716\) 6.91009 5.02047i 0.258242 0.187624i
\(717\) 11.3181 + 3.67747i 0.422682 + 0.137338i
\(718\) 24.4259i 0.911565i
\(719\) −3.70511 + 11.4032i −0.138177 + 0.425266i −0.996071 0.0885618i \(-0.971773\pi\)
0.857893 + 0.513828i \(0.171773\pi\)
\(720\) 0 0
\(721\) −6.71673 20.6720i −0.250144 0.769864i
\(722\) 16.1729 5.25489i 0.601892 0.195567i
\(723\) −3.33613 + 4.59179i −0.124072 + 0.170770i
\(724\) −7.82844 −0.290942
\(725\) 0 0
\(726\) −5.66256 −0.210157
\(727\) 24.7944 34.1265i 0.919573 1.26568i −0.0442177 0.999022i \(-0.514080\pi\)
0.963790 0.266661i \(-0.0859205\pi\)
\(728\) −14.9818 + 4.86789i −0.555264 + 0.180416i
\(729\) −8.50295 26.1694i −0.314924 0.969237i
\(730\) 0 0
\(731\) 14.7338 45.3459i 0.544948 1.67718i
\(732\) 18.5746i 0.686537i
\(733\) 0.306605 + 0.0996219i 0.0113247 + 0.00367962i 0.314674 0.949200i \(-0.398105\pi\)
−0.303349 + 0.952879i \(0.598105\pi\)
\(734\) 11.7489 8.53607i 0.433660 0.315072i
\(735\) 0 0
\(736\) 0.529876 + 0.384978i 0.0195315 + 0.0141905i
\(737\) 7.05056 + 9.70427i 0.259711 + 0.357461i
\(738\) −0.319859 0.440248i −0.0117742 0.0162057i
\(739\) −4.44942 3.23269i −0.163674 0.118916i 0.502933 0.864325i \(-0.332254\pi\)
−0.666607 + 0.745409i \(0.732254\pi\)
\(740\) 0 0
\(741\) −11.1245 + 8.08244i −0.408670 + 0.296916i
\(742\) 1.38824 + 0.451065i 0.0509638 + 0.0165591i
\(743\) 6.03812i 0.221517i 0.993847 + 0.110759i \(0.0353280\pi\)
−0.993847 + 0.110759i \(0.964672\pi\)
\(744\) 3.77648 11.6228i 0.138452 0.426113i
\(745\) 0 0
\(746\) −7.19662 22.1489i −0.263487 0.810929i
\(747\) 0.265728 0.0863404i 0.00972249 0.00315903i
\(748\) −8.40906 + 11.5741i −0.307466 + 0.423190i
\(749\) −28.3605 −1.03627
\(750\) 0 0
\(751\) −13.5719 −0.495244 −0.247622 0.968857i \(-0.579649\pi\)
−0.247622 + 0.968857i \(0.579649\pi\)
\(752\) −1.63079 + 2.24459i −0.0594688 + 0.0818518i
\(753\) −15.4347 + 5.01503i −0.562471 + 0.182758i
\(754\) −7.18776 22.1216i −0.261763 0.805623i
\(755\) 0 0
\(756\) 4.49821 13.8441i 0.163598 0.503504i
\(757\) 33.0661i 1.20181i 0.799321 + 0.600904i \(0.205193\pi\)
−0.799321 + 0.600904i \(0.794807\pi\)
\(758\) −27.2169 8.84332i −0.988563 0.321204i
\(759\) −2.52084 + 1.83150i −0.0915008 + 0.0664792i
\(760\) 0 0
\(761\) −4.19767 3.04978i −0.152165 0.110555i 0.509098 0.860709i \(-0.329979\pi\)
−0.661263 + 0.750154i \(0.729979\pi\)
\(762\) −9.62422 13.2466i −0.348649 0.479874i
\(763\) −6.37788 8.77840i −0.230895 0.317799i
\(764\) 2.72324 + 1.97855i 0.0985233 + 0.0715814i
\(765\) 0 0
\(766\) 13.4424 9.76647i 0.485694 0.352877i
\(767\) −20.4227 6.63575i −0.737422 0.239603i
\(768\) 1.71472i 0.0618745i
\(769\) −10.2191 + 31.4512i −0.368511 + 1.13416i 0.579242 + 0.815156i \(0.303349\pi\)
−0.947753 + 0.319005i \(0.896651\pi\)
\(770\) 0 0
\(771\) −3.75133 11.5454i −0.135101 0.415798i
\(772\) 14.6663 4.76538i 0.527853 0.171510i
\(773\) 0.664758 0.914961i 0.0239097 0.0329088i −0.796895 0.604118i \(-0.793526\pi\)
0.820804 + 0.571209i \(0.193526\pi\)
\(774\) 0.552505 0.0198594
\(775\) 0 0
\(776\) −0.0901699 −0.00323691
\(777\) 2.92907 4.03152i 0.105080 0.144630i
\(778\) 25.0858 8.15086i 0.899369 0.292223i
\(779\) −3.97485 12.2333i −0.142414 0.438305i
\(780\) 0 0
\(781\) −11.3571 + 34.9535i −0.406388 + 1.25073i
\(782\) 3.37727i 0.120771i
\(783\) 20.4417 + 6.64191i 0.730526 + 0.237362i
\(784\) 0.564426 0.410079i 0.0201581 0.0146457i
\(785\) 0 0
\(786\) −7.76745 5.64338i −0.277056 0.201293i
\(787\) −9.26408 12.7509i −0.330229 0.454521i 0.611327 0.791378i \(-0.290636\pi\)
−0.941556 + 0.336857i \(0.890636\pi\)
\(788\) 5.17538 + 7.12330i 0.184365 + 0.253757i
\(789\) 1.98854 + 1.44476i 0.0707938 + 0.0514347i
\(790\) 0 0
\(791\) −14.3103 + 10.3970i −0.508815 + 0.369676i
\(792\) −0.157667 0.0512290i −0.00560244 0.00182034i
\(793\) 61.5044i 2.18409i
\(794\) 5.53406 17.0321i 0.196396 0.604446i
\(795\) 0 0
\(796\) −5.44555 16.7597i −0.193012 0.594031i
\(797\) 22.0071 7.15055i 0.779532 0.253285i 0.107892 0.994163i \(-0.465590\pi\)
0.671640 + 0.740877i \(0.265590\pi\)
\(798\) 3.94951 5.43603i 0.139811 0.192433i
\(799\) 14.3064 0.506122
\(800\) 0 0
\(801\) 0.548765 0.0193897
\(802\) 18.8188 25.9018i 0.664513 0.914624i
\(803\) 11.1174 3.61226i 0.392324 0.127474i
\(804\) 2.29087 + 7.05056i 0.0807927 + 0.248654i
\(805\) 0 0
\(806\) −12.5047 + 38.4856i −0.440460 + 1.35560i
\(807\) 24.4912i 0.862132i
\(808\) 7.51936 + 2.44319i 0.264530 + 0.0859511i
\(809\) 27.1345 19.7143i 0.953997 0.693119i 0.00224811 0.999997i \(-0.499284\pi\)
0.951749 + 0.306878i \(0.0992844\pi\)
\(810\) 0 0
\(811\) 9.67796 + 7.03145i 0.339839 + 0.246907i 0.744594 0.667518i \(-0.232643\pi\)
−0.404755 + 0.914425i \(0.632643\pi\)
\(812\) 6.68083 + 9.19537i 0.234451 + 0.322694i
\(813\) 31.0282 + 42.7067i 1.08821 + 1.49779i
\(814\) −2.35113 1.70820i −0.0824070 0.0598722i
\(815\) 0 0
\(816\) −7.15318 + 5.19709i −0.250411 + 0.181934i
\(817\) 12.4206 + 4.03569i 0.434540 + 0.141191i
\(818\) 18.0344i 0.630557i
\(819\) −0.290867 + 0.895198i −0.0101637 + 0.0312807i
\(820\) 0 0
\(821\) −3.30466 10.1707i −0.115333 0.354960i 0.876683 0.481068i \(-0.159751\pi\)
−0.992016 + 0.126109i \(0.959751\pi\)
\(822\) −13.0205 + 4.23061i −0.454141 + 0.147559i
\(823\) 7.06581 9.72525i 0.246299 0.339001i −0.667912 0.744240i \(-0.732812\pi\)
0.914211 + 0.405239i \(0.132812\pi\)
\(824\) −7.83422 −0.272918
\(825\) 0 0
\(826\) 10.4932 0.365105
\(827\) −2.43328 + 3.34912i −0.0846133 + 0.116460i −0.849225 0.528031i \(-0.822931\pi\)
0.764612 + 0.644491i \(0.222931\pi\)
\(828\) 0.0372200 0.0120935i 0.00129349 0.000420279i
\(829\) 6.28859 + 19.3543i 0.218412 + 0.672203i 0.998894 + 0.0470242i \(0.0149738\pi\)
−0.780482 + 0.625178i \(0.785026\pi\)
\(830\) 0 0
\(831\) 1.69014 5.20171i 0.0586303 0.180445i
\(832\) 5.67779i 0.196842i
\(833\) −3.42141 1.11168i −0.118545 0.0385175i
\(834\) −30.6418 + 22.2626i −1.06104 + 0.770890i
\(835\) 0 0
\(836\) −3.17022 2.30330i −0.109644 0.0796614i
\(837\) −21.9791 30.2516i −0.759708 1.04565i
\(838\) −11.4795 15.8001i −0.396552 0.545806i
\(839\) 2.53639 + 1.84279i 0.0875658 + 0.0636203i 0.630707 0.776021i \(-0.282765\pi\)
−0.543141 + 0.839642i \(0.682765\pi\)
\(840\) 0 0
\(841\) 9.88393 7.18109i 0.340825 0.247624i
\(842\) −18.5967 6.04242i −0.640883 0.208236i
\(843\) 34.9612i 1.20413i
\(844\) −1.88545 + 5.80281i −0.0648998 + 0.199741i
\(845\) 0 0
\(846\) 0.0512290 + 0.157667i 0.00176129 + 0.00542069i
\(847\) −8.71378 + 2.83128i −0.299409 + 0.0972839i
\(848\) 0.309240 0.425633i 0.0106194 0.0146163i
\(849\) 22.8004 0.782508
\(850\) 0 0
\(851\) 0.686050 0.0235175
\(852\) −13.3510 + 18.3761i −0.457399 + 0.629556i
\(853\) 22.2044 7.21464i 0.760263 0.247025i 0.0968717 0.995297i \(-0.469116\pi\)
0.663392 + 0.748272i \(0.269116\pi\)
\(854\) −9.28730 28.5834i −0.317805 0.978102i
\(855\) 0 0
\(856\) −3.15876 + 9.72166i −0.107964 + 0.332280i
\(857\) 15.3036i 0.522762i 0.965236 + 0.261381i \(0.0841779\pi\)
−0.965236 + 0.261381i \(0.915822\pi\)
\(858\) −25.6896 8.34705i −0.877028 0.284964i
\(859\) −2.39576 + 1.74062i −0.0817422 + 0.0593892i −0.627906 0.778289i \(-0.716088\pi\)
0.546164 + 0.837679i \(0.316088\pi\)
\(860\) 0 0
\(861\) 35.0522 + 25.4669i 1.19457 + 0.867909i
\(862\) 12.4589 + 17.1482i 0.424351 + 0.584069i
\(863\) −22.2312 30.5987i −0.756760 1.04159i −0.997477 0.0709954i \(-0.977382\pi\)
0.240717 0.970595i \(-0.422618\pi\)
\(864\) −4.24459 3.08388i −0.144404 0.104916i
\(865\) 0 0
\(866\) −6.91683 + 5.02537i −0.235043 + 0.170769i
\(867\) 15.6373 + 5.08088i 0.531072 + 0.172556i
\(868\) 19.7739i 0.671170i
\(869\) 8.48918 26.1270i 0.287976 0.886298i
\(870\) 0 0
\(871\) −7.58555 23.3459i −0.257027 0.791046i
\(872\) −3.71950 + 1.20854i −0.125958 + 0.0409263i
\(873\) −0.00316690 + 0.00435886i −0.000107183 + 0.000147525i
\(874\) 0.925059 0.0312906
\(875\) 0 0
\(876\) 7.22451 0.244094
\(877\) −9.17007 + 12.6215i −0.309651 + 0.426198i −0.935272 0.353929i \(-0.884846\pi\)
0.625621 + 0.780127i \(0.284846\pi\)
\(878\) −26.6975 + 8.67453i −0.900996 + 0.292751i
\(879\) 13.7991 + 42.4691i 0.465430 + 1.43245i
\(880\) 0 0
\(881\) 0.359812 1.10739i 0.0121224 0.0373089i −0.944812 0.327612i \(-0.893756\pi\)
0.956935 + 0.290303i \(0.0937561\pi\)
\(882\) 0.0416872i 0.00140368i
\(883\) −46.4925 15.1063i −1.56460 0.508368i −0.606566 0.795033i \(-0.707453\pi\)
−0.958031 + 0.286665i \(0.907453\pi\)
\(884\) 23.6857 17.2087i 0.796636 0.578790i
\(885\) 0 0
\(886\) 26.7417 + 19.4290i 0.898406 + 0.652730i
\(887\) −5.07195 6.98094i −0.170299 0.234397i 0.715333 0.698783i \(-0.246275\pi\)
−0.885633 + 0.464386i \(0.846275\pi\)
\(888\) −1.05572 1.45308i −0.0354277 0.0487621i
\(889\) −21.4335 15.5723i −0.718855 0.522279i
\(890\) 0 0
\(891\) 19.7909 14.3790i 0.663022 0.481713i
\(892\) −4.78254 1.55394i −0.160131 0.0520299i
\(893\) 3.91861i 0.131131i
\(894\) −2.21701 + 6.82325i −0.0741479 + 0.228204i
\(895\) 0 0
\(896\) −0.857358 2.63868i −0.0286423 0.0881520i
\(897\) 6.06449 1.97047i 0.202487 0.0657921i
\(898\) 21.8438 30.0654i 0.728936 1.00329i
\(899\) 29.1975 0.973790
\(900\) 0 0
\(901\) −2.71286 −0.0903784
\(902\) 14.8520 20.4420i 0.494516 0.680643i
\(903\) −41.8370 + 13.5937i −1.39225 + 0.452368i
\(904\) 1.97012 + 6.06342i 0.0655253 + 0.201666i
\(905\) 0 0
\(906\) −0.175686 + 0.540707i −0.00583679 + 0.0179638i
\(907\) 29.5085i 0.979815i 0.871774 + 0.489907i \(0.162969\pi\)
−0.871774 + 0.489907i \(0.837031\pi\)
\(908\) 16.9652 + 5.51232i 0.563009 + 0.182933i
\(909\) 0.382196 0.277682i 0.0126766 0.00921012i
\(910\) 0 0
\(911\) 31.0734 + 22.5761i 1.02951 + 0.747981i 0.968210 0.250139i \(-0.0804763\pi\)
0.0612971 + 0.998120i \(0.480476\pi\)
\(912\) −1.42352 1.95931i −0.0471374 0.0648791i
\(913\) 7.62563 + 10.4958i 0.252372 + 0.347360i
\(914\) 23.7155 + 17.2303i 0.784438 + 0.569928i
\(915\) 0 0
\(916\) 17.4397 12.6707i 0.576223 0.418651i
\(917\) −14.7746 4.80055i −0.487899 0.158528i
\(918\) 27.0538i 0.892907i
\(919\) −12.8831 + 39.6500i −0.424974 + 1.30793i 0.478046 + 0.878335i \(0.341345\pi\)
−0.903020 + 0.429600i \(0.858655\pi\)
\(920\) 0 0
\(921\) 13.2999 + 40.9329i 0.438247 + 1.34879i
\(922\) −8.47145 + 2.75254i −0.278992 + 0.0906501i
\(923\) 44.2081 60.8473i 1.45513 2.00281i
\(924\) 13.1993 0.434225
\(925\) 0 0
\(926\) −18.2771 −0.600624
\(927\) −0.275149 + 0.378710i −0.00903709 + 0.0124385i
\(928\) 3.89618 1.26594i 0.127898 0.0415567i
\(929\) −8.68484 26.7292i −0.284940 0.876956i −0.986417 0.164263i \(-0.947475\pi\)
0.701476 0.712693i \(-0.252525\pi\)
\(930\) 0 0
\(931\) 0.304498 0.937148i 0.00997952 0.0307138i
\(932\) 14.7065i 0.481726i
\(933\) −1.17960 0.383274i −0.0386183 0.0125478i
\(934\) −29.6780 + 21.5624i −0.971095 + 0.705542i
\(935\) 0 0
\(936\) 0.274467 + 0.199412i 0.00897124 + 0.00651799i
\(937\) 7.56796 + 10.4164i 0.247234 + 0.340289i 0.914540 0.404495i \(-0.132553\pi\)
−0.667306 + 0.744784i \(0.732553\pi\)
\(938\) 7.05056 + 9.70427i 0.230209 + 0.316856i
\(939\) 29.9868 + 21.7867i 0.978583 + 0.710982i
\(940\) 0 0
\(941\) −8.21234 + 5.96661i −0.267714 + 0.194506i −0.713541 0.700613i \(-0.752910\pi\)
0.445827 + 0.895119i \(0.352910\pi\)
\(942\) 5.88308 + 1.91153i 0.191681 + 0.0622809i
\(943\) 5.96489i 0.194243i
\(944\) 1.16872 3.59695i 0.0380386 0.117071i
\(945\) 0 0
\(946\) 7.92764 + 24.3988i 0.257750 + 0.793273i
\(947\) 54.5669 17.7298i 1.77318 0.576143i 0.774760 0.632255i \(-0.217871\pi\)
0.998424 + 0.0561124i \(0.0178705\pi\)
\(948\) 9.97963 13.7358i 0.324123 0.446118i
\(949\) −23.9219 −0.776538
\(950\) 0 0
\(951\) −32.2944 −1.04722
\(952\) −8.40906 + 11.5741i −0.272539 + 0.375118i
\(953\) 4.91947 1.59843i 0.159357 0.0517784i −0.228252 0.973602i \(-0.573301\pi\)
0.387609 + 0.921824i \(0.373301\pi\)
\(954\) −0.00971435 0.0298977i −0.000314514 0.000967974i
\(955\) 0 0
\(956\) 2.14465 6.60057i 0.0693631 0.213478i
\(957\) 19.4896i 0.630010i
\(958\) 11.9736 + 3.89046i 0.386849 + 0.125695i
\(959\) −17.9211 + 13.0205i −0.578704 + 0.420453i
\(960\) 0 0
\(961\) −16.0149 11.6355i −0.516611 0.375340i
\(962\) 3.49572 + 4.81145i 0.112707 + 0.155127i
\(963\) 0.359010 + 0.494135i 0.0115689 + 0.0159233i
\(964\) 2.67787 + 1.94559i 0.0862484 + 0.0626631i
\(965\) 0 0
\(966\) −2.52084 + 1.83150i −0.0811068 + 0.0589275i
\(967\) −39.3718 12.7927i −1.26611 0.411384i −0.402443 0.915445i \(-0.631839\pi\)
−0.863668 + 0.504061i \(0.831839\pi\)
\(968\) 3.30233i 0.106141i
\(969\) −3.85901 + 11.8768i −0.123969 + 0.381539i
\(970\) 0 0
\(971\) 13.3139 + 40.9761i 0.427265 + 1.31499i 0.900809 + 0.434216i \(0.142975\pi\)
−0.473544 + 0.880770i \(0.657025\pi\)
\(972\) −0.590483 + 0.191859i −0.0189397 + 0.00615389i
\(973\) −36.0216 + 49.5795i −1.15480 + 1.58944i
\(974\) 18.3256 0.587189
\(975\) 0 0
\(976\) −10.8325 −0.346739
\(977\) 23.7826 32.7340i 0.760874 1.04725i −0.236267 0.971688i \(-0.575924\pi\)
0.997141 0.0755652i \(-0.0240761\pi\)
\(978\) 8.30700 2.69911i 0.265628 0.0863079i
\(979\) 7.87398 + 24.2336i 0.251654 + 0.774510i
\(980\) 0 0
\(981\) −0.0722128 + 0.222248i −0.00230558 + 0.00709584i
\(982\) 21.7047i 0.692625i
\(983\) −38.4023 12.4777i −1.22484 0.397976i −0.376000 0.926620i \(-0.622701\pi\)
−0.848844 + 0.528644i \(0.822701\pi\)
\(984\) 12.6338 9.17902i 0.402752 0.292616i
\(985\) 0 0
\(986\) −17.0899 12.4165i −0.544253 0.395423i
\(987\) −7.75836 10.6785i −0.246951 0.339899i
\(988\) 4.71358 + 6.48768i 0.149959 + 0.206401i
\(989\) −4.89955 3.55973i −0.155797 0.113193i
\(990\) 0 0
\(991\) 47.0391 34.1759i 1.49424 1.08563i 0.521641 0.853165i \(-0.325320\pi\)
0.972604 0.232467i \(-0.0746798\pi\)
\(992\) −6.77827 2.20239i −0.215210 0.0699261i
\(993\) 28.9374i 0.918300i
\(994\) −11.3571 + 34.9535i −0.360225 + 1.10866i
\(995\) 0 0
\(996\) 2.47772 + 7.62563i 0.0785095 + 0.241627i
\(997\) −37.3735 + 12.1434i −1.18363 + 0.384585i −0.833714 0.552197i \(-0.813790\pi\)
−0.349916 + 0.936781i \(0.613790\pi\)
\(998\) −9.30998 + 12.8141i −0.294702 + 0.405623i
\(999\) −5.49563 −0.173874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 250.2.e.c.49.4 16
5.2 odd 4 250.2.d.d.201.1 8
5.3 odd 4 50.2.d.b.41.2 yes 8
5.4 even 2 inner 250.2.e.c.49.1 16
15.8 even 4 450.2.h.e.91.1 8
20.3 even 4 400.2.u.d.241.1 8
25.2 odd 20 250.2.d.d.51.1 8
25.6 even 5 1250.2.b.e.1249.6 8
25.8 odd 20 1250.2.a.l.1.3 4
25.11 even 5 inner 250.2.e.c.199.1 16
25.14 even 10 inner 250.2.e.c.199.4 16
25.17 odd 20 1250.2.a.f.1.2 4
25.19 even 10 1250.2.b.e.1249.3 8
25.23 odd 20 50.2.d.b.11.2 8
75.23 even 20 450.2.h.e.361.1 8
100.23 even 20 400.2.u.d.161.1 8
100.67 even 20 10000.2.a.x.1.3 4
100.83 even 20 10000.2.a.t.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.2.d.b.11.2 8 25.23 odd 20
50.2.d.b.41.2 yes 8 5.3 odd 4
250.2.d.d.51.1 8 25.2 odd 20
250.2.d.d.201.1 8 5.2 odd 4
250.2.e.c.49.1 16 5.4 even 2 inner
250.2.e.c.49.4 16 1.1 even 1 trivial
250.2.e.c.199.1 16 25.11 even 5 inner
250.2.e.c.199.4 16 25.14 even 10 inner
400.2.u.d.161.1 8 100.23 even 20
400.2.u.d.241.1 8 20.3 even 4
450.2.h.e.91.1 8 15.8 even 4
450.2.h.e.361.1 8 75.23 even 20
1250.2.a.f.1.2 4 25.17 odd 20
1250.2.a.l.1.3 4 25.8 odd 20
1250.2.b.e.1249.3 8 25.19 even 10
1250.2.b.e.1249.6 8 25.6 even 5
10000.2.a.t.1.2 4 100.83 even 20
10000.2.a.x.1.3 4 100.67 even 20