Properties

Label 250.2.e.c.99.3
Level $250$
Weight $2$
Character 250.99
Analytic conductor $1.996$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [250,2,Mod(49,250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("250.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 250 = 2 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 250.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.99626005053\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 99.3
Root \(0.0566033 + 1.17421i\) of defining polynomial
Character \(\chi\) \(=\) 250.99
Dual form 250.2.e.c.149.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 - 0.309017i) q^{2} +(-1.74363 - 2.39991i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-2.39991 - 1.74363i) q^{6} -1.83337i q^{7} +(0.587785 - 0.809017i) q^{8} +(-1.79224 + 5.51595i) q^{9} +(-0.566541 - 1.74363i) q^{11} +(-2.82126 - 0.916683i) q^{12} +(-2.29951 - 0.747156i) q^{13} +(-0.566541 - 1.74363i) q^{14} +(0.309017 - 0.951057i) q^{16} +(-1.63679 + 2.25284i) q^{17} +5.79981i q^{18} +(-1.35294 - 0.982966i) q^{19} +(-4.39991 + 3.19672i) q^{21} +(-1.07763 - 1.48322i) q^{22} +(7.38615 - 2.39991i) q^{23} -2.96645 q^{24} -2.41785 q^{26} +(7.89900 - 2.56654i) q^{27} +(-1.07763 - 1.48322i) q^{28} +(6.13597 - 4.45805i) q^{29} +(4.28304 + 3.11181i) q^{31} -1.00000i q^{32} +(-3.19672 + 4.39991i) q^{33} +(-0.860510 + 2.64838i) q^{34} +(1.79224 + 5.51595i) q^{36} +(1.25051 + 0.406315i) q^{37} +(-1.59047 - 0.516776i) q^{38} +(2.21640 + 6.82138i) q^{39} +(1.08621 - 3.34301i) q^{41} +(-3.19672 + 4.39991i) q^{42} -4.30550i q^{43} +(-1.48322 - 1.07763i) q^{44} +(6.28304 - 4.56489i) q^{46} +(1.07763 + 1.48322i) q^{47} +(-2.82126 + 0.916683i) q^{48} +3.63877 q^{49} +8.26057 q^{51} +(-2.29951 + 0.747156i) q^{52} +(3.83082 + 5.27267i) q^{53} +(6.71929 - 4.88185i) q^{54} +(-1.48322 - 1.07763i) q^{56} +4.96086i q^{57} +(4.45805 - 6.13597i) q^{58} +(2.79981 - 8.61694i) q^{59} +(0.799717 + 2.46127i) q^{61} +(5.03501 + 1.63597i) q^{62} +(10.1128 + 3.28583i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(-1.68061 + 5.17240i) q^{66} +(-5.58402 + 7.68574i) q^{67} +2.78467i q^{68} +(-18.6383 - 13.5415i) q^{69} +(-0.247156 + 0.179569i) q^{71} +(3.40904 + 4.69215i) q^{72} +(-14.2164 + 4.61920i) q^{73} +1.31486 q^{74} -1.67232 q^{76} +(-3.19672 + 1.03868i) q^{77} +(4.21584 + 5.80261i) q^{78} +(-2.79981 + 2.03418i) q^{79} +(-5.85599 - 4.25462i) q^{81} -3.51505i q^{82} +(-3.74572 + 5.15555i) q^{83} +(-1.68061 + 5.17240i) q^{84} +(-1.33047 - 4.09478i) q^{86} +(-21.3978 - 6.95256i) q^{87} +(-1.74363 - 0.566541i) q^{88} +(1.02608 + 3.15794i) q^{89} +(-1.36981 + 4.21584i) q^{91} +(4.56489 - 6.28304i) q^{92} -15.7047i q^{93} +(1.48322 + 1.07763i) q^{94} +(-2.39991 + 1.74363i) q^{96} +(6.51864 + 8.97214i) q^{97} +(3.46068 - 1.12444i) q^{98} +10.6332 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 6 q^{6} + 2 q^{9} + 2 q^{11} + 2 q^{14} - 4 q^{16} - 40 q^{19} - 38 q^{21} - 4 q^{24} + 44 q^{26} + 30 q^{29} - 18 q^{31} + 2 q^{34} - 2 q^{36} + 24 q^{39} - 18 q^{41} - 2 q^{44} + 14 q^{46}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/250\mathbb{Z}\right)^\times\).

\(n\) \(127\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 0.309017i 0.672499 0.218508i
\(3\) −1.74363 2.39991i −1.00669 1.38559i −0.921131 0.389254i \(-0.872733\pi\)
−0.0855571 0.996333i \(-0.527267\pi\)
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) 0 0
\(6\) −2.39991 1.74363i −0.979758 0.711836i
\(7\) 1.83337i 0.692947i −0.938060 0.346474i \(-0.887379\pi\)
0.938060 0.346474i \(-0.112621\pi\)
\(8\) 0.587785 0.809017i 0.207813 0.286031i
\(9\) −1.79224 + 5.51595i −0.597414 + 1.83865i
\(10\) 0 0
\(11\) −0.566541 1.74363i −0.170819 0.525726i 0.828599 0.559842i \(-0.189138\pi\)
−0.999418 + 0.0341166i \(0.989138\pi\)
\(12\) −2.82126 0.916683i −0.814428 0.264624i
\(13\) −2.29951 0.747156i −0.637769 0.207224i −0.0277557 0.999615i \(-0.508836\pi\)
−0.610014 + 0.792391i \(0.708836\pi\)
\(14\) −0.566541 1.74363i −0.151414 0.466006i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −1.63679 + 2.25284i −0.396979 + 0.546395i −0.959983 0.280060i \(-0.909646\pi\)
0.563003 + 0.826455i \(0.309646\pi\)
\(18\) 5.79981i 1.36703i
\(19\) −1.35294 0.982966i −0.310385 0.225508i 0.421677 0.906746i \(-0.361442\pi\)
−0.732062 + 0.681238i \(0.761442\pi\)
\(20\) 0 0
\(21\) −4.39991 + 3.19672i −0.960138 + 0.697581i
\(22\) −1.07763 1.48322i −0.229750 0.316224i
\(23\) 7.38615 2.39991i 1.54012 0.500415i 0.588710 0.808344i \(-0.299636\pi\)
0.951409 + 0.307929i \(0.0996359\pi\)
\(24\) −2.96645 −0.605524
\(25\) 0 0
\(26\) −2.41785 −0.474179
\(27\) 7.89900 2.56654i 1.52016 0.493931i
\(28\) −1.07763 1.48322i −0.203652 0.280303i
\(29\) 6.13597 4.45805i 1.13942 0.827838i 0.152383 0.988321i \(-0.451305\pi\)
0.987039 + 0.160483i \(0.0513052\pi\)
\(30\) 0 0
\(31\) 4.28304 + 3.11181i 0.769256 + 0.558897i 0.901735 0.432288i \(-0.142294\pi\)
−0.132479 + 0.991186i \(0.542294\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −3.19672 + 4.39991i −0.556477 + 0.765925i
\(34\) −0.860510 + 2.64838i −0.147576 + 0.454193i
\(35\) 0 0
\(36\) 1.79224 + 5.51595i 0.298707 + 0.919325i
\(37\) 1.25051 + 0.406315i 0.205582 + 0.0667977i 0.409998 0.912086i \(-0.365529\pi\)
−0.204416 + 0.978884i \(0.565529\pi\)
\(38\) −1.59047 0.516776i −0.258009 0.0838321i
\(39\) 2.21640 + 6.82138i 0.354908 + 1.09229i
\(40\) 0 0
\(41\) 1.08621 3.34301i 0.169637 0.522090i −0.829711 0.558194i \(-0.811495\pi\)
0.999348 + 0.0361034i \(0.0114946\pi\)
\(42\) −3.19672 + 4.39991i −0.493265 + 0.678920i
\(43\) 4.30550i 0.656583i −0.944576 0.328291i \(-0.893527\pi\)
0.944576 0.328291i \(-0.106473\pi\)
\(44\) −1.48322 1.07763i −0.223604 0.162458i
\(45\) 0 0
\(46\) 6.28304 4.56489i 0.926383 0.673057i
\(47\) 1.07763 + 1.48322i 0.157188 + 0.216350i 0.880346 0.474332i \(-0.157310\pi\)
−0.723158 + 0.690682i \(0.757310\pi\)
\(48\) −2.82126 + 0.916683i −0.407214 + 0.132312i
\(49\) 3.63877 0.519824
\(50\) 0 0
\(51\) 8.26057 1.15671
\(52\) −2.29951 + 0.747156i −0.318885 + 0.103612i
\(53\) 3.83082 + 5.27267i 0.526203 + 0.724257i 0.986546 0.163485i \(-0.0522734\pi\)
−0.460342 + 0.887741i \(0.652273\pi\)
\(54\) 6.71929 4.88185i 0.914380 0.664336i
\(55\) 0 0
\(56\) −1.48322 1.07763i −0.198204 0.144004i
\(57\) 4.96086i 0.657082i
\(58\) 4.45805 6.13597i 0.585370 0.805693i
\(59\) 2.79981 8.61694i 0.364505 1.12183i −0.585786 0.810466i \(-0.699214\pi\)
0.950291 0.311364i \(-0.100786\pi\)
\(60\) 0 0
\(61\) 0.799717 + 2.46127i 0.102393 + 0.315134i 0.989110 0.147180i \(-0.0470195\pi\)
−0.886717 + 0.462313i \(0.847019\pi\)
\(62\) 5.03501 + 1.63597i 0.639447 + 0.207769i
\(63\) 10.1128 + 3.28583i 1.27409 + 0.413976i
\(64\) −0.309017 0.951057i −0.0386271 0.118882i
\(65\) 0 0
\(66\) −1.68061 + 5.17240i −0.206869 + 0.636679i
\(67\) −5.58402 + 7.68574i −0.682196 + 0.938963i −0.999958 0.00920814i \(-0.997069\pi\)
0.317761 + 0.948171i \(0.397069\pi\)
\(68\) 2.78467i 0.337691i
\(69\) −18.6383 13.5415i −2.24379 1.63021i
\(70\) 0 0
\(71\) −0.247156 + 0.179569i −0.0293320 + 0.0213110i −0.602355 0.798229i \(-0.705771\pi\)
0.573023 + 0.819540i \(0.305771\pi\)
\(72\) 3.40904 + 4.69215i 0.401760 + 0.552975i
\(73\) −14.2164 + 4.61920i −1.66391 + 0.540636i −0.981685 0.190509i \(-0.938986\pi\)
−0.682222 + 0.731145i \(0.738986\pi\)
\(74\) 1.31486 0.152850
\(75\) 0 0
\(76\) −1.67232 −0.191829
\(77\) −3.19672 + 1.03868i −0.364300 + 0.118368i
\(78\) 4.21584 + 5.80261i 0.477350 + 0.657016i
\(79\) −2.79981 + 2.03418i −0.315004 + 0.228864i −0.734041 0.679106i \(-0.762368\pi\)
0.419037 + 0.907969i \(0.362368\pi\)
\(80\) 0 0
\(81\) −5.85599 4.25462i −0.650665 0.472736i
\(82\) 3.51505i 0.388172i
\(83\) −3.74572 + 5.15555i −0.411147 + 0.565895i −0.963498 0.267717i \(-0.913731\pi\)
0.552351 + 0.833612i \(0.313731\pi\)
\(84\) −1.68061 + 5.17240i −0.183370 + 0.564355i
\(85\) 0 0
\(86\) −1.33047 4.09478i −0.143469 0.441551i
\(87\) −21.3978 6.95256i −2.29408 0.745393i
\(88\) −1.74363 0.566541i −0.185872 0.0603935i
\(89\) 1.02608 + 3.15794i 0.108764 + 0.334741i 0.990595 0.136824i \(-0.0436894\pi\)
−0.881832 + 0.471565i \(0.843689\pi\)
\(90\) 0 0
\(91\) −1.36981 + 4.21584i −0.143595 + 0.441940i
\(92\) 4.56489 6.28304i 0.475923 0.655052i
\(93\) 15.7047i 1.62851i
\(94\) 1.48322 + 1.07763i 0.152983 + 0.111149i
\(95\) 0 0
\(96\) −2.39991 + 1.74363i −0.244939 + 0.177959i
\(97\) 6.51864 + 8.97214i 0.661867 + 0.910982i 0.999541 0.0302807i \(-0.00964013\pi\)
−0.337674 + 0.941263i \(0.609640\pi\)
\(98\) 3.46068 1.12444i 0.349581 0.113586i
\(99\) 10.6332 1.06867
\(100\) 0 0
\(101\) −13.1807 −1.31152 −0.655762 0.754968i \(-0.727653\pi\)
−0.655762 + 0.754968i \(0.727653\pi\)
\(102\) 7.85627 2.55266i 0.777887 0.252751i
\(103\) 1.54774 + 2.13029i 0.152504 + 0.209903i 0.878432 0.477867i \(-0.158590\pi\)
−0.725929 + 0.687770i \(0.758590\pi\)
\(104\) −1.95608 + 1.42118i −0.191809 + 0.139358i
\(105\) 0 0
\(106\) 5.27267 + 3.83082i 0.512127 + 0.372082i
\(107\) 18.8045i 1.81790i −0.416908 0.908949i \(-0.636886\pi\)
0.416908 0.908949i \(-0.363114\pi\)
\(108\) 4.88185 6.71929i 0.469756 0.646564i
\(109\) −3.18574 + 9.80470i −0.305139 + 0.939120i 0.674487 + 0.738287i \(0.264365\pi\)
−0.979625 + 0.200833i \(0.935635\pi\)
\(110\) 0 0
\(111\) −1.20531 3.70957i −0.114403 0.352097i
\(112\) −1.74363 0.566541i −0.164758 0.0535331i
\(113\) 5.76019 + 1.87160i 0.541873 + 0.176065i 0.567149 0.823615i \(-0.308046\pi\)
−0.0252760 + 0.999681i \(0.508046\pi\)
\(114\) 1.53299 + 4.71806i 0.143578 + 0.441886i
\(115\) 0 0
\(116\) 2.34373 7.21327i 0.217610 0.669735i
\(117\) 8.24255 11.3449i 0.762024 1.04884i
\(118\) 9.06039i 0.834076i
\(119\) 4.13029 + 3.00083i 0.378623 + 0.275086i
\(120\) 0 0
\(121\) 6.17989 4.48996i 0.561809 0.408178i
\(122\) 1.52115 + 2.09369i 0.137719 + 0.189553i
\(123\) −9.91686 + 3.22218i −0.894174 + 0.290535i
\(124\) 5.29413 0.475427
\(125\) 0 0
\(126\) 10.6332 0.947279
\(127\) 0.316957 0.102986i 0.0281254 0.00913850i −0.294921 0.955522i \(-0.595293\pi\)
0.323046 + 0.946383i \(0.395293\pi\)
\(128\) −0.587785 0.809017i −0.0519534 0.0715077i
\(129\) −10.3328 + 7.50722i −0.909753 + 0.660974i
\(130\) 0 0
\(131\) 4.18910 + 3.04356i 0.366003 + 0.265917i 0.755552 0.655089i \(-0.227369\pi\)
−0.389548 + 0.921006i \(0.627369\pi\)
\(132\) 5.43858i 0.473368i
\(133\) −1.80214 + 2.48043i −0.156265 + 0.215080i
\(134\) −2.93569 + 9.03513i −0.253605 + 0.780516i
\(135\) 0 0
\(136\) 0.860510 + 2.64838i 0.0737881 + 0.227096i
\(137\) 18.5676 + 6.03299i 1.58634 + 0.515433i 0.963680 0.267060i \(-0.0860521\pi\)
0.622660 + 0.782493i \(0.286052\pi\)
\(138\) −21.9106 7.11920i −1.86516 0.606026i
\(139\) 2.45825 + 7.56572i 0.208506 + 0.641716i 0.999551 + 0.0299582i \(0.00953741\pi\)
−0.791045 + 0.611758i \(0.790463\pi\)
\(140\) 0 0
\(141\) 1.68061 5.17240i 0.141533 0.435595i
\(142\) −0.179569 + 0.247156i −0.0150691 + 0.0207409i
\(143\) 4.43280i 0.370689i
\(144\) 4.69215 + 3.40904i 0.391012 + 0.284087i
\(145\) 0 0
\(146\) −12.0932 + 8.78624i −1.00084 + 0.727154i
\(147\) −6.34468 8.73271i −0.523301 0.720262i
\(148\) 1.25051 0.406315i 0.102791 0.0333989i
\(149\) 1.67955 0.137594 0.0687969 0.997631i \(-0.478084\pi\)
0.0687969 + 0.997631i \(0.478084\pi\)
\(150\) 0 0
\(151\) −21.2664 −1.73063 −0.865316 0.501227i \(-0.832882\pi\)
−0.865316 + 0.501227i \(0.832882\pi\)
\(152\) −1.59047 + 0.516776i −0.129004 + 0.0419161i
\(153\) −9.49306 13.0661i −0.767468 1.05633i
\(154\) −2.71929 + 1.97568i −0.219127 + 0.159205i
\(155\) 0 0
\(156\) 5.80261 + 4.21584i 0.464581 + 0.337538i
\(157\) 10.4514i 0.834113i −0.908881 0.417056i \(-0.863062\pi\)
0.908881 0.417056i \(-0.136938\pi\)
\(158\) −2.03418 + 2.79981i −0.161831 + 0.222741i
\(159\) 5.97437 18.3872i 0.473798 1.45820i
\(160\) 0 0
\(161\) −4.39991 13.5415i −0.346761 1.06722i
\(162\) −6.88413 2.23679i −0.540868 0.175739i
\(163\) 9.90109 + 3.21706i 0.775513 + 0.251980i 0.669923 0.742430i \(-0.266327\pi\)
0.105590 + 0.994410i \(0.466327\pi\)
\(164\) −1.08621 3.34301i −0.0848187 0.261045i
\(165\) 0 0
\(166\) −1.96924 + 6.06071i −0.152843 + 0.470402i
\(167\) −1.24711 + 1.71650i −0.0965041 + 0.132826i −0.854538 0.519388i \(-0.826160\pi\)
0.758034 + 0.652215i \(0.226160\pi\)
\(168\) 5.43858i 0.419596i
\(169\) −5.78772 4.20502i −0.445209 0.323463i
\(170\) 0 0
\(171\) 7.84678 5.70102i 0.600059 0.435968i
\(172\) −2.53071 3.48322i −0.192965 0.265593i
\(173\) 17.2281 5.59774i 1.30983 0.425588i 0.430837 0.902430i \(-0.358218\pi\)
0.878989 + 0.476841i \(0.158218\pi\)
\(174\) −22.4990 −1.70564
\(175\) 0 0
\(176\) −1.83337 −0.138195
\(177\) −25.5617 + 8.30550i −1.92134 + 0.624280i
\(178\) 1.95171 + 2.68630i 0.146287 + 0.201347i
\(179\) 8.54361 6.20730i 0.638579 0.463955i −0.220782 0.975323i \(-0.570861\pi\)
0.859362 + 0.511368i \(0.170861\pi\)
\(180\) 0 0
\(181\) −14.6886 10.6719i −1.09180 0.793237i −0.112096 0.993697i \(-0.535756\pi\)
−0.979702 + 0.200460i \(0.935756\pi\)
\(182\) 4.43280i 0.328581i
\(183\) 4.51242 6.21081i 0.333567 0.459116i
\(184\) 2.39991 7.38615i 0.176923 0.544514i
\(185\) 0 0
\(186\) −4.85303 14.9361i −0.355842 1.09517i
\(187\) 4.85544 + 1.57763i 0.355065 + 0.115368i
\(188\) 1.74363 + 0.566541i 0.127168 + 0.0413193i
\(189\) −4.70541 14.4818i −0.342268 1.05339i
\(190\) 0 0
\(191\) −6.76906 + 20.8330i −0.489792 + 1.50742i 0.335127 + 0.942173i \(0.391221\pi\)
−0.824919 + 0.565251i \(0.808779\pi\)
\(192\) −1.74363 + 2.39991i −0.125836 + 0.173198i
\(193\) 27.4248i 1.97408i 0.160465 + 0.987041i \(0.448700\pi\)
−0.160465 + 0.987041i \(0.551300\pi\)
\(194\) 8.97214 + 6.51864i 0.644162 + 0.468011i
\(195\) 0 0
\(196\) 2.94383 2.13882i 0.210273 0.152773i
\(197\) −0.660507 0.909110i −0.0470592 0.0647714i 0.784839 0.619700i \(-0.212746\pi\)
−0.831898 + 0.554928i \(0.812746\pi\)
\(198\) 10.1128 3.28583i 0.718682 0.233514i
\(199\) −25.4992 −1.80759 −0.903794 0.427968i \(-0.859230\pi\)
−0.903794 + 0.427968i \(0.859230\pi\)
\(200\) 0 0
\(201\) 28.1815 1.98777
\(202\) −12.5355 + 4.07305i −0.881998 + 0.286579i
\(203\) −8.17323 11.2495i −0.573648 0.789559i
\(204\) 6.68294 4.85544i 0.467900 0.339949i
\(205\) 0 0
\(206\) 2.13029 + 1.54774i 0.148424 + 0.107836i
\(207\) 45.0429i 3.13070i
\(208\) −1.42118 + 1.95608i −0.0985408 + 0.135630i
\(209\) −0.947439 + 2.91592i −0.0655358 + 0.201698i
\(210\) 0 0
\(211\) 6.58341 + 20.2617i 0.453221 + 1.39487i 0.873211 + 0.487342i \(0.162033\pi\)
−0.419990 + 0.907529i \(0.637967\pi\)
\(212\) 6.19839 + 2.01398i 0.425708 + 0.138321i
\(213\) 0.861899 + 0.280048i 0.0590564 + 0.0191886i
\(214\) −5.81090 17.8841i −0.397225 1.22253i
\(215\) 0 0
\(216\) 2.56654 7.89900i 0.174631 0.537459i
\(217\) 5.70508 7.85237i 0.387286 0.533054i
\(218\) 10.3093i 0.698232i
\(219\) 35.8739 + 26.0639i 2.42413 + 1.76124i
\(220\) 0 0
\(221\) 5.44703 3.95750i 0.366407 0.266210i
\(222\) −2.29264 3.15555i −0.153872 0.211786i
\(223\) −3.08629 + 1.00280i −0.206673 + 0.0671522i −0.410524 0.911850i \(-0.634654\pi\)
0.203851 + 0.979002i \(0.434654\pi\)
\(224\) −1.83337 −0.122497
\(225\) 0 0
\(226\) 6.05662 0.402880
\(227\) 15.5757 5.06085i 1.03380 0.335901i 0.257506 0.966277i \(-0.417099\pi\)
0.776290 + 0.630376i \(0.217099\pi\)
\(228\) 2.91592 + 4.01342i 0.193111 + 0.265795i
\(229\) −4.11788 + 2.99181i −0.272117 + 0.197705i −0.715472 0.698642i \(-0.753788\pi\)
0.443355 + 0.896346i \(0.353788\pi\)
\(230\) 0 0
\(231\) 8.06664 + 5.86076i 0.530746 + 0.385609i
\(232\) 7.58448i 0.497946i
\(233\) −0.977464 + 1.34536i −0.0640358 + 0.0881378i −0.839834 0.542844i \(-0.817348\pi\)
0.775798 + 0.630981i \(0.217348\pi\)
\(234\) 4.33337 13.3367i 0.283281 0.871849i
\(235\) 0 0
\(236\) −2.79981 8.61694i −0.182252 0.560915i
\(237\) 9.76370 + 3.17242i 0.634221 + 0.206071i
\(238\) 4.85544 + 1.57763i 0.314732 + 0.102263i
\(239\) −3.95536 12.1733i −0.255851 0.787428i −0.993661 0.112420i \(-0.964140\pi\)
0.737810 0.675009i \(-0.235860\pi\)
\(240\) 0 0
\(241\) 0.122209 0.376121i 0.00787219 0.0242281i −0.947043 0.321106i \(-0.895945\pi\)
0.954915 + 0.296878i \(0.0959454\pi\)
\(242\) 4.48996 6.17989i 0.288625 0.397259i
\(243\) 3.44417i 0.220944i
\(244\) 2.09369 + 1.52115i 0.134034 + 0.0973817i
\(245\) 0 0
\(246\) −8.43579 + 6.12896i −0.537846 + 0.390768i
\(247\) 2.37666 + 3.27120i 0.151223 + 0.208141i
\(248\) 5.03501 1.63597i 0.319724 0.103885i
\(249\) 18.9040 1.19799
\(250\) 0 0
\(251\) 9.36589 0.591170 0.295585 0.955316i \(-0.404485\pi\)
0.295585 + 0.955316i \(0.404485\pi\)
\(252\) 10.1128 3.28583i 0.637044 0.206988i
\(253\) −8.36912 11.5191i −0.526162 0.724200i
\(254\) 0.269620 0.195890i 0.0169175 0.0122913i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 4.97926i 0.310598i 0.987868 + 0.155299i \(0.0496341\pi\)
−0.987868 + 0.155299i \(0.950366\pi\)
\(258\) −7.50722 + 10.3328i −0.467379 + 0.643292i
\(259\) 0.744923 2.29264i 0.0462873 0.142458i
\(260\) 0 0
\(261\) 13.5932 + 41.8356i 0.841399 + 2.58956i
\(262\) 4.92458 + 1.60009i 0.304242 + 0.0988541i
\(263\) −18.8416 6.12199i −1.16182 0.377498i −0.336236 0.941778i \(-0.609154\pi\)
−0.825584 + 0.564279i \(0.809154\pi\)
\(264\) 1.68061 + 5.17240i 0.103435 + 0.318339i
\(265\) 0 0
\(266\) −0.947439 + 2.91592i −0.0580912 + 0.178786i
\(267\) 5.78966 7.96878i 0.354321 0.487681i
\(268\) 9.50010i 0.580311i
\(269\) 11.9685 + 8.69564i 0.729734 + 0.530183i 0.889479 0.456976i \(-0.151067\pi\)
−0.159745 + 0.987158i \(0.551067\pi\)
\(270\) 0 0
\(271\) 10.1583 7.38047i 0.617075 0.448331i −0.234823 0.972038i \(-0.575451\pi\)
0.851899 + 0.523707i \(0.175451\pi\)
\(272\) 1.63679 + 2.25284i 0.0992448 + 0.136599i
\(273\) 12.5061 4.06347i 0.756902 0.245932i
\(274\) 19.5232 1.17944
\(275\) 0 0
\(276\) −23.0382 −1.38674
\(277\) −6.02193 + 1.95664i −0.361823 + 0.117563i −0.484286 0.874910i \(-0.660921\pi\)
0.122463 + 0.992473i \(0.460921\pi\)
\(278\) 4.67587 + 6.43579i 0.280440 + 0.385993i
\(279\) −24.8408 + 18.0479i −1.48718 + 1.08050i
\(280\) 0 0
\(281\) 16.2525 + 11.8082i 0.969545 + 0.704416i 0.955348 0.295484i \(-0.0954808\pi\)
0.0141971 + 0.999899i \(0.495481\pi\)
\(282\) 5.43858i 0.323863i
\(283\) 1.06788 1.46981i 0.0634787 0.0873709i −0.776097 0.630613i \(-0.782803\pi\)
0.839576 + 0.543242i \(0.182803\pi\)
\(284\) −0.0944052 + 0.290549i −0.00560192 + 0.0172409i
\(285\) 0 0
\(286\) 1.36981 + 4.21584i 0.0809986 + 0.249288i
\(287\) −6.12896 1.99142i −0.361781 0.117550i
\(288\) 5.51595 + 1.79224i 0.325031 + 0.105609i
\(289\) 2.85705 + 8.79311i 0.168062 + 0.517242i
\(290\) 0 0
\(291\) 10.1662 31.2882i 0.595951 1.83415i
\(292\) −8.78624 + 12.0932i −0.514176 + 0.707702i
\(293\) 6.85931i 0.400725i −0.979722 0.200363i \(-0.935788\pi\)
0.979722 0.200363i \(-0.0642120\pi\)
\(294\) −8.73271 6.34468i −0.509302 0.370030i
\(295\) 0 0
\(296\) 1.06375 0.772856i 0.0618290 0.0449214i
\(297\) −8.95022 12.3189i −0.519344 0.714816i
\(298\) 1.59734 0.519009i 0.0925317 0.0300654i
\(299\) −18.7776 −1.08594
\(300\) 0 0
\(301\) −7.89356 −0.454977
\(302\) −20.2255 + 6.57167i −1.16385 + 0.378157i
\(303\) 22.9822 + 31.6323i 1.32030 + 1.81723i
\(304\) −1.35294 + 0.982966i −0.0775963 + 0.0563770i
\(305\) 0 0
\(306\) −13.0661 9.49306i −0.746938 0.542682i
\(307\) 2.89526i 0.165241i 0.996581 + 0.0826206i \(0.0263290\pi\)
−0.996581 + 0.0826206i \(0.973671\pi\)
\(308\) −1.97568 + 2.71929i −0.112575 + 0.154946i
\(309\) 2.41379 7.42888i 0.137316 0.422614i
\(310\) 0 0
\(311\) −6.38090 19.6384i −0.361828 1.11359i −0.951944 0.306272i \(-0.900918\pi\)
0.590116 0.807318i \(-0.299082\pi\)
\(312\) 6.82138 + 2.21640i 0.386184 + 0.125479i
\(313\) 15.6232 + 5.07629i 0.883076 + 0.286929i 0.715234 0.698885i \(-0.246320\pi\)
0.167842 + 0.985814i \(0.446320\pi\)
\(314\) −3.22966 9.93987i −0.182260 0.560939i
\(315\) 0 0
\(316\) −1.06943 + 3.29138i −0.0601603 + 0.185154i
\(317\) −9.70191 + 13.3535i −0.544914 + 0.750009i −0.989311 0.145820i \(-0.953418\pi\)
0.444397 + 0.895830i \(0.353418\pi\)
\(318\) 19.3335i 1.08417i
\(319\) −11.2495 8.17323i −0.629850 0.457613i
\(320\) 0 0
\(321\) −45.1290 + 32.7881i −2.51885 + 1.83005i
\(322\) −8.36912 11.5191i −0.466393 0.641935i
\(323\) 4.42894 1.43905i 0.246433 0.0800709i
\(324\) −7.23840 −0.402133
\(325\) 0 0
\(326\) 10.4106 0.576591
\(327\) 29.0851 9.45033i 1.60841 0.522605i
\(328\) −2.06609 2.84373i −0.114081 0.157019i
\(329\) 2.71929 1.97568i 0.149919 0.108923i
\(330\) 0 0
\(331\) −22.2245 16.1471i −1.22157 0.887522i −0.225340 0.974280i \(-0.572349\pi\)
−0.996229 + 0.0867577i \(0.972349\pi\)
\(332\) 6.37261i 0.349742i
\(333\) −4.48242 + 6.16953i −0.245635 + 0.338088i
\(334\) −0.655643 + 2.01786i −0.0358752 + 0.110413i
\(335\) 0 0
\(336\) 1.68061 + 5.17240i 0.0916851 + 0.282178i
\(337\) 2.61085 + 0.848317i 0.142222 + 0.0462108i 0.379263 0.925289i \(-0.376178\pi\)
−0.237041 + 0.971500i \(0.576178\pi\)
\(338\) −6.80387 2.21071i −0.370082 0.120247i
\(339\) −5.55200 17.0873i −0.301543 0.928054i
\(340\) 0 0
\(341\) 2.99934 9.23102i 0.162423 0.499888i
\(342\) 5.70102 7.84678i 0.308276 0.424305i
\(343\) 19.5048i 1.05316i
\(344\) −3.48322 2.53071i −0.187803 0.136447i
\(345\) 0 0
\(346\) 14.6551 10.6475i 0.787862 0.572415i
\(347\) −12.5428 17.2637i −0.673332 0.926762i 0.326498 0.945198i \(-0.394131\pi\)
−0.999830 + 0.0184361i \(0.994131\pi\)
\(348\) −21.3978 + 6.95256i −1.14704 + 0.372697i
\(349\) 16.7650 0.897411 0.448705 0.893680i \(-0.351885\pi\)
0.448705 + 0.893680i \(0.351885\pi\)
\(350\) 0 0
\(351\) −20.0814 −1.07187
\(352\) −1.74363 + 0.566541i −0.0929360 + 0.0301967i
\(353\) −1.75667 2.41785i −0.0934981 0.128689i 0.759705 0.650268i \(-0.225343\pi\)
−0.853203 + 0.521579i \(0.825343\pi\)
\(354\) −21.7441 + 15.7980i −1.15569 + 0.839654i
\(355\) 0 0
\(356\) 2.68630 + 1.95171i 0.142374 + 0.103441i
\(357\) 15.1447i 0.801540i
\(358\) 6.20730 8.54361i 0.328066 0.451544i
\(359\) −2.07194 + 6.37678i −0.109353 + 0.336554i −0.990727 0.135865i \(-0.956619\pi\)
0.881375 + 0.472418i \(0.156619\pi\)
\(360\) 0 0
\(361\) −5.00711 15.4103i −0.263532 0.811068i
\(362\) −17.2675 5.61056i −0.907561 0.294884i
\(363\) −21.5510 7.00233i −1.13113 0.367527i
\(364\) 1.36981 + 4.21584i 0.0717976 + 0.220970i
\(365\) 0 0
\(366\) 2.37232 7.30124i 0.124003 0.381642i
\(367\) −2.36089 + 3.24949i −0.123237 + 0.169622i −0.866178 0.499736i \(-0.833430\pi\)
0.742941 + 0.669357i \(0.233430\pi\)
\(368\) 7.76626i 0.404844i
\(369\) 16.4931 + 11.9830i 0.858598 + 0.623808i
\(370\) 0 0
\(371\) 9.66673 7.02329i 0.501872 0.364631i
\(372\) −9.23102 12.7054i −0.478606 0.658745i
\(373\) −25.2822 + 8.21467i −1.30906 + 0.425340i −0.878725 0.477329i \(-0.841605\pi\)
−0.430336 + 0.902669i \(0.641605\pi\)
\(374\) 5.10532 0.263990
\(375\) 0 0
\(376\) 1.83337 0.0945486
\(377\) −17.4406 + 5.66679i −0.898236 + 0.291855i
\(378\) −8.95022 12.3189i −0.460350 0.633617i
\(379\) −12.6431 + 9.18578i −0.649435 + 0.471842i −0.863079 0.505070i \(-0.831467\pi\)
0.213644 + 0.976912i \(0.431467\pi\)
\(380\) 0 0
\(381\) −0.799814 0.581099i −0.0409757 0.0297706i
\(382\) 21.9051i 1.12076i
\(383\) 7.90306 10.8776i 0.403828 0.555821i −0.557872 0.829927i \(-0.688382\pi\)
0.961699 + 0.274106i \(0.0883819\pi\)
\(384\) −0.916683 + 2.82126i −0.0467793 + 0.143972i
\(385\) 0 0
\(386\) 8.47474 + 26.0826i 0.431353 + 1.32757i
\(387\) 23.7489 + 7.71650i 1.20723 + 0.392252i
\(388\) 10.5474 + 3.42705i 0.535462 + 0.173982i
\(389\) 7.75991 + 23.8826i 0.393443 + 1.21089i 0.930167 + 0.367136i \(0.119662\pi\)
−0.536724 + 0.843758i \(0.680338\pi\)
\(390\) 0 0
\(391\) −6.68294 + 20.5680i −0.337971 + 1.04017i
\(392\) 2.13882 2.94383i 0.108026 0.148686i
\(393\) 15.3603i 0.774825i
\(394\) −0.909110 0.660507i −0.0458003 0.0332759i
\(395\) 0 0
\(396\) 8.60242 6.25003i 0.432288 0.314076i
\(397\) 2.06794 + 2.84628i 0.103787 + 0.142850i 0.857751 0.514065i \(-0.171861\pi\)
−0.753964 + 0.656915i \(0.771861\pi\)
\(398\) −24.2511 + 7.87968i −1.21560 + 0.394972i
\(399\) 9.09507 0.455323
\(400\) 0 0
\(401\) 29.8696 1.49161 0.745807 0.666162i \(-0.232064\pi\)
0.745807 + 0.666162i \(0.232064\pi\)
\(402\) 26.8022 8.70858i 1.33677 0.434344i
\(403\) −7.52388 10.3557i −0.374791 0.515856i
\(404\) −10.6634 + 7.74739i −0.530523 + 0.385447i
\(405\) 0 0
\(406\) −11.2495 8.17323i −0.558303 0.405631i
\(407\) 2.41062i 0.119490i
\(408\) 4.85544 6.68294i 0.240380 0.330855i
\(409\) 11.9784 36.8656i 0.592291 1.82289i 0.0245200 0.999699i \(-0.492194\pi\)
0.567771 0.823186i \(-0.307806\pi\)
\(410\) 0 0
\(411\) −17.8965 55.0799i −0.882772 2.71689i
\(412\) 2.50430 + 0.813697i 0.123378 + 0.0400880i
\(413\) −15.7980 5.13308i −0.777369 0.252582i
\(414\) 13.9190 + 42.8383i 0.684082 + 2.10539i
\(415\) 0 0
\(416\) −0.747156 + 2.29951i −0.0366323 + 0.112743i
\(417\) 13.8707 19.0914i 0.679253 0.934911i
\(418\) 3.06598i 0.149962i
\(419\) −15.2988 11.1152i −0.747395 0.543014i 0.147624 0.989044i \(-0.452838\pi\)
−0.895018 + 0.446030i \(0.852838\pi\)
\(420\) 0 0
\(421\) 17.8414 12.9625i 0.869536 0.631755i −0.0609265 0.998142i \(-0.519406\pi\)
0.930462 + 0.366388i \(0.119406\pi\)
\(422\) 12.5224 + 17.2356i 0.609581 + 0.839016i
\(423\) −10.1128 + 3.28583i −0.491699 + 0.159763i
\(424\) 6.51738 0.316512
\(425\) 0 0
\(426\) 0.906255 0.0439082
\(427\) 4.51242 1.46617i 0.218371 0.0709531i
\(428\) −11.0530 15.2131i −0.534267 0.735355i
\(429\) 10.6383 7.72918i 0.513622 0.373168i
\(430\) 0 0
\(431\) 7.44763 + 5.41102i 0.358740 + 0.260640i 0.752526 0.658562i \(-0.228835\pi\)
−0.393787 + 0.919202i \(0.628835\pi\)
\(432\) 8.30550i 0.399599i
\(433\) 20.4533 28.1516i 0.982923 1.35288i 0.0476837 0.998862i \(-0.484816\pi\)
0.935240 0.354015i \(-0.115184\pi\)
\(434\) 2.99934 9.23102i 0.143973 0.443103i
\(435\) 0 0
\(436\) 3.18574 + 9.80470i 0.152569 + 0.469560i
\(437\) −12.3520 4.01342i −0.590878 0.191988i
\(438\) 42.1723 + 13.7026i 2.01507 + 0.654736i
\(439\) 2.58025 + 7.94118i 0.123148 + 0.379012i 0.993559 0.113314i \(-0.0361467\pi\)
−0.870411 + 0.492326i \(0.836147\pi\)
\(440\) 0 0
\(441\) −6.52155 + 20.0713i −0.310550 + 0.955775i
\(442\) 3.95750 5.44703i 0.188239 0.259089i
\(443\) 1.19887i 0.0569599i −0.999594 0.0284799i \(-0.990933\pi\)
0.999594 0.0284799i \(-0.00906667\pi\)
\(444\) −3.15555 2.29264i −0.149756 0.108804i
\(445\) 0 0
\(446\) −2.62535 + 1.90743i −0.124314 + 0.0903194i
\(447\) −2.92852 4.03076i −0.138514 0.190648i
\(448\) −1.74363 + 0.566541i −0.0823790 + 0.0267666i
\(449\) −32.7953 −1.54771 −0.773853 0.633365i \(-0.781673\pi\)
−0.773853 + 0.633365i \(0.781673\pi\)
\(450\) 0 0
\(451\) −6.44437 −0.303453
\(452\) 5.76019 1.87160i 0.270936 0.0880326i
\(453\) 37.0808 + 51.0373i 1.74221 + 2.39794i
\(454\) 13.2495 9.62631i 0.621829 0.451785i
\(455\) 0 0
\(456\) 4.01342 + 2.91592i 0.187946 + 0.136550i
\(457\) 19.7884i 0.925664i −0.886446 0.462832i \(-0.846833\pi\)
0.886446 0.462832i \(-0.153167\pi\)
\(458\) −2.99181 + 4.11788i −0.139798 + 0.192416i
\(459\) −7.14697 + 21.9961i −0.333592 + 1.02669i
\(460\) 0 0
\(461\) 2.90468 + 8.93970i 0.135285 + 0.416363i 0.995634 0.0933412i \(-0.0297547\pi\)
−0.860350 + 0.509704i \(0.829755\pi\)
\(462\) 9.48290 + 3.08118i 0.441185 + 0.143350i
\(463\) 16.8650 + 5.47977i 0.783783 + 0.254666i 0.673454 0.739229i \(-0.264810\pi\)
0.110328 + 0.993895i \(0.464810\pi\)
\(464\) −2.34373 7.21327i −0.108805 0.334868i
\(465\) 0 0
\(466\) −0.513883 + 1.58157i −0.0238052 + 0.0732649i
\(467\) −12.8494 + 17.6857i −0.594601 + 0.818398i −0.995201 0.0978549i \(-0.968802\pi\)
0.400599 + 0.916253i \(0.368802\pi\)
\(468\) 14.0231i 0.648216i
\(469\) 14.0908 + 10.2375i 0.650651 + 0.472726i
\(470\) 0 0
\(471\) −25.0824 + 18.2234i −1.15574 + 0.839691i
\(472\) −5.32556 7.33001i −0.245129 0.337391i
\(473\) −7.50722 + 2.43924i −0.345182 + 0.112157i
\(474\) 10.2662 0.471541
\(475\) 0 0
\(476\) 5.10532 0.234002
\(477\) −35.9495 + 11.6807i −1.64602 + 0.534823i
\(478\) −7.52354 10.3553i −0.344119 0.473639i
\(479\) −4.94352 + 3.59168i −0.225875 + 0.164108i −0.694967 0.719041i \(-0.744581\pi\)
0.469092 + 0.883149i \(0.344581\pi\)
\(480\) 0 0
\(481\) −2.57198 1.86865i −0.117272 0.0852031i
\(482\) 0.395477i 0.0180135i
\(483\) −24.8266 + 34.1708i −1.12965 + 1.55483i
\(484\) 2.36051 7.26490i 0.107296 0.330223i
\(485\) 0 0
\(486\) −1.06431 3.27560i −0.0482780 0.148584i
\(487\) −4.81415 1.56421i −0.218150 0.0708812i 0.197903 0.980222i \(-0.436587\pi\)
−0.416053 + 0.909340i \(0.636587\pi\)
\(488\) 2.46127 + 0.799717i 0.111417 + 0.0362015i
\(489\) −9.54324 29.3711i −0.431560 1.32821i
\(490\) 0 0
\(491\) 0.736165 2.26568i 0.0332227 0.102249i −0.933070 0.359695i \(-0.882881\pi\)
0.966293 + 0.257446i \(0.0828809\pi\)
\(492\) −6.12896 + 8.43579i −0.276315 + 0.380315i
\(493\) 21.1203i 0.951209i
\(494\) 3.27120 + 2.37666i 0.147178 + 0.106931i
\(495\) 0 0
\(496\) 4.28304 3.11181i 0.192314 0.139724i
\(497\) 0.329216 + 0.453127i 0.0147674 + 0.0203255i
\(498\) 17.9788 5.84166i 0.805648 0.261771i
\(499\) 0.0503313 0.00225314 0.00112657 0.999999i \(-0.499641\pi\)
0.00112657 + 0.999999i \(0.499641\pi\)
\(500\) 0 0
\(501\) 6.29393 0.281192
\(502\) 8.90749 2.89422i 0.397561 0.129175i
\(503\) 3.18040 + 4.37744i 0.141807 + 0.195181i 0.874013 0.485903i \(-0.161509\pi\)
−0.732206 + 0.681083i \(0.761509\pi\)
\(504\) 8.60242 6.25003i 0.383182 0.278398i
\(505\) 0 0
\(506\) −11.5191 8.36912i −0.512087 0.372053i
\(507\) 21.2220i 0.942502i
\(508\) 0.195890 0.269620i 0.00869123 0.0119625i
\(509\) −5.85472 + 18.0190i −0.259506 + 0.798678i 0.733402 + 0.679795i \(0.237931\pi\)
−0.992908 + 0.118883i \(0.962069\pi\)
\(510\) 0 0
\(511\) 8.46868 + 26.0639i 0.374632 + 1.15300i
\(512\) −0.951057 0.309017i −0.0420312 0.0136568i
\(513\) −13.2097 4.29208i −0.583221 0.189500i
\(514\) 1.53868 + 4.73556i 0.0678681 + 0.208877i
\(515\) 0 0
\(516\) −3.94678 + 12.1469i −0.173747 + 0.534739i
\(517\) 1.97568 2.71929i 0.0868904 0.119594i
\(518\) 2.41062i 0.105917i
\(519\) −43.4735 31.5854i −1.90828 1.38644i
\(520\) 0 0
\(521\) −31.0817 + 22.5822i −1.36171 + 0.989342i −0.363379 + 0.931642i \(0.618377\pi\)
−0.998334 + 0.0577005i \(0.981623\pi\)
\(522\) 25.8558 + 35.5875i 1.13168 + 1.55762i
\(523\) 11.6662 3.79057i 0.510127 0.165750i −0.0426332 0.999091i \(-0.513575\pi\)
0.552760 + 0.833341i \(0.313575\pi\)
\(524\) 5.17801 0.226202
\(525\) 0 0
\(526\) −19.8112 −0.863809
\(527\) −14.0208 + 4.55565i −0.610757 + 0.198447i
\(528\) 3.19672 + 4.39991i 0.139119 + 0.191481i
\(529\) 30.1883 21.9331i 1.31254 0.953613i
\(530\) 0 0
\(531\) 42.5127 + 30.8873i 1.84489 + 1.34039i
\(532\) 3.06598i 0.132927i
\(533\) −4.99550 + 6.87572i −0.216379 + 0.297820i
\(534\) 3.04380 9.36786i 0.131718 0.405387i
\(535\) 0 0
\(536\) 2.93569 + 9.03513i 0.126803 + 0.390258i
\(537\) −29.7939 9.68061i −1.28570 0.417749i
\(538\) 14.0698 + 4.57157i 0.606594 + 0.197094i
\(539\) −2.06151 6.34468i −0.0887957 0.273285i
\(540\) 0 0
\(541\) 12.9872 39.9704i 0.558362 1.71846i −0.128534 0.991705i \(-0.541027\pi\)
0.686896 0.726756i \(-0.258973\pi\)
\(542\) 7.38047 10.1583i 0.317018 0.436338i
\(543\) 53.8593i 2.31132i
\(544\) 2.25284 + 1.63679i 0.0965899 + 0.0701767i
\(545\) 0 0
\(546\) 10.6383 7.72918i 0.455277 0.330778i
\(547\) 11.3863 + 15.6719i 0.486842 + 0.670080i 0.979802 0.199972i \(-0.0640851\pi\)
−0.492960 + 0.870052i \(0.664085\pi\)
\(548\) 18.5676 6.03299i 0.793170 0.257717i
\(549\) −15.0096 −0.640592
\(550\) 0 0
\(551\) −12.6837 −0.540344
\(552\) −21.9106 + 7.11920i −0.932579 + 0.303013i
\(553\) 3.72940 + 5.13308i 0.158590 + 0.218281i
\(554\) −5.12256 + 3.72176i −0.217637 + 0.158122i
\(555\) 0 0
\(556\) 6.43579 + 4.67587i 0.272938 + 0.198301i
\(557\) 8.54685i 0.362142i −0.983470 0.181071i \(-0.942044\pi\)
0.983470 0.181071i \(-0.0579563\pi\)
\(558\) −18.0479 + 24.8408i −0.764029 + 1.05160i
\(559\) −3.21688 + 9.90054i −0.136060 + 0.418748i
\(560\) 0 0
\(561\) −4.67995 14.4034i −0.197588 0.608113i
\(562\) 19.1060 + 6.20792i 0.805938 + 0.261865i
\(563\) −22.3116 7.24949i −0.940323 0.305529i −0.201546 0.979479i \(-0.564596\pi\)
−0.738777 + 0.673950i \(0.764596\pi\)
\(564\) −1.68061 5.17240i −0.0707667 0.217797i
\(565\) 0 0
\(566\) 0.561416 1.72786i 0.0235981 0.0726274i
\(567\) −7.80028 + 10.7362i −0.327581 + 0.450877i
\(568\) 0.305502i 0.0128186i
\(569\) −5.74445 4.17359i −0.240820 0.174966i 0.460829 0.887489i \(-0.347552\pi\)
−0.701649 + 0.712523i \(0.747552\pi\)
\(570\) 0 0
\(571\) 9.67745 7.03108i 0.404989 0.294241i −0.366581 0.930386i \(-0.619472\pi\)
0.771570 + 0.636145i \(0.219472\pi\)
\(572\) 2.60553 + 3.58621i 0.108943 + 0.149947i
\(573\) 61.8001 20.0801i 2.58173 0.838856i
\(574\) −6.44437 −0.268983
\(575\) 0 0
\(576\) 5.79981 0.241659
\(577\) 39.5350 12.8457i 1.64587 0.534774i 0.668027 0.744137i \(-0.267139\pi\)
0.977838 + 0.209362i \(0.0671389\pi\)
\(578\) 5.43444 + 7.47987i 0.226043 + 0.311121i
\(579\) 65.8171 47.8189i 2.73526 1.98729i
\(580\) 0 0
\(581\) 9.45200 + 6.86728i 0.392135 + 0.284903i
\(582\) 32.8984i 1.36368i
\(583\) 7.02329 9.66673i 0.290875 0.400355i
\(584\) −4.61920 + 14.2164i −0.191144 + 0.588280i
\(585\) 0 0
\(586\) −2.11964 6.52359i −0.0875617 0.269487i
\(587\) −18.1913 5.91072i −0.750836 0.243962i −0.0914953 0.995806i \(-0.529165\pi\)
−0.659341 + 0.751844i \(0.729165\pi\)
\(588\) −10.2659 3.33560i −0.423359 0.137558i
\(589\) −2.73588 8.42016i −0.112730 0.346947i
\(590\) 0 0
\(591\) −1.03010 + 3.17031i −0.0423725 + 0.130409i
\(592\) 0.772856 1.06375i 0.0317642 0.0437197i
\(593\) 0.538428i 0.0221106i 0.999939 + 0.0110553i \(0.00351908\pi\)
−0.999939 + 0.0110553i \(0.996481\pi\)
\(594\) −12.3189 8.95022i −0.505451 0.367232i
\(595\) 0 0
\(596\) 1.35878 0.987213i 0.0556579 0.0404378i
\(597\) 44.4612 + 61.1956i 1.81968 + 2.50457i
\(598\) −17.8586 + 5.80261i −0.730292 + 0.237286i
\(599\) 38.4209 1.56983 0.784917 0.619601i \(-0.212705\pi\)
0.784917 + 0.619601i \(0.212705\pi\)
\(600\) 0 0
\(601\) 19.6034 0.799639 0.399820 0.916594i \(-0.369073\pi\)
0.399820 + 0.916594i \(0.369073\pi\)
\(602\) −7.50722 + 2.43924i −0.305971 + 0.0994162i
\(603\) −32.3863 44.5759i −1.31887 1.81527i
\(604\) −17.2048 + 12.5001i −0.700055 + 0.508620i
\(605\) 0 0
\(606\) 31.6323 + 22.9822i 1.28498 + 0.933590i
\(607\) 32.4415i 1.31676i 0.752685 + 0.658381i \(0.228758\pi\)
−0.752685 + 0.658381i \(0.771242\pi\)
\(608\) −0.982966 + 1.35294i −0.0398646 + 0.0548688i
\(609\) −12.7466 + 39.2300i −0.516518 + 1.58968i
\(610\) 0 0
\(611\) −1.36981 4.21584i −0.0554166 0.170555i
\(612\) −15.3601 4.99080i −0.620895 0.201741i
\(613\) −22.3216 7.25273i −0.901561 0.292935i −0.178680 0.983907i \(-0.557183\pi\)
−0.722881 + 0.690972i \(0.757183\pi\)
\(614\) 0.894685 + 2.75356i 0.0361065 + 0.111124i
\(615\) 0 0
\(616\) −1.03868 + 3.19672i −0.0418495 + 0.128799i
\(617\) −10.2353 + 14.0876i −0.412056 + 0.567147i −0.963718 0.266921i \(-0.913994\pi\)
0.551662 + 0.834068i \(0.313994\pi\)
\(618\) 7.81119i 0.314212i
\(619\) 10.1801 + 7.39624i 0.409171 + 0.297280i 0.773266 0.634082i \(-0.218622\pi\)
−0.364095 + 0.931362i \(0.618622\pi\)
\(620\) 0 0
\(621\) 52.1838 37.9137i 2.09406 1.52143i
\(622\) −12.1372 16.7054i −0.486657 0.669826i
\(623\) 5.78966 1.88117i 0.231958 0.0753676i
\(624\) 7.17242 0.287127
\(625\) 0 0
\(626\) 16.4272 0.656563
\(627\) 8.64992 2.81053i 0.345445 0.112242i
\(628\) −6.14318 8.45536i −0.245140 0.337406i
\(629\) −2.96218 + 2.15215i −0.118110 + 0.0858118i
\(630\) 0 0
\(631\) −33.7653 24.5319i −1.34418 0.976601i −0.999279 0.0379610i \(-0.987914\pi\)
−0.344897 0.938640i \(-0.612086\pi\)
\(632\) 3.46076i 0.137662i
\(633\) 37.1470 51.1285i 1.47646 2.03218i
\(634\) −5.10060 + 15.6980i −0.202571 + 0.623448i
\(635\) 0 0
\(636\) −5.97437 18.3872i −0.236899 0.729101i
\(637\) −8.36739 2.71873i −0.331528 0.107720i
\(638\) −13.2246 4.29692i −0.523565 0.170117i
\(639\) −0.547533 1.68513i −0.0216601 0.0666628i
\(640\) 0 0
\(641\) −4.44926 + 13.6934i −0.175735 + 0.540858i −0.999666 0.0258324i \(-0.991776\pi\)
0.823931 + 0.566690i \(0.191776\pi\)
\(642\) −32.7881 + 45.1290i −1.29404 + 1.78110i
\(643\) 30.1666i 1.18966i 0.803853 + 0.594828i \(0.202780\pi\)
−0.803853 + 0.594828i \(0.797220\pi\)
\(644\) −11.5191 8.36912i −0.453916 0.329790i
\(645\) 0 0
\(646\) 3.76748 2.73724i 0.148230 0.107695i
\(647\) −6.28212 8.64660i −0.246976 0.339933i 0.667474 0.744633i \(-0.267376\pi\)
−0.914449 + 0.404701i \(0.867376\pi\)
\(648\) −6.88413 + 2.23679i −0.270434 + 0.0878693i
\(649\) −16.6110 −0.652039
\(650\) 0 0
\(651\) −28.7925 −1.12847
\(652\) 9.90109 3.21706i 0.387757 0.125990i
\(653\) −5.97532 8.22432i −0.233832 0.321843i 0.675935 0.736961i \(-0.263740\pi\)
−0.909767 + 0.415119i \(0.863740\pi\)
\(654\) 24.7413 17.9756i 0.967461 0.702902i
\(655\) 0 0
\(656\) −2.84373 2.06609i −0.111029 0.0806674i
\(657\) 86.6959i 3.38233i
\(658\) 1.97568 2.71929i 0.0770201 0.106009i
\(659\) −9.61668 + 29.5971i −0.374613 + 1.15294i 0.569127 + 0.822250i \(0.307281\pi\)
−0.943740 + 0.330689i \(0.892719\pi\)
\(660\) 0 0
\(661\) 12.8131 + 39.4347i 0.498372 + 1.53383i 0.811635 + 0.584165i \(0.198578\pi\)
−0.313262 + 0.949667i \(0.601422\pi\)
\(662\) −26.1265 8.48901i −1.01543 0.329935i
\(663\) −18.9953 6.17194i −0.737715 0.239698i
\(664\) 1.96924 + 6.06071i 0.0764215 + 0.235201i
\(665\) 0 0
\(666\) −2.35655 + 7.25271i −0.0913144 + 0.281037i
\(667\) 34.6224 47.6536i 1.34058 1.84515i
\(668\) 2.12171i 0.0820913i
\(669\) 7.78797 + 5.65829i 0.301100 + 0.218762i
\(670\) 0 0
\(671\) 3.83849 2.78883i 0.148183 0.107661i
\(672\) 3.19672 + 4.39991i 0.123316 + 0.169730i
\(673\) −2.03998 + 0.662831i −0.0786356 + 0.0255503i −0.348071 0.937468i \(-0.613163\pi\)
0.269435 + 0.963019i \(0.413163\pi\)
\(674\) 2.74521 0.105742
\(675\) 0 0
\(676\) −7.15401 −0.275154
\(677\) 39.5147 12.8391i 1.51867 0.493446i 0.573274 0.819364i \(-0.305673\pi\)
0.945398 + 0.325918i \(0.105673\pi\)
\(678\) −10.5605 14.5353i −0.405575 0.558226i
\(679\) 16.4492 11.9510i 0.631263 0.458639i
\(680\) 0 0
\(681\) −39.3039 28.5560i −1.50613 1.09427i
\(682\) 9.70607i 0.371665i
\(683\) −16.9464 + 23.3247i −0.648436 + 0.892495i −0.999030 0.0440323i \(-0.985980\pi\)
0.350595 + 0.936527i \(0.385980\pi\)
\(684\) 2.99720 9.22445i 0.114601 0.352706i
\(685\) 0 0
\(686\) −6.02730 18.5501i −0.230123 0.708247i
\(687\) 14.3601 + 4.66589i 0.547874 + 0.178015i
\(688\) −4.09478 1.33047i −0.156112 0.0507238i
\(689\) −4.86950 14.9868i −0.185513 0.570951i
\(690\) 0 0
\(691\) −15.2050 + 46.7963i −0.578426 + 1.78021i 0.0457774 + 0.998952i \(0.485424\pi\)
−0.624204 + 0.781262i \(0.714576\pi\)
\(692\) 10.6475 14.6551i 0.404759 0.557103i
\(693\) 19.4945i 0.740535i
\(694\) −17.2637 12.5428i −0.655319 0.476117i
\(695\) 0 0
\(696\) −18.2021 + 13.2246i −0.689947 + 0.501276i
\(697\) 5.75339 + 7.91886i 0.217925 + 0.299948i
\(698\) 15.9445 5.18067i 0.603507 0.196091i
\(699\) 4.93309 0.186587
\(700\) 0 0
\(701\) −24.9783 −0.943419 −0.471709 0.881754i \(-0.656363\pi\)
−0.471709 + 0.881754i \(0.656363\pi\)
\(702\) −19.0986 + 6.20551i −0.720830 + 0.234212i
\(703\) −1.29247 1.77893i −0.0487462 0.0670935i
\(704\) −1.48322 + 1.07763i −0.0559011 + 0.0406145i
\(705\) 0 0
\(706\) −2.41785 1.75667i −0.0909969 0.0661131i
\(707\) 24.1650i 0.908817i
\(708\) −15.7980 + 21.7441i −0.593725 + 0.817193i
\(709\) −3.02602 + 9.31312i −0.113644 + 0.349762i −0.991662 0.128867i \(-0.958866\pi\)
0.878017 + 0.478629i \(0.158866\pi\)
\(710\) 0 0
\(711\) −6.20252 19.0894i −0.232613 0.715908i
\(712\) 3.15794 + 1.02608i 0.118349 + 0.0384538i
\(713\) 39.1032 + 12.7054i 1.46443 + 0.475821i
\(714\) −4.67995 14.4034i −0.175143 0.539034i
\(715\) 0 0
\(716\) 3.26337 10.0436i 0.121958 0.375348i
\(717\) −22.3182 + 30.7184i −0.833488 + 1.14720i
\(718\) 6.70494i 0.250226i
\(719\) −6.94474 5.04565i −0.258995 0.188171i 0.450709 0.892671i \(-0.351171\pi\)
−0.709704 + 0.704500i \(0.751171\pi\)
\(720\) 0 0
\(721\) 3.90559 2.83758i 0.145452 0.105677i
\(722\) −9.52408 13.1088i −0.354450 0.487858i
\(723\) −1.11574 + 0.362527i −0.0414950 + 0.0134825i
\(724\) −18.1561 −0.674768
\(725\) 0 0
\(726\) −22.6600 −0.840992
\(727\) −22.8408 + 7.42142i −0.847118 + 0.275245i −0.700238 0.713909i \(-0.746923\pi\)
−0.146880 + 0.989154i \(0.546923\pi\)
\(728\) 2.60553 + 3.58621i 0.0965675 + 0.132914i
\(729\) −25.8337 + 18.7693i −0.956802 + 0.695157i
\(730\) 0 0
\(731\) 9.69962 + 7.04719i 0.358754 + 0.260650i
\(732\) 7.67698i 0.283749i
\(733\) −11.1733 + 15.3787i −0.412695 + 0.568025i −0.963873 0.266362i \(-0.914178\pi\)
0.551178 + 0.834387i \(0.314178\pi\)
\(734\) −1.24119 + 3.82000i −0.0458133 + 0.140999i
\(735\) 0 0
\(736\) −2.39991 7.38615i −0.0884617 0.272257i
\(737\) 16.5647 + 5.38220i 0.610168 + 0.198256i
\(738\) 19.3888 + 6.29981i 0.713713 + 0.231899i
\(739\) 6.42507 + 19.7743i 0.236350 + 0.727411i 0.996939 + 0.0781776i \(0.0249101\pi\)
−0.760589 + 0.649233i \(0.775090\pi\)
\(740\) 0 0
\(741\) 3.70653 11.4075i 0.136163 0.419066i
\(742\) 7.02329 9.66673i 0.257833 0.354877i
\(743\) 6.53365i 0.239696i 0.992792 + 0.119848i \(0.0382408\pi\)
−0.992792 + 0.119848i \(0.961759\pi\)
\(744\) −12.7054 9.23102i −0.465803 0.338426i
\(745\) 0 0
\(746\) −21.5063 + 15.6252i −0.787401 + 0.572080i
\(747\) −21.7245 29.9012i −0.794858 1.09403i
\(748\) 4.85544 1.57763i 0.177533 0.0576838i
\(749\) −34.4755 −1.25971
\(750\) 0 0
\(751\) 27.9879 1.02129 0.510646 0.859791i \(-0.329406\pi\)
0.510646 + 0.859791i \(0.329406\pi\)
\(752\) 1.74363 0.566541i 0.0635838 0.0206596i
\(753\) −16.3307 22.4773i −0.595123 0.819117i
\(754\) −14.8359 + 10.7789i −0.540290 + 0.392544i
\(755\) 0 0
\(756\) −12.3189 8.95022i −0.448035 0.325516i
\(757\) 4.48558i 0.163031i −0.996672 0.0815156i \(-0.974024\pi\)
0.996672 0.0815156i \(-0.0259760\pi\)
\(758\) −9.18578 + 12.6431i −0.333643 + 0.459220i
\(759\) −13.0521 + 40.1702i −0.473761 + 1.45809i
\(760\) 0 0
\(761\) 0.138770 + 0.427091i 0.00503042 + 0.0154820i 0.953540 0.301266i \(-0.0974091\pi\)
−0.948510 + 0.316748i \(0.897409\pi\)
\(762\) −0.940237 0.305502i −0.0340612 0.0110672i
\(763\) 17.9756 + 5.84063i 0.650760 + 0.211445i
\(764\) 6.76906 + 20.8330i 0.244896 + 0.753712i
\(765\) 0 0
\(766\) 4.15489 12.7874i 0.150122 0.462028i
\(767\) −12.8764 + 17.7228i −0.464940 + 0.639935i
\(768\) 2.96645i 0.107042i
\(769\) 16.9783 + 12.3355i 0.612254 + 0.444829i 0.850207 0.526448i \(-0.176476\pi\)
−0.237953 + 0.971277i \(0.576476\pi\)
\(770\) 0 0
\(771\) 11.9498 8.68202i 0.430360 0.312675i
\(772\) 16.1199 + 22.1872i 0.580168 + 0.798533i
\(773\) −33.3262 + 10.8283i −1.19866 + 0.389468i −0.839268 0.543718i \(-0.817016\pi\)
−0.359392 + 0.933187i \(0.617016\pi\)
\(774\) 24.9711 0.897568
\(775\) 0 0
\(776\) 11.0902 0.398114
\(777\) −6.80099 + 2.20978i −0.243984 + 0.0792753i
\(778\) 14.7602 + 20.3157i 0.529180 + 0.728354i
\(779\) −4.75564 + 3.45517i −0.170388 + 0.123794i
\(780\) 0 0
\(781\) 0.453127 + 0.329216i 0.0162142 + 0.0117803i
\(782\) 21.6265i 0.773361i
\(783\) 37.0263 50.9623i 1.32321 1.82125i
\(784\) 1.12444 3.46068i 0.0401586 0.123596i
\(785\) 0 0
\(786\) −4.74659 14.6085i −0.169305 0.521068i
\(787\) −37.2807 12.1132i −1.32891 0.431790i −0.443367 0.896340i \(-0.646216\pi\)
−0.885547 + 0.464550i \(0.846216\pi\)
\(788\) −1.06872 0.347249i −0.0380717 0.0123702i
\(789\) 18.1606 + 55.8925i 0.646534 + 1.98983i
\(790\) 0 0
\(791\) 3.43132 10.5605i 0.122004 0.375489i
\(792\) 6.25003 8.60242i 0.222085 0.305674i
\(793\) 6.25724i 0.222201i
\(794\) 2.84628 + 2.06794i 0.101011 + 0.0733884i
\(795\) 0 0
\(796\) −20.6293 + 14.9880i −0.731185 + 0.531237i
\(797\) −5.07475 6.98479i −0.179757 0.247414i 0.709625 0.704580i \(-0.248865\pi\)
−0.889381 + 0.457166i \(0.848865\pi\)
\(798\) 8.64992 2.81053i 0.306204 0.0994917i
\(799\) −5.10532 −0.180613
\(800\) 0 0
\(801\) −19.2580 −0.680448
\(802\) 28.4076 9.23020i 1.00311 0.325930i
\(803\) 16.1084 + 22.1713i 0.568453 + 0.782408i
\(804\) 22.7993 16.5647i 0.804071 0.584192i
\(805\) 0 0
\(806\) −10.3557 7.52388i −0.364765 0.265017i
\(807\) 43.8854i 1.54484i
\(808\) −7.74739 + 10.6634i −0.272552 + 0.375136i
\(809\) 14.1830 43.6508i 0.498648 1.53468i −0.312546 0.949903i \(-0.601182\pi\)
0.811194 0.584778i \(-0.198818\pi\)
\(810\) 0 0
\(811\) 12.1734 + 37.4660i 0.427467 + 1.31561i 0.900612 + 0.434623i \(0.143119\pi\)
−0.473145 + 0.880984i \(0.656881\pi\)
\(812\) −13.2246 4.29692i −0.464091 0.150792i
\(813\) −35.4249 11.5102i −1.24240 0.403682i
\(814\) −0.744923 2.29264i −0.0261096 0.0803569i
\(815\) 0 0
\(816\) 2.55266 7.85627i 0.0893609 0.275025i
\(817\) −4.23216 + 5.82507i −0.148065 + 0.203794i
\(818\) 38.7628i 1.35531i
\(819\) −20.7993 15.1116i −0.726788 0.528042i
\(820\) 0 0
\(821\) −22.0672 + 16.0328i −0.770152 + 0.559548i −0.902007 0.431721i \(-0.857907\pi\)
0.131855 + 0.991269i \(0.457907\pi\)
\(822\) −34.0413 46.8538i −1.18733 1.63421i
\(823\) −5.83841 + 1.89701i −0.203514 + 0.0661258i −0.409000 0.912534i \(-0.634122\pi\)
0.205486 + 0.978660i \(0.434122\pi\)
\(824\) 2.63318 0.0917311
\(825\) 0 0
\(826\) −16.6110 −0.577971
\(827\) 41.9087 13.6170i 1.45731 0.473508i 0.530062 0.847959i \(-0.322169\pi\)
0.927247 + 0.374451i \(0.122169\pi\)
\(828\) 26.4755 + 36.4404i 0.920088 + 1.26639i
\(829\) 3.80236 2.76257i 0.132061 0.0959481i −0.519794 0.854292i \(-0.673991\pi\)
0.651855 + 0.758344i \(0.273991\pi\)
\(830\) 0 0
\(831\) 15.1958 + 11.0404i 0.527136 + 0.382987i
\(832\) 2.41785i 0.0838238i
\(833\) −5.95589 + 8.19758i −0.206359 + 0.284029i
\(834\) 7.29228 22.4433i 0.252511 0.777149i
\(835\) 0 0
\(836\) 0.947439 + 2.91592i 0.0327679 + 0.100849i
\(837\) 41.8183 + 13.5876i 1.44545 + 0.469656i
\(838\) −17.9848 5.84362i −0.621275 0.201864i
\(839\) 14.2747 + 43.9331i 0.492819 + 1.51674i 0.820328 + 0.571893i \(0.193791\pi\)
−0.327509 + 0.944848i \(0.606209\pi\)
\(840\) 0 0
\(841\) 8.81451 27.1283i 0.303949 0.935458i
\(842\) 12.9625 17.8414i 0.446718 0.614855i
\(843\) 59.5937i 2.05252i
\(844\) 17.2356 + 12.5224i 0.593274 + 0.431039i
\(845\) 0 0
\(846\) −8.60242 + 6.25003i −0.295757 + 0.214880i
\(847\) −8.23173 11.3300i −0.282846 0.389304i
\(848\) 6.19839 2.01398i 0.212854 0.0691604i
\(849\) −5.38938 −0.184963
\(850\) 0 0
\(851\) 10.2116 0.350048
\(852\) 0.861899 0.280048i 0.0295282 0.00959429i
\(853\) −7.43121 10.2282i −0.254440 0.350206i 0.662620 0.748956i \(-0.269444\pi\)
−0.917060 + 0.398749i \(0.869444\pi\)
\(854\) 3.83849 2.78883i 0.131350 0.0954317i
\(855\) 0 0
\(856\) −15.2131 11.0530i −0.519974 0.377783i
\(857\) 19.4162i 0.663245i 0.943412 + 0.331623i \(0.107596\pi\)
−0.943412 + 0.331623i \(0.892404\pi\)
\(858\) 7.72918 10.6383i 0.263870 0.363186i
\(859\) −2.88593 + 8.88197i −0.0984665 + 0.303049i −0.988142 0.153545i \(-0.950931\pi\)
0.889675 + 0.456594i \(0.150931\pi\)
\(860\) 0 0
\(861\) 5.90744 + 18.1812i 0.201325 + 0.619615i
\(862\) 8.75521 + 2.84474i 0.298204 + 0.0968923i
\(863\) −15.5445 5.05071i −0.529141 0.171928i 0.0322489 0.999480i \(-0.489733\pi\)
−0.561390 + 0.827552i \(0.689733\pi\)
\(864\) −2.56654 7.89900i −0.0873155 0.268729i
\(865\) 0 0
\(866\) 10.7529 33.0941i 0.365400 1.12458i
\(867\) 16.1210 22.1886i 0.547497 0.753565i
\(868\) 9.70607i 0.329445i
\(869\) 5.13308 + 3.72940i 0.174128 + 0.126511i
\(870\) 0 0
\(871\) 18.5829 13.5013i 0.629659 0.457474i
\(872\) 6.05964 + 8.34038i 0.205205 + 0.282441i
\(873\) −61.1728 + 19.8763i −2.07039 + 0.672709i
\(874\) −12.9877 −0.439315
\(875\) 0 0
\(876\) 44.3426 1.49820
\(877\) −33.7673 + 10.9717i −1.14024 + 0.370487i −0.817459 0.575986i \(-0.804618\pi\)
−0.322782 + 0.946473i \(0.604618\pi\)
\(878\) 4.90792 + 6.75517i 0.165634 + 0.227976i
\(879\) −16.4617 + 11.9601i −0.555240 + 0.403405i
\(880\) 0 0
\(881\) 25.5378 + 18.5543i 0.860390 + 0.625110i 0.927991 0.372602i \(-0.121534\pi\)
−0.0676008 + 0.997712i \(0.521534\pi\)
\(882\) 21.1042i 0.710615i
\(883\) 20.5315 28.2592i 0.690940 0.950997i −0.309060 0.951042i \(-0.600014\pi\)
1.00000 4.54670e-5i \(1.44726e-5\pi\)
\(884\) 2.08058 6.40337i 0.0699775 0.215369i
\(885\) 0 0
\(886\) −0.370470 1.14019i −0.0124462 0.0383054i
\(887\) 40.8311 + 13.2668i 1.37097 + 0.445456i 0.899692 0.436526i \(-0.143791\pi\)
0.471282 + 0.881982i \(0.343791\pi\)
\(888\) −3.70957 1.20531i −0.124485 0.0404476i
\(889\) −0.188810 0.581099i −0.00633250 0.0194894i
\(890\) 0 0
\(891\) −4.10085 + 12.6211i −0.137384 + 0.422823i
\(892\) −1.90743 + 2.62535i −0.0638655 + 0.0879033i
\(893\) 3.06598i 0.102599i
\(894\) −4.03076 2.92852i −0.134809 0.0979442i
\(895\) 0 0
\(896\) −1.48322 + 1.07763i −0.0495510 + 0.0360009i
\(897\) 32.7413 + 45.0646i 1.09320 + 1.50466i
\(898\) −31.1902 + 10.1343i −1.04083 + 0.338186i
\(899\) 40.1532 1.33918
\(900\) 0 0
\(901\) −18.1487 −0.604622
\(902\) −6.12896 + 1.99142i −0.204072 + 0.0663070i
\(903\) 13.7635 + 18.9438i 0.458020 + 0.630410i
\(904\) 4.89991 3.55999i 0.162968 0.118404i
\(905\) 0 0
\(906\) 51.0373 + 37.0808i 1.69560 + 1.23193i
\(907\) 39.8259i 1.32240i 0.750211 + 0.661199i \(0.229952\pi\)
−0.750211 + 0.661199i \(0.770048\pi\)
\(908\) 9.62631 13.2495i 0.319460 0.439700i
\(909\) 23.6229 72.7038i 0.783522 2.41143i
\(910\) 0 0
\(911\) −0.522189 1.60713i −0.0173009 0.0532467i 0.942033 0.335519i \(-0.108912\pi\)
−0.959334 + 0.282273i \(0.908912\pi\)
\(912\) 4.71806 + 1.53299i 0.156230 + 0.0507623i
\(913\) 11.1115 + 3.61034i 0.367737 + 0.119485i
\(914\) −6.11496 18.8199i −0.202265 0.622508i
\(915\) 0 0
\(916\) −1.57289 + 4.84085i −0.0519697 + 0.159946i
\(917\) 5.57995 7.68015i 0.184266 0.253621i
\(918\) 23.1281i 0.763340i
\(919\) −24.2013 17.5833i −0.798327 0.580019i 0.112096 0.993697i \(-0.464244\pi\)
−0.910423 + 0.413679i \(0.864244\pi\)
\(920\) 0 0
\(921\) 6.94836 5.04828i 0.228956 0.166346i
\(922\) 5.52504 + 7.60456i 0.181957 + 0.250443i
\(923\) 0.702504 0.228257i 0.0231232 0.00751318i
\(924\) 9.97091 0.328019
\(925\) 0 0
\(926\) 17.7329 0.582739
\(927\) −14.5245 + 4.71929i −0.477047 + 0.155002i
\(928\) −4.45805 6.13597i −0.146343 0.201423i
\(929\) −12.8664 + 9.34795i −0.422131 + 0.306696i −0.778495 0.627651i \(-0.784017\pi\)
0.356363 + 0.934347i \(0.384017\pi\)
\(930\) 0 0
\(931\) −4.92303 3.57679i −0.161346 0.117225i
\(932\) 1.66296i 0.0544721i
\(933\) −36.0043 + 49.5557i −1.17873 + 1.62238i
\(934\) −6.75535 + 20.7908i −0.221042 + 0.680297i
\(935\) 0 0
\(936\) −4.33337 13.3367i −0.141640 0.435925i
\(937\) −44.0026 14.2973i −1.43750 0.467073i −0.516384 0.856357i \(-0.672722\pi\)
−0.921118 + 0.389284i \(0.872722\pi\)
\(938\) 16.5647 + 5.38220i 0.540856 + 0.175735i
\(939\) −15.0585 46.3454i −0.491417 1.51243i
\(940\) 0 0
\(941\) −3.60650 + 11.0997i −0.117569 + 0.361839i −0.992474 0.122455i \(-0.960923\pi\)
0.874906 + 0.484294i \(0.160923\pi\)
\(942\) −18.2234 + 25.0824i −0.593751 + 0.817228i
\(943\) 27.2988i 0.888971i
\(944\) −7.33001 5.32556i −0.238571 0.173332i
\(945\) 0 0
\(946\) −6.38602 + 4.63972i −0.207628 + 0.150850i
\(947\) −1.72435 2.37336i −0.0560337 0.0771238i 0.780081 0.625679i \(-0.215178\pi\)
−0.836114 + 0.548555i \(0.815178\pi\)
\(948\) 9.76370 3.17242i 0.317110 0.103035i
\(949\) 36.1421 1.17322
\(950\) 0 0
\(951\) 48.9638 1.58776
\(952\) 4.85544 1.57763i 0.157366 0.0511313i
\(953\) 5.84085 + 8.03924i 0.189204 + 0.260417i 0.893072 0.449914i \(-0.148545\pi\)
−0.703868 + 0.710331i \(0.748545\pi\)
\(954\) −30.5805 + 22.2180i −0.990080 + 0.719335i
\(955\) 0 0
\(956\) −10.3553 7.52354i −0.334913 0.243329i
\(957\) 41.2488i 1.33339i
\(958\) −3.59168 + 4.94352i −0.116042 + 0.159718i
\(959\) 11.0607 34.0413i 0.357168 1.09925i
\(960\) 0 0
\(961\) −0.918471 2.82676i −0.0296281 0.0911859i
\(962\) −3.02354 0.982407i −0.0974828 0.0316741i
\(963\) 103.725 + 33.7021i 3.34248 + 1.08604i
\(964\) −0.122209 0.376121i −0.00393610 0.0121141i
\(965\) 0 0
\(966\) −13.0521 + 40.1702i −0.419944 + 1.29246i
\(967\) −26.6781 + 36.7193i −0.857910 + 1.18081i 0.124153 + 0.992263i \(0.460379\pi\)
−0.982064 + 0.188549i \(0.939621\pi\)
\(968\) 7.63877i 0.245519i
\(969\) −11.1760 8.11987i −0.359026 0.260848i
\(970\) 0 0
\(971\) 3.78844 2.75246i 0.121577 0.0883307i −0.525335 0.850895i \(-0.676060\pi\)
0.646912 + 0.762565i \(0.276060\pi\)
\(972\) −2.02444 2.78640i −0.0649338 0.0893737i
\(973\) 13.8707 4.50688i 0.444675 0.144484i
\(974\) −5.06189 −0.162194
\(975\) 0 0
\(976\) 2.58794 0.0828379
\(977\) 3.05103 0.991339i 0.0976110 0.0317157i −0.259804 0.965661i \(-0.583658\pi\)
0.357415 + 0.933946i \(0.383658\pi\)
\(978\) −18.1523 24.9845i −0.580447 0.798917i
\(979\) 4.92498 3.57820i 0.157403 0.114360i
\(980\) 0 0
\(981\) −48.3726 35.1448i −1.54442 1.12209i
\(982\) 2.38228i 0.0760216i
\(983\) 11.5038 15.8337i 0.366915 0.505015i −0.585144 0.810929i \(-0.698962\pi\)
0.952059 + 0.305914i \(0.0989621\pi\)
\(984\) −3.22218 + 9.91686i −0.102719 + 0.316138i
\(985\) 0 0
\(986\) 6.52652 + 20.0866i 0.207847 + 0.639687i
\(987\) −9.48290 3.08118i −0.301844 0.0980751i
\(988\) 3.84552 + 1.24949i 0.122342 + 0.0397514i
\(989\) −10.3328 31.8011i −0.328564 1.01122i
\(990\) 0 0
\(991\) 13.9762 43.0144i 0.443969 1.36640i −0.439641 0.898173i \(-0.644894\pi\)
0.883610 0.468223i \(-0.155106\pi\)
\(992\) 3.11181 4.28304i 0.0988000 0.135987i
\(993\) 81.4913i 2.58605i
\(994\) 0.453127 + 0.329216i 0.0143723 + 0.0104421i
\(995\) 0 0
\(996\) 15.2937 11.1115i 0.484598 0.352081i
\(997\) −34.1335 46.9808i −1.08102 1.48790i −0.858394 0.512991i \(-0.828537\pi\)
−0.222626 0.974904i \(-0.571463\pi\)
\(998\) 0.0478679 0.0155532i 0.00151523 0.000492329i
\(999\) 10.9206 0.345512
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 250.2.e.c.99.3 16
5.2 odd 4 50.2.d.b.31.1 yes 8
5.3 odd 4 250.2.d.d.151.2 8
5.4 even 2 inner 250.2.e.c.99.2 16
15.2 even 4 450.2.h.e.181.1 8
20.7 even 4 400.2.u.d.81.2 8
25.2 odd 20 1250.2.a.l.1.4 4
25.3 odd 20 250.2.d.d.101.2 8
25.4 even 10 inner 250.2.e.c.149.3 16
25.11 even 5 1250.2.b.e.1249.4 8
25.14 even 10 1250.2.b.e.1249.5 8
25.21 even 5 inner 250.2.e.c.149.2 16
25.22 odd 20 50.2.d.b.21.1 8
25.23 odd 20 1250.2.a.f.1.1 4
75.47 even 20 450.2.h.e.271.1 8
100.23 even 20 10000.2.a.x.1.4 4
100.27 even 20 10000.2.a.t.1.1 4
100.47 even 20 400.2.u.d.321.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.2.d.b.21.1 8 25.22 odd 20
50.2.d.b.31.1 yes 8 5.2 odd 4
250.2.d.d.101.2 8 25.3 odd 20
250.2.d.d.151.2 8 5.3 odd 4
250.2.e.c.99.2 16 5.4 even 2 inner
250.2.e.c.99.3 16 1.1 even 1 trivial
250.2.e.c.149.2 16 25.21 even 5 inner
250.2.e.c.149.3 16 25.4 even 10 inner
400.2.u.d.81.2 8 20.7 even 4
400.2.u.d.321.2 8 100.47 even 20
450.2.h.e.181.1 8 15.2 even 4
450.2.h.e.271.1 8 75.47 even 20
1250.2.a.f.1.1 4 25.23 odd 20
1250.2.a.l.1.4 4 25.2 odd 20
1250.2.b.e.1249.4 8 25.11 even 5
1250.2.b.e.1249.5 8 25.14 even 10
10000.2.a.t.1.1 4 100.27 even 20
10000.2.a.x.1.4 4 100.23 even 20