Properties

Label 252.3.g.b.127.3
Level $252$
Weight $3$
Character 252.127
Analytic conductor $6.867$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,3,Mod(127,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{19} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.3
Root \(-1.15503 + 0.816025i\) of defining polynomial
Character \(\chi\) \(=\) 252.127
Dual form 252.3.g.b.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42562 - 1.40272i) q^{2} +(0.0647610 + 3.99948i) q^{4} -1.94731 q^{5} -2.64575i q^{7} +(5.51781 - 5.79256i) q^{8} +(2.77611 + 2.73152i) q^{10} +1.01531i q^{11} +3.44342 q^{13} +(-3.71124 + 3.77182i) q^{14} +(-15.9916 + 0.518020i) q^{16} -26.4211 q^{17} -33.7546i q^{19} +(-0.126110 - 7.78820i) q^{20} +(1.42420 - 1.44744i) q^{22} -2.98330i q^{23} -21.2080 q^{25} +(-4.90899 - 4.83015i) q^{26} +(10.5816 - 0.171342i) q^{28} -30.3904 q^{29} -0.713577i q^{31} +(23.5245 + 21.6932i) q^{32} +(37.6663 + 37.0613i) q^{34} +5.15209i q^{35} -60.0588 q^{37} +(-47.3482 + 48.1210i) q^{38} +(-10.7449 + 11.2799i) q^{40} -2.67381 q^{41} +6.69857i q^{43} +(-4.06071 + 0.0657526i) q^{44} +(-4.18473 + 4.25304i) q^{46} -24.3012i q^{47} -7.00000 q^{49} +(30.2345 + 29.7489i) q^{50} +(0.222999 + 13.7719i) q^{52} +65.8324 q^{53} -1.97712i q^{55} +(-15.3257 - 14.5988i) q^{56} +(43.3250 + 42.6291i) q^{58} -33.7709i q^{59} -81.7452 q^{61} +(-1.00095 + 1.01729i) q^{62} +(-3.10744 - 63.9245i) q^{64} -6.70539 q^{65} +62.6486i q^{67} +(-1.71106 - 105.670i) q^{68} +(7.22693 - 7.34490i) q^{70} -132.221i q^{71} +100.072 q^{73} +(85.6207 + 84.2455i) q^{74} +(135.001 - 2.18598i) q^{76} +2.68626 q^{77} -97.5751i q^{79} +(31.1406 - 1.00874i) q^{80} +(3.81183 + 3.75061i) q^{82} +87.9287i q^{83} +51.4499 q^{85} +(9.39621 - 9.54958i) q^{86} +(5.88125 + 5.60230i) q^{88} +110.387 q^{89} -9.11043i q^{91} +(11.9316 - 0.193201i) q^{92} +(-34.0878 + 34.6442i) q^{94} +65.7305i q^{95} +35.6839 q^{97} +(9.97931 + 9.81903i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 2 q^{4} - 8 q^{5} + 10 q^{8} + 28 q^{10} - 24 q^{13} + 14 q^{14} - 14 q^{16} + 40 q^{17} + 20 q^{20} - 88 q^{22} + 180 q^{25} - 100 q^{26} + 14 q^{28} - 72 q^{29} - 142 q^{32} - 100 q^{34}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42562 1.40272i −0.712808 0.701359i
\(3\) 0 0
\(4\) 0.0647610 + 3.99948i 0.0161903 + 0.999869i
\(5\) −1.94731 −0.389461 −0.194731 0.980857i \(-0.562383\pi\)
−0.194731 + 0.980857i \(0.562383\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 5.51781 5.79256i 0.689727 0.724070i
\(9\) 0 0
\(10\) 2.77611 + 2.73152i 0.277611 + 0.273152i
\(11\) 1.01531i 0.0923010i 0.998934 + 0.0461505i \(0.0146954\pi\)
−0.998934 + 0.0461505i \(0.985305\pi\)
\(12\) 0 0
\(13\) 3.44342 0.264878 0.132439 0.991191i \(-0.457719\pi\)
0.132439 + 0.991191i \(0.457719\pi\)
\(14\) −3.71124 + 3.77182i −0.265089 + 0.269416i
\(15\) 0 0
\(16\) −15.9916 + 0.518020i −0.999476 + 0.0323763i
\(17\) −26.4211 −1.55418 −0.777090 0.629389i \(-0.783305\pi\)
−0.777090 + 0.629389i \(0.783305\pi\)
\(18\) 0 0
\(19\) 33.7546i 1.77656i −0.459306 0.888278i \(-0.651902\pi\)
0.459306 0.888278i \(-0.348098\pi\)
\(20\) −0.126110 7.78820i −0.00630548 0.389410i
\(21\) 0 0
\(22\) 1.42420 1.44744i 0.0647362 0.0657929i
\(23\) 2.98330i 0.129709i −0.997895 0.0648543i \(-0.979342\pi\)
0.997895 0.0648543i \(-0.0206583\pi\)
\(24\) 0 0
\(25\) −21.2080 −0.848320
\(26\) −4.90899 4.83015i −0.188807 0.185775i
\(27\) 0 0
\(28\) 10.5816 0.171342i 0.377915 0.00611934i
\(29\) −30.3904 −1.04794 −0.523972 0.851736i \(-0.675550\pi\)
−0.523972 + 0.851736i \(0.675550\pi\)
\(30\) 0 0
\(31\) 0.713577i 0.0230186i −0.999934 0.0115093i \(-0.996336\pi\)
0.999934 0.0115093i \(-0.00366361\pi\)
\(32\) 23.5245 + 21.6932i 0.735142 + 0.677914i
\(33\) 0 0
\(34\) 37.6663 + 37.0613i 1.10783 + 1.09004i
\(35\) 5.15209i 0.147202i
\(36\) 0 0
\(37\) −60.0588 −1.62321 −0.811605 0.584207i \(-0.801406\pi\)
−0.811605 + 0.584207i \(0.801406\pi\)
\(38\) −47.3482 + 48.1210i −1.24600 + 1.26634i
\(39\) 0 0
\(40\) −10.7449 + 11.2799i −0.268622 + 0.281997i
\(41\) −2.67381 −0.0652149 −0.0326075 0.999468i \(-0.510381\pi\)
−0.0326075 + 0.999468i \(0.510381\pi\)
\(42\) 0 0
\(43\) 6.69857i 0.155781i 0.996962 + 0.0778903i \(0.0248184\pi\)
−0.996962 + 0.0778903i \(0.975182\pi\)
\(44\) −4.06071 + 0.0657526i −0.0922889 + 0.00149438i
\(45\) 0 0
\(46\) −4.18473 + 4.25304i −0.0909723 + 0.0924573i
\(47\) 24.3012i 0.517048i −0.966005 0.258524i \(-0.916764\pi\)
0.966005 0.258524i \(-0.0832361\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 30.2345 + 29.7489i 0.604689 + 0.594977i
\(51\) 0 0
\(52\) 0.222999 + 13.7719i 0.00428845 + 0.264844i
\(53\) 65.8324 1.24212 0.621061 0.783763i \(-0.286702\pi\)
0.621061 + 0.783763i \(0.286702\pi\)
\(54\) 0 0
\(55\) 1.97712i 0.0359477i
\(56\) −15.3257 14.5988i −0.273673 0.260692i
\(57\) 0 0
\(58\) 43.3250 + 42.6291i 0.746983 + 0.734985i
\(59\) 33.7709i 0.572388i −0.958172 0.286194i \(-0.907610\pi\)
0.958172 0.286194i \(-0.0923901\pi\)
\(60\) 0 0
\(61\) −81.7452 −1.34009 −0.670043 0.742323i \(-0.733724\pi\)
−0.670043 + 0.742323i \(0.733724\pi\)
\(62\) −1.00095 + 1.01729i −0.0161443 + 0.0164079i
\(63\) 0 0
\(64\) −3.10744 63.9245i −0.0485538 0.998821i
\(65\) −6.70539 −0.103160
\(66\) 0 0
\(67\) 62.6486i 0.935054i 0.883979 + 0.467527i \(0.154855\pi\)
−0.883979 + 0.467527i \(0.845145\pi\)
\(68\) −1.71106 105.670i −0.0251626 1.55398i
\(69\) 0 0
\(70\) 7.22693 7.34490i 0.103242 0.104927i
\(71\) 132.221i 1.86226i −0.364682 0.931132i \(-0.618822\pi\)
0.364682 0.931132i \(-0.381178\pi\)
\(72\) 0 0
\(73\) 100.072 1.37084 0.685422 0.728146i \(-0.259618\pi\)
0.685422 + 0.728146i \(0.259618\pi\)
\(74\) 85.6207 + 84.2455i 1.15704 + 1.13845i
\(75\) 0 0
\(76\) 135.001 2.18598i 1.77632 0.0287629i
\(77\) 2.68626 0.0348865
\(78\) 0 0
\(79\) 97.5751i 1.23513i −0.786521 0.617564i \(-0.788120\pi\)
0.786521 0.617564i \(-0.211880\pi\)
\(80\) 31.1406 1.00874i 0.389257 0.0126093i
\(81\) 0 0
\(82\) 3.81183 + 3.75061i 0.0464857 + 0.0457391i
\(83\) 87.9287i 1.05938i 0.848191 + 0.529691i \(0.177692\pi\)
−0.848191 + 0.529691i \(0.822308\pi\)
\(84\) 0 0
\(85\) 51.4499 0.605293
\(86\) 9.39621 9.54958i 0.109258 0.111042i
\(87\) 0 0
\(88\) 5.88125 + 5.60230i 0.0668323 + 0.0636625i
\(89\) 110.387 1.24031 0.620154 0.784480i \(-0.287070\pi\)
0.620154 + 0.784480i \(0.287070\pi\)
\(90\) 0 0
\(91\) 9.11043i 0.100115i
\(92\) 11.9316 0.193201i 0.129692 0.00210002i
\(93\) 0 0
\(94\) −34.0878 + 34.6442i −0.362636 + 0.368556i
\(95\) 65.7305i 0.691900i
\(96\) 0 0
\(97\) 35.6839 0.367876 0.183938 0.982938i \(-0.441116\pi\)
0.183938 + 0.982938i \(0.441116\pi\)
\(98\) 9.97931 + 9.81903i 0.101830 + 0.100194i
\(99\) 0 0
\(100\) −1.37345 84.8209i −0.0137345 0.848209i
\(101\) 56.6957 0.561344 0.280672 0.959804i \(-0.409443\pi\)
0.280672 + 0.959804i \(0.409443\pi\)
\(102\) 0 0
\(103\) 143.694i 1.39509i −0.716541 0.697545i \(-0.754276\pi\)
0.716541 0.697545i \(-0.245724\pi\)
\(104\) 19.0001 19.9462i 0.182694 0.191790i
\(105\) 0 0
\(106\) −93.8518 92.3444i −0.885394 0.871173i
\(107\) 170.939i 1.59756i 0.601625 + 0.798779i \(0.294520\pi\)
−0.601625 + 0.798779i \(0.705480\pi\)
\(108\) 0 0
\(109\) 7.83710 0.0719000 0.0359500 0.999354i \(-0.488554\pi\)
0.0359500 + 0.999354i \(0.488554\pi\)
\(110\) −2.77334 + 2.81861i −0.0252122 + 0.0256238i
\(111\) 0 0
\(112\) 1.37055 + 42.3098i 0.0122371 + 0.377766i
\(113\) −179.807 −1.59121 −0.795607 0.605813i \(-0.792848\pi\)
−0.795607 + 0.605813i \(0.792848\pi\)
\(114\) 0 0
\(115\) 5.80939i 0.0505165i
\(116\) −1.96811 121.546i −0.0169665 1.04781i
\(117\) 0 0
\(118\) −47.3710 + 48.1443i −0.401449 + 0.408002i
\(119\) 69.9036i 0.587425i
\(120\) 0 0
\(121\) 119.969 0.991481
\(122\) 116.537 + 114.666i 0.955223 + 0.939881i
\(123\) 0 0
\(124\) 2.85393 0.0462120i 0.0230156 0.000372677i
\(125\) 89.9811 0.719849
\(126\) 0 0
\(127\) 130.862i 1.03041i 0.857068 + 0.515204i \(0.172284\pi\)
−0.857068 + 0.515204i \(0.827716\pi\)
\(128\) −85.2381 + 95.4907i −0.665923 + 0.746021i
\(129\) 0 0
\(130\) 9.55931 + 9.40578i 0.0735332 + 0.0723521i
\(131\) 190.151i 1.45154i −0.687939 0.725768i \(-0.741485\pi\)
0.687939 0.725768i \(-0.258515\pi\)
\(132\) 0 0
\(133\) −89.3062 −0.671475
\(134\) 87.8784 89.3128i 0.655809 0.666514i
\(135\) 0 0
\(136\) −145.787 + 153.046i −1.07196 + 1.12534i
\(137\) −248.425 −1.81332 −0.906662 0.421859i \(-0.861378\pi\)
−0.906662 + 0.421859i \(0.861378\pi\)
\(138\) 0 0
\(139\) 88.3746i 0.635789i 0.948126 + 0.317894i \(0.102976\pi\)
−0.948126 + 0.317894i \(0.897024\pi\)
\(140\) −20.6056 + 0.333654i −0.147183 + 0.00238325i
\(141\) 0 0
\(142\) −185.469 + 188.496i −1.30612 + 1.32744i
\(143\) 3.49614i 0.0244485i
\(144\) 0 0
\(145\) 59.1794 0.408133
\(146\) −142.664 140.372i −0.977148 0.961454i
\(147\) 0 0
\(148\) −3.88947 240.204i −0.0262802 1.62300i
\(149\) 89.3854 0.599902 0.299951 0.953955i \(-0.403030\pi\)
0.299951 + 0.953955i \(0.403030\pi\)
\(150\) 0 0
\(151\) 197.560i 1.30834i 0.756346 + 0.654172i \(0.226983\pi\)
−0.756346 + 0.654172i \(0.773017\pi\)
\(152\) −195.525 186.251i −1.28635 1.22534i
\(153\) 0 0
\(154\) −3.82957 3.76807i −0.0248674 0.0244680i
\(155\) 1.38955i 0.00896486i
\(156\) 0 0
\(157\) 195.026 1.24220 0.621101 0.783731i \(-0.286686\pi\)
0.621101 + 0.783731i \(0.286686\pi\)
\(158\) −136.870 + 139.105i −0.866268 + 0.880409i
\(159\) 0 0
\(160\) −45.8095 42.2434i −0.286309 0.264021i
\(161\) −7.89306 −0.0490252
\(162\) 0 0
\(163\) 119.613i 0.733823i 0.930256 + 0.366911i \(0.119585\pi\)
−0.930256 + 0.366911i \(0.880415\pi\)
\(164\) −0.173159 10.6938i −0.00105585 0.0652064i
\(165\) 0 0
\(166\) 123.339 125.353i 0.743007 0.755136i
\(167\) 72.7649i 0.435718i −0.975980 0.217859i \(-0.930093\pi\)
0.975980 0.217859i \(-0.0699073\pi\)
\(168\) 0 0
\(169\) −157.143 −0.929839
\(170\) −73.3478 72.1697i −0.431458 0.424528i
\(171\) 0 0
\(172\) −26.7908 + 0.433806i −0.155760 + 0.00252213i
\(173\) −9.89253 −0.0571822 −0.0285911 0.999591i \(-0.509102\pi\)
−0.0285911 + 0.999591i \(0.509102\pi\)
\(174\) 0 0
\(175\) 56.1111i 0.320635i
\(176\) −0.525952 16.2365i −0.00298836 0.0922526i
\(177\) 0 0
\(178\) −157.370 154.842i −0.884101 0.869901i
\(179\) 251.994i 1.40779i 0.710305 + 0.703895i \(0.248557\pi\)
−0.710305 + 0.703895i \(0.751443\pi\)
\(180\) 0 0
\(181\) −299.047 −1.65219 −0.826097 0.563528i \(-0.809444\pi\)
−0.826097 + 0.563528i \(0.809444\pi\)
\(182\) −12.7794 + 12.9880i −0.0702163 + 0.0713625i
\(183\) 0 0
\(184\) −17.2809 16.4613i −0.0939181 0.0894635i
\(185\) 116.953 0.632177
\(186\) 0 0
\(187\) 26.8256i 0.143452i
\(188\) 97.1923 1.57377i 0.516980 0.00837114i
\(189\) 0 0
\(190\) 92.2014 93.7064i 0.485270 0.493192i
\(191\) 121.179i 0.634444i −0.948351 0.317222i \(-0.897250\pi\)
0.948351 0.317222i \(-0.102750\pi\)
\(192\) 0 0
\(193\) 110.062 0.570270 0.285135 0.958487i \(-0.407962\pi\)
0.285135 + 0.958487i \(0.407962\pi\)
\(194\) −50.8716 50.0545i −0.262225 0.258013i
\(195\) 0 0
\(196\) −0.453327 27.9963i −0.00231289 0.142838i
\(197\) 78.6134 0.399053 0.199527 0.979892i \(-0.436060\pi\)
0.199527 + 0.979892i \(0.436060\pi\)
\(198\) 0 0
\(199\) 89.9183i 0.451851i −0.974145 0.225925i \(-0.927459\pi\)
0.974145 0.225925i \(-0.0725405\pi\)
\(200\) −117.022 + 122.849i −0.585109 + 0.614243i
\(201\) 0 0
\(202\) −80.8263 79.5281i −0.400130 0.393704i
\(203\) 80.4054i 0.396086i
\(204\) 0 0
\(205\) 5.20673 0.0253987
\(206\) −201.563 + 204.853i −0.978460 + 0.994432i
\(207\) 0 0
\(208\) −55.0658 + 1.78376i −0.264740 + 0.00857577i
\(209\) 34.2714 0.163978
\(210\) 0 0
\(211\) 146.363i 0.693663i 0.937927 + 0.346832i \(0.112742\pi\)
−0.937927 + 0.346832i \(0.887258\pi\)
\(212\) 4.26337 + 263.295i 0.0201103 + 1.24196i
\(213\) 0 0
\(214\) 239.779 243.693i 1.12046 1.13875i
\(215\) 13.0442i 0.0606705i
\(216\) 0 0
\(217\) −1.88795 −0.00870022
\(218\) −11.1727 10.9932i −0.0512509 0.0504277i
\(219\) 0 0
\(220\) 7.90745 0.128040i 0.0359429 0.000582002i
\(221\) −90.9788 −0.411669
\(222\) 0 0
\(223\) 137.385i 0.616074i −0.951374 0.308037i \(-0.900328\pi\)
0.951374 0.308037i \(-0.0996721\pi\)
\(224\) 57.3949 62.2401i 0.256227 0.277857i
\(225\) 0 0
\(226\) 256.336 + 252.219i 1.13423 + 1.11601i
\(227\) 61.6479i 0.271577i 0.990738 + 0.135788i \(0.0433567\pi\)
−0.990738 + 0.135788i \(0.956643\pi\)
\(228\) 0 0
\(229\) 313.417 1.36863 0.684316 0.729186i \(-0.260101\pi\)
0.684316 + 0.729186i \(0.260101\pi\)
\(230\) 8.14894 8.28196i 0.0354302 0.0360085i
\(231\) 0 0
\(232\) −167.688 + 176.038i −0.722795 + 0.758784i
\(233\) 142.259 0.610554 0.305277 0.952264i \(-0.401251\pi\)
0.305277 + 0.952264i \(0.401251\pi\)
\(234\) 0 0
\(235\) 47.3220i 0.201370i
\(236\) 135.066 2.18704i 0.572313 0.00926710i
\(237\) 0 0
\(238\) 98.0551 99.6557i 0.411996 0.418721i
\(239\) 164.416i 0.687933i −0.938982 0.343966i \(-0.888229\pi\)
0.938982 0.343966i \(-0.111771\pi\)
\(240\) 0 0
\(241\) 69.0501 0.286515 0.143257 0.989685i \(-0.454242\pi\)
0.143257 + 0.989685i \(0.454242\pi\)
\(242\) −171.030 168.283i −0.706735 0.695384i
\(243\) 0 0
\(244\) −5.29390 326.938i −0.0216963 1.33991i
\(245\) 13.6311 0.0556373
\(246\) 0 0
\(247\) 116.231i 0.470571i
\(248\) −4.13344 3.93739i −0.0166671 0.0158766i
\(249\) 0 0
\(250\) −128.278 126.218i −0.513114 0.504873i
\(251\) 41.8933i 0.166906i −0.996512 0.0834528i \(-0.973405\pi\)
0.996512 0.0834528i \(-0.0265948\pi\)
\(252\) 0 0
\(253\) 3.02897 0.0119722
\(254\) 183.562 186.559i 0.722686 0.734483i
\(255\) 0 0
\(256\) 255.463 16.5680i 0.997904 0.0647186i
\(257\) −215.796 −0.839671 −0.419836 0.907600i \(-0.637912\pi\)
−0.419836 + 0.907600i \(0.637912\pi\)
\(258\) 0 0
\(259\) 158.901i 0.613516i
\(260\) −0.434248 26.8180i −0.00167018 0.103146i
\(261\) 0 0
\(262\) −266.729 + 271.083i −1.01805 + 1.03467i
\(263\) 111.918i 0.425543i −0.977102 0.212772i \(-0.931751\pi\)
0.977102 0.212772i \(-0.0682490\pi\)
\(264\) 0 0
\(265\) −128.196 −0.483758
\(266\) 127.316 + 125.271i 0.478633 + 0.470945i
\(267\) 0 0
\(268\) −250.562 + 4.05719i −0.934931 + 0.0151388i
\(269\) 131.483 0.488784 0.244392 0.969677i \(-0.421412\pi\)
0.244392 + 0.969677i \(0.421412\pi\)
\(270\) 0 0
\(271\) 143.088i 0.528000i −0.964523 0.264000i \(-0.914958\pi\)
0.964523 0.264000i \(-0.0850418\pi\)
\(272\) 422.516 13.6866i 1.55337 0.0503186i
\(273\) 0 0
\(274\) 354.159 + 348.471i 1.29255 + 1.27179i
\(275\) 21.5327i 0.0783008i
\(276\) 0 0
\(277\) −282.748 −1.02075 −0.510375 0.859952i \(-0.670493\pi\)
−0.510375 + 0.859952i \(0.670493\pi\)
\(278\) 123.965 125.988i 0.445916 0.453195i
\(279\) 0 0
\(280\) 29.8438 + 28.4283i 0.106585 + 0.101530i
\(281\) 258.526 0.920021 0.460010 0.887913i \(-0.347846\pi\)
0.460010 + 0.887913i \(0.347846\pi\)
\(282\) 0 0
\(283\) 471.840i 1.66728i −0.552309 0.833640i \(-0.686253\pi\)
0.552309 0.833640i \(-0.313747\pi\)
\(284\) 528.814 8.56275i 1.86202 0.0301505i
\(285\) 0 0
\(286\) 4.90410 4.98415i 0.0171472 0.0174271i
\(287\) 7.07424i 0.0246489i
\(288\) 0 0
\(289\) 409.073 1.41548
\(290\) −84.3670 83.0120i −0.290921 0.286248i
\(291\) 0 0
\(292\) 6.48074 + 400.234i 0.0221943 + 1.37066i
\(293\) −348.535 −1.18954 −0.594770 0.803896i \(-0.702757\pi\)
−0.594770 + 0.803896i \(0.702757\pi\)
\(294\) 0 0
\(295\) 65.7622i 0.222923i
\(296\) −331.393 + 347.894i −1.11957 + 1.17532i
\(297\) 0 0
\(298\) −127.429 125.383i −0.427615 0.420747i
\(299\) 10.2727i 0.0343570i
\(300\) 0 0
\(301\) 17.7227 0.0588795
\(302\) 277.121 281.644i 0.917619 0.932598i
\(303\) 0 0
\(304\) 17.4855 + 539.790i 0.0575183 + 1.77562i
\(305\) 159.183 0.521911
\(306\) 0 0
\(307\) 24.1654i 0.0787148i 0.999225 + 0.0393574i \(0.0125311\pi\)
−0.999225 + 0.0393574i \(0.987469\pi\)
\(308\) 0.173965 + 10.7436i 0.000564821 + 0.0348819i
\(309\) 0 0
\(310\) 1.94915 1.98097i 0.00628759 0.00639022i
\(311\) 351.843i 1.13133i −0.824635 0.565665i \(-0.808620\pi\)
0.824635 0.565665i \(-0.191380\pi\)
\(312\) 0 0
\(313\) −178.717 −0.570982 −0.285491 0.958381i \(-0.592157\pi\)
−0.285491 + 0.958381i \(0.592157\pi\)
\(314\) −278.032 273.566i −0.885451 0.871229i
\(315\) 0 0
\(316\) 390.249 6.31906i 1.23497 0.0199970i
\(317\) −101.728 −0.320910 −0.160455 0.987043i \(-0.551296\pi\)
−0.160455 + 0.987043i \(0.551296\pi\)
\(318\) 0 0
\(319\) 30.8557i 0.0967263i
\(320\) 6.05114 + 124.481i 0.0189098 + 0.389002i
\(321\) 0 0
\(322\) 11.2525 + 11.0717i 0.0349456 + 0.0343843i
\(323\) 891.832i 2.76109i
\(324\) 0 0
\(325\) −73.0280 −0.224702
\(326\) 167.784 170.522i 0.514674 0.523075i
\(327\) 0 0
\(328\) −14.7536 + 15.4882i −0.0449805 + 0.0472201i
\(329\) −64.2951 −0.195426
\(330\) 0 0
\(331\) 2.78294i 0.00840768i 0.999991 + 0.00420384i \(0.00133813\pi\)
−0.999991 + 0.00420384i \(0.998662\pi\)
\(332\) −351.669 + 5.69435i −1.05924 + 0.0171517i
\(333\) 0 0
\(334\) −102.069 + 103.735i −0.305595 + 0.310583i
\(335\) 121.996i 0.364167i
\(336\) 0 0
\(337\) −303.217 −0.899755 −0.449877 0.893090i \(-0.648532\pi\)
−0.449877 + 0.893090i \(0.648532\pi\)
\(338\) 224.025 + 220.427i 0.662797 + 0.652152i
\(339\) 0 0
\(340\) 3.33195 + 205.773i 0.00979985 + 0.605214i
\(341\) 0.724503 0.00212464
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 38.8018 + 36.9615i 0.112796 + 0.107446i
\(345\) 0 0
\(346\) 14.1029 + 13.8764i 0.0407600 + 0.0401053i
\(347\) 166.421i 0.479600i 0.970822 + 0.239800i \(0.0770819\pi\)
−0.970822 + 0.239800i \(0.922918\pi\)
\(348\) 0 0
\(349\) 327.232 0.937629 0.468814 0.883297i \(-0.344681\pi\)
0.468814 + 0.883297i \(0.344681\pi\)
\(350\) 78.7081 79.9929i 0.224880 0.228551i
\(351\) 0 0
\(352\) −22.0254 + 23.8847i −0.0625721 + 0.0678543i
\(353\) −43.6810 −0.123742 −0.0618711 0.998084i \(-0.519707\pi\)
−0.0618711 + 0.998084i \(0.519707\pi\)
\(354\) 0 0
\(355\) 257.474i 0.725280i
\(356\) 7.14880 + 441.491i 0.0200809 + 1.24014i
\(357\) 0 0
\(358\) 353.477 359.247i 0.987366 1.00348i
\(359\) 72.4245i 0.201740i 0.994900 + 0.100870i \(0.0321625\pi\)
−0.994900 + 0.100870i \(0.967837\pi\)
\(360\) 0 0
\(361\) −778.371 −2.15615
\(362\) 426.326 + 419.479i 1.17770 + 1.15878i
\(363\) 0 0
\(364\) 36.4369 0.590001i 0.100102 0.00162088i
\(365\) −194.870 −0.533890
\(366\) 0 0
\(367\) 508.952i 1.38679i −0.720558 0.693395i \(-0.756114\pi\)
0.720558 0.693395i \(-0.243886\pi\)
\(368\) 1.54541 + 47.7077i 0.00419948 + 0.129641i
\(369\) 0 0
\(370\) −166.730 164.052i −0.450621 0.443383i
\(371\) 174.176i 0.469478i
\(372\) 0 0
\(373\) 124.672 0.334242 0.167121 0.985936i \(-0.446553\pi\)
0.167121 + 0.985936i \(0.446553\pi\)
\(374\) −37.6288 + 38.2430i −0.100612 + 0.102254i
\(375\) 0 0
\(376\) −140.766 134.090i −0.374379 0.356622i
\(377\) −104.647 −0.277578
\(378\) 0 0
\(379\) 539.605i 1.42376i −0.702301 0.711880i \(-0.747844\pi\)
0.702301 0.711880i \(-0.252156\pi\)
\(380\) −262.887 + 4.25677i −0.691809 + 0.0112020i
\(381\) 0 0
\(382\) −169.980 + 172.754i −0.444973 + 0.452237i
\(383\) 563.542i 1.47139i −0.677313 0.735695i \(-0.736856\pi\)
0.677313 0.735695i \(-0.263144\pi\)
\(384\) 0 0
\(385\) −5.23097 −0.0135869
\(386\) −156.906 154.386i −0.406493 0.399964i
\(387\) 0 0
\(388\) 2.31093 + 142.717i 0.00595600 + 0.367827i
\(389\) 211.324 0.543248 0.271624 0.962403i \(-0.412439\pi\)
0.271624 + 0.962403i \(0.412439\pi\)
\(390\) 0 0
\(391\) 78.8219i 0.201591i
\(392\) −38.6247 + 40.5479i −0.0985324 + 0.103439i
\(393\) 0 0
\(394\) −112.073 110.273i −0.284448 0.279880i
\(395\) 190.009i 0.481034i
\(396\) 0 0
\(397\) 271.257 0.683266 0.341633 0.939833i \(-0.389020\pi\)
0.341633 + 0.939833i \(0.389020\pi\)
\(398\) −126.130 + 128.189i −0.316910 + 0.322083i
\(399\) 0 0
\(400\) 339.150 10.9862i 0.847875 0.0274654i
\(401\) −143.015 −0.356647 −0.178323 0.983972i \(-0.557067\pi\)
−0.178323 + 0.983972i \(0.557067\pi\)
\(402\) 0 0
\(403\) 2.45715i 0.00609714i
\(404\) 3.67167 + 226.753i 0.00908830 + 0.561270i
\(405\) 0 0
\(406\) 112.786 114.627i 0.277798 0.282333i
\(407\) 60.9783i 0.149824i
\(408\) 0 0
\(409\) 223.590 0.546676 0.273338 0.961918i \(-0.411872\pi\)
0.273338 + 0.961918i \(0.411872\pi\)
\(410\) −7.42280 7.30358i −0.0181044 0.0178136i
\(411\) 0 0
\(412\) 574.702 9.30579i 1.39491 0.0225869i
\(413\) −89.3493 −0.216342
\(414\) 0 0
\(415\) 171.224i 0.412588i
\(416\) 81.0048 + 74.6989i 0.194723 + 0.179565i
\(417\) 0 0
\(418\) −48.8578 48.0731i −0.116885 0.115007i
\(419\) 293.605i 0.700729i −0.936614 0.350364i \(-0.886058\pi\)
0.936614 0.350364i \(-0.113942\pi\)
\(420\) 0 0
\(421\) −603.329 −1.43309 −0.716543 0.697543i \(-0.754277\pi\)
−0.716543 + 0.697543i \(0.754277\pi\)
\(422\) 205.306 208.657i 0.486507 0.494449i
\(423\) 0 0
\(424\) 363.251 381.338i 0.856724 0.899382i
\(425\) 560.338 1.31844
\(426\) 0 0
\(427\) 216.277i 0.506505i
\(428\) −683.665 + 11.0702i −1.59735 + 0.0258649i
\(429\) 0 0
\(430\) −18.2973 + 18.5960i −0.0425518 + 0.0432464i
\(431\) 285.866i 0.663262i −0.943409 0.331631i \(-0.892401\pi\)
0.943409 0.331631i \(-0.107599\pi\)
\(432\) 0 0
\(433\) −232.262 −0.536403 −0.268201 0.963363i \(-0.586429\pi\)
−0.268201 + 0.963363i \(0.586429\pi\)
\(434\) 2.69149 + 2.64826i 0.00620159 + 0.00610198i
\(435\) 0 0
\(436\) 0.507539 + 31.3443i 0.00116408 + 0.0718906i
\(437\) −100.700 −0.230435
\(438\) 0 0
\(439\) 30.1779i 0.0687423i 0.999409 + 0.0343711i \(0.0109428\pi\)
−0.999409 + 0.0343711i \(0.989057\pi\)
\(440\) −11.4526 10.9094i −0.0260286 0.0247941i
\(441\) 0 0
\(442\) 129.701 + 127.618i 0.293441 + 0.288728i
\(443\) 708.628i 1.59961i −0.600258 0.799806i \(-0.704936\pi\)
0.600258 0.799806i \(-0.295064\pi\)
\(444\) 0 0
\(445\) −214.958 −0.483051
\(446\) −192.712 + 195.858i −0.432090 + 0.439143i
\(447\) 0 0
\(448\) −169.128 + 8.22152i −0.377519 + 0.0183516i
\(449\) 69.7117 0.155260 0.0776299 0.996982i \(-0.475265\pi\)
0.0776299 + 0.996982i \(0.475265\pi\)
\(450\) 0 0
\(451\) 2.71475i 0.00601940i
\(452\) −11.6445 719.135i −0.0257622 1.59101i
\(453\) 0 0
\(454\) 86.4747 87.8863i 0.190473 0.193582i
\(455\) 17.7408i 0.0389908i
\(456\) 0 0
\(457\) −356.679 −0.780480 −0.390240 0.920713i \(-0.627608\pi\)
−0.390240 + 0.920713i \(0.627608\pi\)
\(458\) −446.812 439.636i −0.975572 0.959903i
\(459\) 0 0
\(460\) −23.2345 + 0.376222i −0.0505098 + 0.000817874i
\(461\) −597.234 −1.29552 −0.647759 0.761845i \(-0.724294\pi\)
−0.647759 + 0.761845i \(0.724294\pi\)
\(462\) 0 0
\(463\) 518.054i 1.11891i 0.828862 + 0.559453i \(0.188989\pi\)
−0.828862 + 0.559453i \(0.811011\pi\)
\(464\) 485.991 15.7428i 1.04739 0.0339285i
\(465\) 0 0
\(466\) −202.807 199.549i −0.435208 0.428218i
\(467\) 546.318i 1.16985i 0.811089 + 0.584923i \(0.198875\pi\)
−0.811089 + 0.584923i \(0.801125\pi\)
\(468\) 0 0
\(469\) 165.753 0.353417
\(470\) 66.3794 67.4629i 0.141233 0.143538i
\(471\) 0 0
\(472\) −195.620 186.341i −0.414448 0.394791i
\(473\) −6.80113 −0.0143787
\(474\) 0 0
\(475\) 715.867i 1.50709i
\(476\) −279.578 + 4.52703i −0.587348 + 0.00951056i
\(477\) 0 0
\(478\) −230.629 + 234.394i −0.482488 + 0.490364i
\(479\) 674.246i 1.40761i −0.710392 0.703806i \(-0.751483\pi\)
0.710392 0.703806i \(-0.248517\pi\)
\(480\) 0 0
\(481\) −206.807 −0.429953
\(482\) −98.4389 96.8579i −0.204230 0.200950i
\(483\) 0 0
\(484\) 7.76932 + 479.814i 0.0160523 + 0.991351i
\(485\) −69.4875 −0.143273
\(486\) 0 0
\(487\) 251.723i 0.516886i −0.966027 0.258443i \(-0.916791\pi\)
0.966027 0.258443i \(-0.0832094\pi\)
\(488\) −451.055 + 473.514i −0.924293 + 0.970315i
\(489\) 0 0
\(490\) −19.4328 19.1207i −0.0396587 0.0390217i
\(491\) 181.391i 0.369433i 0.982792 + 0.184716i \(0.0591366\pi\)
−0.982792 + 0.184716i \(0.940863\pi\)
\(492\) 0 0
\(493\) 802.946 1.62869
\(494\) −163.040 + 165.701i −0.330040 + 0.335427i
\(495\) 0 0
\(496\) 0.369647 + 11.4113i 0.000745257 + 0.0230066i
\(497\) −349.823 −0.703870
\(498\) 0 0
\(499\) 230.573i 0.462069i −0.972946 0.231035i \(-0.925789\pi\)
0.972946 0.231035i \(-0.0742111\pi\)
\(500\) 5.82727 + 359.877i 0.0116545 + 0.719755i
\(501\) 0 0
\(502\) −58.7645 + 59.7237i −0.117061 + 0.118972i
\(503\) 761.117i 1.51316i 0.653903 + 0.756578i \(0.273130\pi\)
−0.653903 + 0.756578i \(0.726870\pi\)
\(504\) 0 0
\(505\) −110.404 −0.218622
\(506\) −4.31815 4.24880i −0.00853390 0.00839684i
\(507\) 0 0
\(508\) −523.379 + 8.47475i −1.03027 + 0.0166826i
\(509\) −685.349 −1.34646 −0.673231 0.739432i \(-0.735094\pi\)
−0.673231 + 0.739432i \(0.735094\pi\)
\(510\) 0 0
\(511\) 264.764i 0.518130i
\(512\) −387.433 334.724i −0.756705 0.653757i
\(513\) 0 0
\(514\) 307.642 + 302.700i 0.598524 + 0.588911i
\(515\) 279.817i 0.543334i
\(516\) 0 0
\(517\) 24.6733 0.0477240
\(518\) 222.893 226.531i 0.430295 0.437319i
\(519\) 0 0
\(520\) −36.9991 + 38.8414i −0.0711521 + 0.0746949i
\(521\) 1027.31 1.97181 0.985906 0.167298i \(-0.0535043\pi\)
0.985906 + 0.167298i \(0.0535043\pi\)
\(522\) 0 0
\(523\) 874.410i 1.67191i 0.548797 + 0.835956i \(0.315086\pi\)
−0.548797 + 0.835956i \(0.684914\pi\)
\(524\) 760.505 12.3144i 1.45135 0.0235007i
\(525\) 0 0
\(526\) −156.989 + 159.552i −0.298459 + 0.303331i
\(527\) 18.8535i 0.0357751i
\(528\) 0 0
\(529\) 520.100 0.983176
\(530\) 182.758 + 179.823i 0.344827 + 0.339288i
\(531\) 0 0
\(532\) −5.78356 357.178i −0.0108714 0.671387i
\(533\) −9.20705 −0.0172740
\(534\) 0 0
\(535\) 332.870i 0.622186i
\(536\) 362.896 + 345.683i 0.677044 + 0.644932i
\(537\) 0 0
\(538\) −187.444 184.433i −0.348409 0.342813i
\(539\) 7.10718i 0.0131859i
\(540\) 0 0
\(541\) 182.995 0.338253 0.169127 0.985594i \(-0.445905\pi\)
0.169127 + 0.985594i \(0.445905\pi\)
\(542\) −200.712 + 203.988i −0.370317 + 0.376362i
\(543\) 0 0
\(544\) −621.543 573.158i −1.14254 1.05360i
\(545\) −15.2612 −0.0280023
\(546\) 0 0
\(547\) 91.9279i 0.168058i 0.996463 + 0.0840291i \(0.0267789\pi\)
−0.996463 + 0.0840291i \(0.973221\pi\)
\(548\) −16.0883 993.571i −0.0293582 1.81309i
\(549\) 0 0
\(550\) −30.2043 + 30.6974i −0.0549170 + 0.0558134i
\(551\) 1025.81i 1.86173i
\(552\) 0 0
\(553\) −258.159 −0.466834
\(554\) 403.090 + 396.615i 0.727598 + 0.715912i
\(555\) 0 0
\(556\) −353.452 + 5.72323i −0.635705 + 0.0102936i
\(557\) −204.578 −0.367285 −0.183643 0.982993i \(-0.558789\pi\)
−0.183643 + 0.982993i \(0.558789\pi\)
\(558\) 0 0
\(559\) 23.0660i 0.0412629i
\(560\) −2.66889 82.3902i −0.00476587 0.147125i
\(561\) 0 0
\(562\) −368.559 362.639i −0.655798 0.645265i
\(563\) 681.311i 1.21014i 0.796171 + 0.605072i \(0.206856\pi\)
−0.796171 + 0.605072i \(0.793144\pi\)
\(564\) 0 0
\(565\) 350.140 0.619716
\(566\) −661.859 + 672.663i −1.16936 + 1.18845i
\(567\) 0 0
\(568\) −765.896 729.570i −1.34841 1.28445i
\(569\) 436.176 0.766566 0.383283 0.923631i \(-0.374793\pi\)
0.383283 + 0.923631i \(0.374793\pi\)
\(570\) 0 0
\(571\) 235.145i 0.411813i 0.978572 + 0.205906i \(0.0660143\pi\)
−0.978572 + 0.205906i \(0.933986\pi\)
\(572\) −13.9827 + 0.226414i −0.0244453 + 0.000395828i
\(573\) 0 0
\(574\) 9.92317 10.0851i 0.0172878 0.0175699i
\(575\) 63.2698i 0.110034i
\(576\) 0 0
\(577\) 380.151 0.658840 0.329420 0.944183i \(-0.393147\pi\)
0.329420 + 0.944183i \(0.393147\pi\)
\(578\) −583.181 573.814i −1.00896 0.992758i
\(579\) 0 0
\(580\) 3.83251 + 236.686i 0.00660778 + 0.408080i
\(581\) 232.637 0.400409
\(582\) 0 0
\(583\) 66.8404i 0.114649i
\(584\) 552.176 579.670i 0.945507 0.992586i
\(585\) 0 0
\(586\) 496.877 + 488.897i 0.847913 + 0.834295i
\(587\) 364.304i 0.620620i 0.950635 + 0.310310i \(0.100433\pi\)
−0.950635 + 0.310310i \(0.899567\pi\)
\(588\) 0 0
\(589\) −24.0865 −0.0408939
\(590\) 92.2459 93.7516i 0.156349 0.158901i
\(591\) 0 0
\(592\) 960.436 31.1116i 1.62236 0.0525535i
\(593\) 57.6374 0.0971963 0.0485982 0.998818i \(-0.484525\pi\)
0.0485982 + 0.998818i \(0.484525\pi\)
\(594\) 0 0
\(595\) 136.124i 0.228779i
\(596\) 5.78869 + 357.495i 0.00971257 + 0.599824i
\(597\) 0 0
\(598\) −14.4098 + 14.6450i −0.0240966 + 0.0244899i
\(599\) 496.778i 0.829346i −0.909970 0.414673i \(-0.863896\pi\)
0.909970 0.414673i \(-0.136104\pi\)
\(600\) 0 0
\(601\) 467.713 0.778224 0.389112 0.921190i \(-0.372782\pi\)
0.389112 + 0.921190i \(0.372782\pi\)
\(602\) −25.2658 24.8600i −0.0419698 0.0412957i
\(603\) 0 0
\(604\) −790.136 + 12.7942i −1.30817 + 0.0211824i
\(605\) −233.617 −0.386143
\(606\) 0 0
\(607\) 750.168i 1.23586i −0.786233 0.617930i \(-0.787971\pi\)
0.786233 0.617930i \(-0.212029\pi\)
\(608\) 732.246 794.060i 1.20435 1.30602i
\(609\) 0 0
\(610\) −226.934 223.289i −0.372022 0.366047i
\(611\) 83.6794i 0.136955i
\(612\) 0 0
\(613\) 854.291 1.39362 0.696811 0.717255i \(-0.254602\pi\)
0.696811 + 0.717255i \(0.254602\pi\)
\(614\) 33.8973 34.4506i 0.0552073 0.0561085i
\(615\) 0 0
\(616\) 14.8223 15.5603i 0.0240622 0.0252603i
\(617\) −272.107 −0.441015 −0.220508 0.975385i \(-0.570771\pi\)
−0.220508 + 0.975385i \(0.570771\pi\)
\(618\) 0 0
\(619\) 414.506i 0.669639i −0.942282 0.334819i \(-0.891325\pi\)
0.942282 0.334819i \(-0.108675\pi\)
\(620\) −5.55748 + 0.0899889i −0.00896368 + 0.000145143i
\(621\) 0 0
\(622\) −493.537 + 501.594i −0.793469 + 0.806421i
\(623\) 292.057i 0.468792i
\(624\) 0 0
\(625\) 354.979 0.567967
\(626\) 254.782 + 250.690i 0.407000 + 0.400463i
\(627\) 0 0
\(628\) 12.6301 + 780.000i 0.0201116 + 1.24204i
\(629\) 1586.82 2.52276
\(630\) 0 0
\(631\) 303.910i 0.481632i 0.970571 + 0.240816i \(0.0774150\pi\)
−0.970571 + 0.240816i \(0.922585\pi\)
\(632\) −565.209 538.401i −0.894319 0.851901i
\(633\) 0 0
\(634\) 145.026 + 142.696i 0.228747 + 0.225073i
\(635\) 254.828i 0.401304i
\(636\) 0 0
\(637\) −24.1039 −0.0378398
\(638\) −43.2818 + 43.9883i −0.0678399 + 0.0689472i
\(639\) 0 0
\(640\) 165.985 185.950i 0.259351 0.290546i
\(641\) −532.633 −0.830941 −0.415471 0.909607i \(-0.636383\pi\)
−0.415471 + 0.909607i \(0.636383\pi\)
\(642\) 0 0
\(643\) 844.547i 1.31345i 0.754131 + 0.656724i \(0.228058\pi\)
−0.754131 + 0.656724i \(0.771942\pi\)
\(644\) −0.511163 31.5681i −0.000793731 0.0490188i
\(645\) 0 0
\(646\) 1250.99 1271.41i 1.93652 1.96813i
\(647\) 606.314i 0.937116i −0.883433 0.468558i \(-0.844774\pi\)
0.883433 0.468558i \(-0.155226\pi\)
\(648\) 0 0
\(649\) 34.2879 0.0528319
\(650\) 104.110 + 102.438i 0.160169 + 0.157597i
\(651\) 0 0
\(652\) −478.390 + 7.74627i −0.733727 + 0.0118808i
\(653\) 16.8535 0.0258094 0.0129047 0.999917i \(-0.495892\pi\)
0.0129047 + 0.999917i \(0.495892\pi\)
\(654\) 0 0
\(655\) 370.283i 0.565317i
\(656\) 42.7586 1.38509i 0.0651807 0.00211142i
\(657\) 0 0
\(658\) 91.6601 + 90.1879i 0.139301 + 0.137064i
\(659\) 761.139i 1.15499i 0.816394 + 0.577495i \(0.195970\pi\)
−0.816394 + 0.577495i \(0.804030\pi\)
\(660\) 0 0
\(661\) −982.016 −1.48565 −0.742826 0.669485i \(-0.766515\pi\)
−0.742826 + 0.669485i \(0.766515\pi\)
\(662\) 3.90369 3.96741i 0.00589681 0.00599306i
\(663\) 0 0
\(664\) 509.332 + 485.174i 0.767066 + 0.730684i
\(665\) 173.906 0.261513
\(666\) 0 0
\(667\) 90.6635i 0.135927i
\(668\) 291.022 4.71233i 0.435661 0.00705439i
\(669\) 0 0
\(670\) −171.126 + 173.919i −0.255412 + 0.259581i
\(671\) 82.9968i 0.123691i
\(672\) 0 0
\(673\) 700.065 1.04022 0.520108 0.854101i \(-0.325892\pi\)
0.520108 + 0.854101i \(0.325892\pi\)
\(674\) 432.272 + 425.329i 0.641352 + 0.631052i
\(675\) 0 0
\(676\) −10.1767 628.489i −0.0150543 0.929718i
\(677\) 712.131 1.05189 0.525946 0.850518i \(-0.323711\pi\)
0.525946 + 0.850518i \(0.323711\pi\)
\(678\) 0 0
\(679\) 94.4108i 0.139044i
\(680\) 283.891 298.027i 0.417487 0.438274i
\(681\) 0 0
\(682\) −1.03286 1.01627i −0.00151446 0.00149014i
\(683\) 480.992i 0.704235i −0.935956 0.352117i \(-0.885462\pi\)
0.935956 0.352117i \(-0.114538\pi\)
\(684\) 0 0
\(685\) 483.760 0.706219
\(686\) 25.9787 26.4028i 0.0378698 0.0384880i
\(687\) 0 0
\(688\) −3.46999 107.121i −0.00504360 0.155699i
\(689\) 226.689 0.329011
\(690\) 0 0
\(691\) 47.0484i 0.0680874i −0.999420 0.0340437i \(-0.989161\pi\)
0.999420 0.0340437i \(-0.0108385\pi\)
\(692\) −0.640650 39.5649i −0.000925795 0.0571747i
\(693\) 0 0
\(694\) 233.442 237.253i 0.336372 0.341863i
\(695\) 172.092i 0.247615i
\(696\) 0 0
\(697\) 70.6450 0.101356
\(698\) −466.508 459.015i −0.668349 0.657615i
\(699\) 0 0
\(700\) −224.415 + 3.63381i −0.320593 + 0.00519116i
\(701\) 95.2081 0.135818 0.0679088 0.997692i \(-0.478367\pi\)
0.0679088 + 0.997692i \(0.478367\pi\)
\(702\) 0 0
\(703\) 2027.26i 2.88372i
\(704\) 64.9033 3.15502i 0.0921921 0.00448156i
\(705\) 0 0
\(706\) 62.2723 + 61.2721i 0.0882044 + 0.0867877i
\(707\) 150.003i 0.212168i
\(708\) 0 0
\(709\) −408.681 −0.576419 −0.288210 0.957567i \(-0.593060\pi\)
−0.288210 + 0.957567i \(0.593060\pi\)
\(710\) 361.164 367.059i 0.508682 0.516985i
\(711\) 0 0
\(712\) 609.097 639.425i 0.855473 0.898069i
\(713\) −2.12881 −0.00298571
\(714\) 0 0
\(715\) 6.80806i 0.00952176i
\(716\) −1007.84 + 16.3194i −1.40760 + 0.0227925i
\(717\) 0 0
\(718\) 101.591 103.250i 0.141492 0.143802i
\(719\) 800.605i 1.11350i 0.830681 + 0.556749i \(0.187952\pi\)
−0.830681 + 0.556749i \(0.812048\pi\)
\(720\) 0 0
\(721\) −380.179 −0.527295
\(722\) 1109.66 + 1091.84i 1.53692 + 1.51224i
\(723\) 0 0
\(724\) −19.3666 1196.03i −0.0267494 1.65198i
\(725\) 644.519 0.888992
\(726\) 0 0
\(727\) 751.732i 1.03402i −0.855980 0.517009i \(-0.827045\pi\)
0.855980 0.517009i \(-0.172955\pi\)
\(728\) −52.7727 50.2697i −0.0724900 0.0690517i
\(729\) 0 0
\(730\) 277.810 + 273.348i 0.380561 + 0.374449i
\(731\) 176.983i 0.242111i
\(732\) 0 0
\(733\) −389.015 −0.530716 −0.265358 0.964150i \(-0.585490\pi\)
−0.265358 + 0.964150i \(0.585490\pi\)
\(734\) −713.916 + 725.570i −0.972638 + 0.988515i
\(735\) 0 0
\(736\) 64.7174 70.1807i 0.0879312 0.0953542i
\(737\) −63.6078 −0.0863064
\(738\) 0 0
\(739\) 95.5532i 0.129301i −0.997908 0.0646503i \(-0.979407\pi\)
0.997908 0.0646503i \(-0.0205932\pi\)
\(740\) 7.57398 + 467.750i 0.0102351 + 0.632094i
\(741\) 0 0
\(742\) −244.320 + 248.308i −0.329273 + 0.334647i
\(743\) 1204.73i 1.62144i −0.585433 0.810721i \(-0.699075\pi\)
0.585433 0.810721i \(-0.300925\pi\)
\(744\) 0 0
\(745\) −174.061 −0.233639
\(746\) −177.735 174.880i −0.238251 0.234424i
\(747\) 0 0
\(748\) 107.288 1.73725i 0.143434 0.00232253i
\(749\) 452.261 0.603820
\(750\) 0 0
\(751\) 1162.57i 1.54804i −0.633164 0.774018i \(-0.718244\pi\)
0.633164 0.774018i \(-0.281756\pi\)
\(752\) 12.5885 + 388.616i 0.0167401 + 0.516777i
\(753\) 0 0
\(754\) 149.186 + 146.790i 0.197860 + 0.194682i
\(755\) 384.709i 0.509549i
\(756\) 0 0
\(757\) 379.147 0.500855 0.250428 0.968135i \(-0.419429\pi\)
0.250428 + 0.968135i \(0.419429\pi\)
\(758\) −756.914 + 769.270i −0.998568 + 1.01487i
\(759\) 0 0
\(760\) 380.748 + 362.689i 0.500984 + 0.477222i
\(761\) −814.146 −1.06984 −0.534918 0.844904i \(-0.679658\pi\)
−0.534918 + 0.844904i \(0.679658\pi\)
\(762\) 0 0
\(763\) 20.7350i 0.0271757i
\(764\) 484.652 7.84766i 0.634361 0.0102718i
\(765\) 0 0
\(766\) −790.491 + 803.394i −1.03197 + 1.04882i
\(767\) 116.287i 0.151613i
\(768\) 0 0
\(769\) −973.923 −1.26648 −0.633240 0.773956i \(-0.718275\pi\)
−0.633240 + 0.773956i \(0.718275\pi\)
\(770\) 7.45735 + 7.33758i 0.00968487 + 0.00952932i
\(771\) 0 0
\(772\) 7.12774 + 440.191i 0.00923282 + 0.570196i
\(773\) −757.451 −0.979885 −0.489943 0.871755i \(-0.662982\pi\)
−0.489943 + 0.871755i \(0.662982\pi\)
\(774\) 0 0
\(775\) 15.1335i 0.0195272i
\(776\) 196.897 206.701i 0.253734 0.266368i
\(777\) 0 0
\(778\) −301.266 296.428i −0.387232 0.381012i
\(779\) 90.2534i 0.115858i
\(780\) 0 0
\(781\) 134.245 0.171889
\(782\) 110.565 112.370i 0.141387 0.143695i
\(783\) 0 0
\(784\) 111.941 3.62614i 0.142782 0.00462518i
\(785\) −379.774 −0.483789
\(786\) 0 0
\(787\) 113.131i 0.143750i −0.997414 0.0718749i \(-0.977102\pi\)
0.997414 0.0718749i \(-0.0228982\pi\)
\(788\) 5.09109 + 314.413i 0.00646077 + 0.399001i
\(789\) 0 0
\(790\) 266.529 270.879i 0.337378 0.342885i
\(791\) 475.725i 0.601423i
\(792\) 0 0
\(793\) −281.483 −0.354960
\(794\) −386.708 380.497i −0.487038 0.479215i
\(795\) 0 0
\(796\) 359.626 5.82320i 0.451791 0.00731558i
\(797\) 421.650 0.529047 0.264523 0.964379i \(-0.414785\pi\)
0.264523 + 0.964379i \(0.414785\pi\)
\(798\) 0 0
\(799\) 642.065i 0.803586i
\(800\) −498.908 460.070i −0.623635 0.575088i
\(801\) 0 0
\(802\) 203.885 + 200.610i 0.254221 + 0.250138i
\(803\) 101.604i 0.126530i
\(804\) 0 0
\(805\) 15.3702 0.0190934
\(806\) −3.44668 + 3.50295i −0.00427628 + 0.00434609i
\(807\) 0 0
\(808\) 312.837 328.413i 0.387174 0.406452i
\(809\) −241.212 −0.298161 −0.149081 0.988825i \(-0.547631\pi\)
−0.149081 + 0.988825i \(0.547631\pi\)
\(810\) 0 0
\(811\) 1343.28i 1.65632i −0.560491 0.828160i \(-0.689388\pi\)
0.560491 0.828160i \(-0.310612\pi\)
\(812\) −321.579 + 5.20713i −0.396034 + 0.00641273i
\(813\) 0 0
\(814\) −85.5354 + 86.9316i −0.105080 + 0.106796i
\(815\) 232.923i 0.285796i
\(816\) 0 0
\(817\) 226.107 0.276753
\(818\) −318.754 313.634i −0.389675 0.383416i
\(819\) 0 0
\(820\) 0.337193 + 20.8242i 0.000411211 + 0.0253953i
\(821\) −1046.03 −1.27409 −0.637047 0.770825i \(-0.719844\pi\)
−0.637047 + 0.770825i \(0.719844\pi\)
\(822\) 0 0
\(823\) 410.187i 0.498404i 0.968452 + 0.249202i \(0.0801683\pi\)
−0.968452 + 0.249202i \(0.919832\pi\)
\(824\) −832.358 792.879i −1.01014 0.962231i
\(825\) 0 0
\(826\) 127.378 + 125.332i 0.154210 + 0.151734i
\(827\) 438.443i 0.530161i −0.964226 0.265080i \(-0.914601\pi\)
0.964226 0.265080i \(-0.0853985\pi\)
\(828\) 0 0
\(829\) −830.325 −1.00160 −0.500799 0.865563i \(-0.666961\pi\)
−0.500799 + 0.865563i \(0.666961\pi\)
\(830\) −240.179 + 244.100i −0.289372 + 0.294096i
\(831\) 0 0
\(832\) −10.7002 220.119i −0.0128608 0.264566i
\(833\) 184.948 0.222026
\(834\) 0 0
\(835\) 141.696i 0.169695i
\(836\) 2.21945 + 137.068i 0.00265484 + 0.163956i
\(837\) 0 0
\(838\) −411.846 + 418.568i −0.491462 + 0.499485i
\(839\) 1492.60i 1.77903i 0.456910 + 0.889513i \(0.348956\pi\)
−0.456910 + 0.889513i \(0.651044\pi\)
\(840\) 0 0
\(841\) 82.5748 0.0981864
\(842\) 860.116 + 846.301i 1.02152 + 1.00511i
\(843\) 0 0
\(844\) −585.375 + 9.47861i −0.693572 + 0.0112306i
\(845\) 306.005 0.362136
\(846\) 0 0
\(847\) 317.409i 0.374744i
\(848\) −1052.77 + 34.1025i −1.24147 + 0.0402152i
\(849\) 0 0
\(850\) −798.827 785.997i −0.939796 0.924702i
\(851\) 179.173i 0.210544i
\(852\) 0 0
\(853\) −861.696 −1.01020 −0.505098 0.863062i \(-0.668543\pi\)
−0.505098 + 0.863062i \(0.668543\pi\)
\(854\) 303.376 308.329i 0.355242 0.361040i
\(855\) 0 0
\(856\) 990.172 + 943.208i 1.15674 + 1.10188i
\(857\) −1354.69 −1.58074 −0.790369 0.612630i \(-0.790111\pi\)
−0.790369 + 0.612630i \(0.790111\pi\)
\(858\) 0 0
\(859\) 35.9658i 0.0418694i −0.999781 0.0209347i \(-0.993336\pi\)
0.999781 0.0209347i \(-0.00666421\pi\)
\(860\) 52.1698 0.844753i 0.0606626 0.000982271i
\(861\) 0 0
\(862\) −400.990 + 407.535i −0.465185 + 0.472779i
\(863\) 160.407i 0.185871i 0.995672 + 0.0929355i \(0.0296250\pi\)
−0.995672 + 0.0929355i \(0.970375\pi\)
\(864\) 0 0
\(865\) 19.2638 0.0222703
\(866\) 331.117 + 325.799i 0.382352 + 0.376211i
\(867\) 0 0
\(868\) −0.122265 7.55080i −0.000140859 0.00869908i
\(869\) 99.0691 0.114004
\(870\) 0 0
\(871\) 215.725i 0.247676i
\(872\) 43.2437 45.3969i 0.0495914 0.0520606i
\(873\) 0 0
\(874\) 143.559 + 141.254i 0.164256 + 0.161617i
\(875\) 238.068i 0.272077i
\(876\) 0 0
\(877\) −1496.48 −1.70636 −0.853182 0.521613i \(-0.825330\pi\)
−0.853182 + 0.521613i \(0.825330\pi\)
\(878\) 42.3310 43.0220i 0.0482130 0.0490000i
\(879\) 0 0
\(880\) 1.02419 + 31.6173i 0.00116385 + 0.0359288i
\(881\) −627.408 −0.712154 −0.356077 0.934457i \(-0.615886\pi\)
−0.356077 + 0.934457i \(0.615886\pi\)
\(882\) 0 0
\(883\) 1501.32i 1.70025i −0.526579 0.850126i \(-0.676526\pi\)
0.526579 0.850126i \(-0.323474\pi\)
\(884\) −5.89188 363.868i −0.00666502 0.411615i
\(885\) 0 0
\(886\) −994.006 + 1010.23i −1.12190 + 1.14022i
\(887\) 655.427i 0.738925i 0.929246 + 0.369463i \(0.120458\pi\)
−0.929246 + 0.369463i \(0.879542\pi\)
\(888\) 0 0
\(889\) 346.228 0.389458
\(890\) 306.447 + 301.525i 0.344323 + 0.338793i
\(891\) 0 0
\(892\) 549.466 8.89717i 0.615994 0.00997440i
\(893\) −820.278 −0.918565
\(894\) 0 0
\(895\) 490.710i 0.548279i
\(896\) 252.645 + 225.519i 0.281969 + 0.251695i
\(897\) 0 0
\(898\) −99.3821 97.7858i −0.110670 0.108893i
\(899\) 21.6859i 0.0241222i
\(900\) 0 0
\(901\) −1739.36 −1.93048
\(902\) −3.80803 + 3.87019i −0.00422176 + 0.00429068i
\(903\) 0 0
\(904\) −992.143 + 1041.54i −1.09750 + 1.15215i
\(905\) 582.336 0.643465
\(906\) 0 0
\(907\) 1187.82i 1.30962i −0.755794 0.654809i \(-0.772749\pi\)
0.755794 0.654809i \(-0.227251\pi\)
\(908\) −246.559 + 3.99238i −0.271541 + 0.00439690i
\(909\) 0 0
\(910\) 24.8853 25.2916i 0.0273465 0.0277929i
\(911\) 1557.23i 1.70937i −0.519150 0.854683i \(-0.673752\pi\)
0.519150 0.854683i \(-0.326248\pi\)
\(912\) 0 0
\(913\) −89.2749 −0.0977820
\(914\) 508.488 + 500.321i 0.556332 + 0.547397i
\(915\) 0 0
\(916\) 20.2972 + 1253.50i 0.0221585 + 1.36845i
\(917\) −503.093 −0.548629
\(918\) 0 0
\(919\) 813.603i 0.885313i 0.896691 + 0.442657i \(0.145964\pi\)
−0.896691 + 0.442657i \(0.854036\pi\)
\(920\) 33.6512 + 32.0552i 0.0365774 + 0.0348426i
\(921\) 0 0
\(922\) 851.426 + 837.751i 0.923456 + 0.908624i
\(923\) 455.292i 0.493274i
\(924\) 0 0
\(925\) 1273.73 1.37700
\(926\) 726.684 738.546i 0.784756 0.797566i
\(927\) 0 0
\(928\) −714.919 659.265i −0.770387 0.710415i
\(929\) −231.239 −0.248911 −0.124456 0.992225i \(-0.539718\pi\)
−0.124456 + 0.992225i \(0.539718\pi\)
\(930\) 0 0
\(931\) 236.282i 0.253794i
\(932\) 9.21284 + 568.962i 0.00988502 + 0.610474i
\(933\) 0 0
\(934\) 766.330 778.839i 0.820482 0.833875i
\(935\) 52.2377i 0.0558691i
\(936\) 0 0
\(937\) 595.601 0.635647 0.317823 0.948150i \(-0.397048\pi\)
0.317823 + 0.948150i \(0.397048\pi\)
\(938\) −236.300 232.504i −0.251919 0.247872i
\(939\) 0 0
\(940\) −189.263 + 3.06462i −0.201344 + 0.00326023i
\(941\) −847.831 −0.900990 −0.450495 0.892779i \(-0.648752\pi\)
−0.450495 + 0.892779i \(0.648752\pi\)
\(942\) 0 0
\(943\) 7.97678i 0.00845894i
\(944\) 17.4940 + 540.051i 0.0185318 + 0.572087i
\(945\) 0 0
\(946\) 9.69580 + 9.54007i 0.0102493 + 0.0100846i
\(947\) 193.623i 0.204459i 0.994761 + 0.102230i \(0.0325976\pi\)
−0.994761 + 0.102230i \(0.967402\pi\)
\(948\) 0 0
\(949\) 344.588 0.363107
\(950\) 1004.16 1020.55i 1.05701 1.07426i
\(951\) 0 0
\(952\) 404.921 + 385.715i 0.425337 + 0.405163i
\(953\) −1097.59 −1.15172 −0.575858 0.817550i \(-0.695332\pi\)
−0.575858 + 0.817550i \(0.695332\pi\)
\(954\) 0 0
\(955\) 235.972i 0.247091i
\(956\) 657.577 10.6477i 0.687842 0.0111378i
\(957\) 0 0
\(958\) −945.777 + 961.216i −0.987241 + 1.00336i
\(959\) 657.272i 0.685372i
\(960\) 0 0
\(961\) 960.491 0.999470
\(962\) 294.828 + 290.093i 0.306474 + 0.301552i
\(963\) 0 0
\(964\) 4.47175 + 276.164i 0.00463875 + 0.286477i
\(965\) −214.325 −0.222098
\(966\) 0 0
\(967\) 1111.07i 1.14899i 0.818507 + 0.574496i \(0.194802\pi\)
−0.818507 + 0.574496i \(0.805198\pi\)
\(968\) 661.968 694.928i 0.683851 0.717901i
\(969\) 0 0
\(970\) 99.0625 + 97.4714i 0.102126 + 0.100486i
\(971\) 1113.58i 1.14683i −0.819263 0.573417i \(-0.805617\pi\)
0.819263 0.573417i \(-0.194383\pi\)
\(972\) 0 0
\(973\) 233.817 0.240306
\(974\) −353.097 + 358.861i −0.362523 + 0.368440i
\(975\) 0 0
\(976\) 1307.24 42.3457i 1.33938 0.0433869i
\(977\) 630.333 0.645172 0.322586 0.946540i \(-0.395448\pi\)
0.322586 + 0.946540i \(0.395448\pi\)
\(978\) 0 0
\(979\) 112.077i 0.114482i
\(980\) 0.882767 + 54.5174i 0.000900782 + 0.0556300i
\(981\) 0 0
\(982\) 254.441 258.594i 0.259105 0.263334i
\(983\) 1659.64i 1.68834i 0.536078 + 0.844168i \(0.319905\pi\)
−0.536078 + 0.844168i \(0.680095\pi\)
\(984\) 0 0
\(985\) −153.084 −0.155416
\(986\) −1144.69 1126.31i −1.16095 1.14230i
\(987\) 0 0
\(988\) 464.864 7.52725i 0.470510 0.00761867i
\(989\) 19.9838 0.0202061
\(990\) 0 0
\(991\) 1945.49i 1.96316i −0.191053 0.981580i \(-0.561190\pi\)
0.191053 0.981580i \(-0.438810\pi\)
\(992\) 15.4798 16.7866i 0.0156046 0.0169219i
\(993\) 0 0
\(994\) 498.714 + 490.704i 0.501724 + 0.493666i
\(995\) 175.098i 0.175978i
\(996\) 0 0
\(997\) −142.870 −0.143300 −0.0716499 0.997430i \(-0.522826\pi\)
−0.0716499 + 0.997430i \(0.522826\pi\)
\(998\) −323.428 + 328.708i −0.324077 + 0.329367i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.3.g.b.127.3 12
3.2 odd 2 84.3.g.a.43.10 yes 12
4.3 odd 2 inner 252.3.g.b.127.4 12
12.11 even 2 84.3.g.a.43.9 12
21.20 even 2 588.3.g.d.295.10 12
24.5 odd 2 1344.3.m.e.127.3 12
24.11 even 2 1344.3.m.e.127.9 12
84.83 odd 2 588.3.g.d.295.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.9 12 12.11 even 2
84.3.g.a.43.10 yes 12 3.2 odd 2
252.3.g.b.127.3 12 1.1 even 1 trivial
252.3.g.b.127.4 12 4.3 odd 2 inner
588.3.g.d.295.9 12 84.83 odd 2
588.3.g.d.295.10 12 21.20 even 2
1344.3.m.e.127.3 12 24.5 odd 2
1344.3.m.e.127.9 12 24.11 even 2