Properties

Label 252.4.e.a
Level $252$
Weight $4$
Character orbit 252.e
Analytic conductor $14.868$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,4,Mod(71,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q - 24 q^{4} + 264 q^{10} - 468 q^{16} + 444 q^{22} - 900 q^{25} - 84 q^{28} - 432 q^{34} - 264 q^{37} + 1416 q^{40} + 180 q^{46} - 1764 q^{49} + 2736 q^{52} + 636 q^{58} - 3960 q^{61} + 1392 q^{64}+ \cdots + 5496 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
71.1 −2.82720 0.0833946i 0 7.98609 + 0.471546i 8.62666i 0 7.00000i −22.5389 1.99915i 0 −0.719417 + 24.3893i
71.2 −2.82720 + 0.0833946i 0 7.98609 0.471546i 8.62666i 0 7.00000i −22.5389 + 1.99915i 0 −0.719417 24.3893i
71.3 −2.45159 1.41057i 0 4.02056 + 6.91629i 16.9233i 0 7.00000i −0.100815 22.6272i 0 23.8716 41.4889i
71.4 −2.45159 + 1.41057i 0 4.02056 6.91629i 16.9233i 0 7.00000i −0.100815 + 22.6272i 0 23.8716 + 41.4889i
71.5 −2.36083 1.55771i 0 3.14707 + 7.35499i 8.56325i 0 7.00000i 4.02725 22.2661i 0 −13.3391 + 20.2164i
71.6 −2.36083 + 1.55771i 0 3.14707 7.35499i 8.56325i 0 7.00000i 4.02725 + 22.2661i 0 −13.3391 20.2164i
71.7 −2.27330 1.68288i 0 2.33582 + 7.65140i 4.43347i 0 7.00000i 7.56635 21.3249i 0 7.46100 10.0786i
71.8 −2.27330 + 1.68288i 0 2.33582 7.65140i 4.43347i 0 7.00000i 7.56635 + 21.3249i 0 7.46100 + 10.0786i
71.9 −1.88294 2.11058i 0 −0.909099 + 7.94818i 21.8666i 0 7.00000i 18.4870 13.0472i 0 46.1512 41.1734i
71.10 −1.88294 + 2.11058i 0 −0.909099 7.94818i 21.8666i 0 7.00000i 18.4870 + 13.0472i 0 46.1512 + 41.1734i
71.11 −1.42938 2.44067i 0 −3.91377 + 6.97728i 15.7775i 0 7.00000i 22.6235 0.420902i 0 −38.5077 + 22.5520i
71.12 −1.42938 + 2.44067i 0 −3.91377 6.97728i 15.7775i 0 7.00000i 22.6235 + 0.420902i 0 −38.5077 22.5520i
71.13 −1.16208 2.57868i 0 −5.29916 + 5.99324i 0.300247i 0 7.00000i 21.6127 + 6.70021i 0 −0.774240 + 0.348910i
71.14 −1.16208 + 2.57868i 0 −5.29916 5.99324i 0.300247i 0 7.00000i 21.6127 6.70021i 0 −0.774240 0.348910i
71.15 −0.968530 2.65743i 0 −6.12390 + 5.14761i 12.6551i 0 7.00000i 19.6106 + 11.2882i 0 33.6300 12.2568i
71.16 −0.968530 + 2.65743i 0 −6.12390 5.14761i 12.6551i 0 7.00000i 19.6106 11.2882i 0 33.6300 + 12.2568i
71.17 −0.614971 2.76076i 0 −7.24362 + 3.39558i 2.97985i 0 7.00000i 13.8290 + 17.9097i 0 8.22665 1.83252i
71.18 −0.614971 + 2.76076i 0 −7.24362 3.39558i 2.97985i 0 7.00000i 13.8290 17.9097i 0 8.22665 + 1.83252i
71.19 0.614971 2.76076i 0 −7.24362 3.39558i 2.97985i 0 7.00000i −13.8290 + 17.9097i 0 8.22665 + 1.83252i
71.20 0.614971 + 2.76076i 0 −7.24362 + 3.39558i 2.97985i 0 7.00000i −13.8290 17.9097i 0 8.22665 1.83252i
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 71.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.4.e.a 36
3.b odd 2 1 inner 252.4.e.a 36
4.b odd 2 1 inner 252.4.e.a 36
12.b even 2 1 inner 252.4.e.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.4.e.a 36 1.a even 1 1 trivial
252.4.e.a 36 3.b odd 2 1 inner
252.4.e.a 36 4.b odd 2 1 inner
252.4.e.a 36 12.b even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(252, [\chi])\).