Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [252,4,Mod(71,252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(252, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("252.71");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.8684813214\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
71.1 | −2.82720 | − | 0.0833946i | 0 | 7.98609 | + | 0.471546i | − | 8.62666i | 0 | − | 7.00000i | −22.5389 | − | 1.99915i | 0 | −0.719417 | + | 24.3893i | ||||||||
71.2 | −2.82720 | + | 0.0833946i | 0 | 7.98609 | − | 0.471546i | 8.62666i | 0 | 7.00000i | −22.5389 | + | 1.99915i | 0 | −0.719417 | − | 24.3893i | ||||||||||
71.3 | −2.45159 | − | 1.41057i | 0 | 4.02056 | + | 6.91629i | 16.9233i | 0 | − | 7.00000i | −0.100815 | − | 22.6272i | 0 | 23.8716 | − | 41.4889i | |||||||||
71.4 | −2.45159 | + | 1.41057i | 0 | 4.02056 | − | 6.91629i | − | 16.9233i | 0 | 7.00000i | −0.100815 | + | 22.6272i | 0 | 23.8716 | + | 41.4889i | |||||||||
71.5 | −2.36083 | − | 1.55771i | 0 | 3.14707 | + | 7.35499i | − | 8.56325i | 0 | 7.00000i | 4.02725 | − | 22.2661i | 0 | −13.3391 | + | 20.2164i | |||||||||
71.6 | −2.36083 | + | 1.55771i | 0 | 3.14707 | − | 7.35499i | 8.56325i | 0 | − | 7.00000i | 4.02725 | + | 22.2661i | 0 | −13.3391 | − | 20.2164i | |||||||||
71.7 | −2.27330 | − | 1.68288i | 0 | 2.33582 | + | 7.65140i | 4.43347i | 0 | − | 7.00000i | 7.56635 | − | 21.3249i | 0 | 7.46100 | − | 10.0786i | |||||||||
71.8 | −2.27330 | + | 1.68288i | 0 | 2.33582 | − | 7.65140i | − | 4.43347i | 0 | 7.00000i | 7.56635 | + | 21.3249i | 0 | 7.46100 | + | 10.0786i | |||||||||
71.9 | −1.88294 | − | 2.11058i | 0 | −0.909099 | + | 7.94818i | 21.8666i | 0 | 7.00000i | 18.4870 | − | 13.0472i | 0 | 46.1512 | − | 41.1734i | ||||||||||
71.10 | −1.88294 | + | 2.11058i | 0 | −0.909099 | − | 7.94818i | − | 21.8666i | 0 | − | 7.00000i | 18.4870 | + | 13.0472i | 0 | 46.1512 | + | 41.1734i | ||||||||
71.11 | −1.42938 | − | 2.44067i | 0 | −3.91377 | + | 6.97728i | − | 15.7775i | 0 | 7.00000i | 22.6235 | − | 0.420902i | 0 | −38.5077 | + | 22.5520i | |||||||||
71.12 | −1.42938 | + | 2.44067i | 0 | −3.91377 | − | 6.97728i | 15.7775i | 0 | − | 7.00000i | 22.6235 | + | 0.420902i | 0 | −38.5077 | − | 22.5520i | |||||||||
71.13 | −1.16208 | − | 2.57868i | 0 | −5.29916 | + | 5.99324i | − | 0.300247i | 0 | − | 7.00000i | 21.6127 | + | 6.70021i | 0 | −0.774240 | + | 0.348910i | ||||||||
71.14 | −1.16208 | + | 2.57868i | 0 | −5.29916 | − | 5.99324i | 0.300247i | 0 | 7.00000i | 21.6127 | − | 6.70021i | 0 | −0.774240 | − | 0.348910i | ||||||||||
71.15 | −0.968530 | − | 2.65743i | 0 | −6.12390 | + | 5.14761i | 12.6551i | 0 | 7.00000i | 19.6106 | + | 11.2882i | 0 | 33.6300 | − | 12.2568i | ||||||||||
71.16 | −0.968530 | + | 2.65743i | 0 | −6.12390 | − | 5.14761i | − | 12.6551i | 0 | − | 7.00000i | 19.6106 | − | 11.2882i | 0 | 33.6300 | + | 12.2568i | ||||||||
71.17 | −0.614971 | − | 2.76076i | 0 | −7.24362 | + | 3.39558i | 2.97985i | 0 | − | 7.00000i | 13.8290 | + | 17.9097i | 0 | 8.22665 | − | 1.83252i | |||||||||
71.18 | −0.614971 | + | 2.76076i | 0 | −7.24362 | − | 3.39558i | − | 2.97985i | 0 | 7.00000i | 13.8290 | − | 17.9097i | 0 | 8.22665 | + | 1.83252i | |||||||||
71.19 | 0.614971 | − | 2.76076i | 0 | −7.24362 | − | 3.39558i | 2.97985i | 0 | 7.00000i | −13.8290 | + | 17.9097i | 0 | 8.22665 | + | 1.83252i | ||||||||||
71.20 | 0.614971 | + | 2.76076i | 0 | −7.24362 | + | 3.39558i | − | 2.97985i | 0 | − | 7.00000i | −13.8290 | − | 17.9097i | 0 | 8.22665 | − | 1.83252i | ||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 252.4.e.a | ✓ | 36 |
3.b | odd | 2 | 1 | inner | 252.4.e.a | ✓ | 36 |
4.b | odd | 2 | 1 | inner | 252.4.e.a | ✓ | 36 |
12.b | even | 2 | 1 | inner | 252.4.e.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
252.4.e.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
252.4.e.a | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
252.4.e.a | ✓ | 36 | 4.b | odd | 2 | 1 | inner |
252.4.e.a | ✓ | 36 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(252, [\chi])\).