Properties

Label 252.4.e.a.71.11
Level $252$
Weight $4$
Character 252.71
Analytic conductor $14.868$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,4,Mod(71,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.11
Character \(\chi\) \(=\) 252.71
Dual form 252.4.e.a.71.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42938 - 2.44067i) q^{2} +(-3.91377 + 6.97728i) q^{4} -15.7775i q^{5} +7.00000i q^{7} +(22.6235 - 0.420902i) q^{8} +(-38.5077 + 22.5520i) q^{10} -23.5125 q^{11} -37.7320 q^{13} +(17.0847 - 10.0056i) q^{14} +(-33.3648 - 54.6150i) q^{16} -31.9239i q^{17} -28.8804i q^{19} +(110.084 + 61.7495i) q^{20} +(33.6082 + 57.3863i) q^{22} -50.8589 q^{23} -123.929 q^{25} +(53.9332 + 92.0916i) q^{26} +(-48.8409 - 27.3964i) q^{28} +205.159i q^{29} +176.645i q^{31} +(-85.6065 + 159.498i) q^{32} +(-77.9159 + 45.6313i) q^{34} +110.442 q^{35} -338.457 q^{37} +(-70.4877 + 41.2810i) q^{38} +(-6.64077 - 356.942i) q^{40} +77.7879i q^{41} +463.054i q^{43} +(92.0225 - 164.053i) q^{44} +(72.6965 + 124.130i) q^{46} +352.149 q^{47} -49.0000 q^{49} +(177.142 + 302.471i) q^{50} +(147.675 - 263.267i) q^{52} -155.551i q^{53} +370.968i q^{55} +(2.94631 + 158.365i) q^{56} +(500.727 - 293.250i) q^{58} -761.398 q^{59} -40.2208 q^{61} +(431.132 - 252.491i) q^{62} +(511.646 - 19.0445i) q^{64} +595.317i q^{65} +838.691i q^{67} +(222.742 + 124.943i) q^{68} +(-157.864 - 269.554i) q^{70} +70.1497 q^{71} +726.789 q^{73} +(483.783 + 826.064i) q^{74} +(201.507 + 113.031i) q^{76} -164.587i q^{77} -992.308i q^{79} +(-861.687 + 526.412i) q^{80} +(189.855 - 111.188i) q^{82} -1116.85 q^{83} -503.680 q^{85} +(1130.16 - 661.878i) q^{86} +(-531.935 + 9.89644i) q^{88} -1592.19i q^{89} -264.124i q^{91} +(199.050 - 354.857i) q^{92} +(-503.353 - 859.481i) q^{94} -455.661 q^{95} -1263.10 q^{97} +(70.0394 + 119.593i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 24 q^{4} + 264 q^{10} - 468 q^{16} + 444 q^{22} - 900 q^{25} - 84 q^{28} - 432 q^{34} - 264 q^{37} + 1416 q^{40} + 180 q^{46} - 1764 q^{49} + 2736 q^{52} + 636 q^{58} - 3960 q^{61} + 1392 q^{64}+ \cdots + 5496 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42938 2.44067i −0.505360 0.862908i
\(3\) 0 0
\(4\) −3.91377 + 6.97728i −0.489222 + 0.872159i
\(5\) 15.7775i 1.41118i −0.708619 0.705591i \(-0.750682\pi\)
0.708619 0.705591i \(-0.249318\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 22.6235 0.420902i 0.999827 0.0186014i
\(9\) 0 0
\(10\) −38.5077 + 22.5520i −1.21772 + 0.713156i
\(11\) −23.5125 −0.644480 −0.322240 0.946658i \(-0.604436\pi\)
−0.322240 + 0.946658i \(0.604436\pi\)
\(12\) 0 0
\(13\) −37.7320 −0.804999 −0.402499 0.915420i \(-0.631858\pi\)
−0.402499 + 0.915420i \(0.631858\pi\)
\(14\) 17.0847 10.0056i 0.326149 0.191008i
\(15\) 0 0
\(16\) −33.3648 54.6150i −0.521324 0.853359i
\(17\) 31.9239i 0.455452i −0.973725 0.227726i \(-0.926871\pi\)
0.973725 0.227726i \(-0.0731291\pi\)
\(18\) 0 0
\(19\) 28.8804i 0.348717i −0.984682 0.174359i \(-0.944215\pi\)
0.984682 0.174359i \(-0.0557852\pi\)
\(20\) 110.084 + 61.7495i 1.23078 + 0.690381i
\(21\) 0 0
\(22\) 33.6082 + 57.3863i 0.325695 + 0.556127i
\(23\) −50.8589 −0.461079 −0.230539 0.973063i \(-0.574049\pi\)
−0.230539 + 0.973063i \(0.574049\pi\)
\(24\) 0 0
\(25\) −123.929 −0.991435
\(26\) 53.9332 + 92.0916i 0.406814 + 0.694640i
\(27\) 0 0
\(28\) −48.8409 27.3964i −0.329645 0.184908i
\(29\) 205.159i 1.31369i 0.754024 + 0.656847i \(0.228110\pi\)
−0.754024 + 0.656847i \(0.771890\pi\)
\(30\) 0 0
\(31\) 176.645i 1.02343i 0.859156 + 0.511714i \(0.170989\pi\)
−0.859156 + 0.511714i \(0.829011\pi\)
\(32\) −85.6065 + 159.498i −0.472914 + 0.881109i
\(33\) 0 0
\(34\) −77.9159 + 45.6313i −0.393014 + 0.230168i
\(35\) 110.442 0.533377
\(36\) 0 0
\(37\) −338.457 −1.50384 −0.751920 0.659255i \(-0.770872\pi\)
−0.751920 + 0.659255i \(0.770872\pi\)
\(38\) −70.4877 + 41.2810i −0.300911 + 0.176228i
\(39\) 0 0
\(40\) −6.64077 356.942i −0.0262500 1.41094i
\(41\) 77.7879i 0.296303i 0.988965 + 0.148152i \(0.0473323\pi\)
−0.988965 + 0.148152i \(0.952668\pi\)
\(42\) 0 0
\(43\) 463.054i 1.64221i 0.570775 + 0.821106i \(0.306643\pi\)
−0.570775 + 0.821106i \(0.693357\pi\)
\(44\) 92.0225 164.053i 0.315294 0.562089i
\(45\) 0 0
\(46\) 72.6965 + 124.130i 0.233011 + 0.397869i
\(47\) 352.149 1.09290 0.546450 0.837492i \(-0.315979\pi\)
0.546450 + 0.837492i \(0.315979\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 177.142 + 302.471i 0.501032 + 0.855517i
\(51\) 0 0
\(52\) 147.675 263.267i 0.393823 0.702087i
\(53\) 155.551i 0.403142i −0.979474 0.201571i \(-0.935395\pi\)
0.979474 0.201571i \(-0.0646048\pi\)
\(54\) 0 0
\(55\) 370.968i 0.909479i
\(56\) 2.94631 + 158.365i 0.00703067 + 0.377899i
\(57\) 0 0
\(58\) 500.727 293.250i 1.13360 0.663889i
\(59\) −761.398 −1.68010 −0.840048 0.542513i \(-0.817473\pi\)
−0.840048 + 0.542513i \(0.817473\pi\)
\(60\) 0 0
\(61\) −40.2208 −0.0844221 −0.0422110 0.999109i \(-0.513440\pi\)
−0.0422110 + 0.999109i \(0.513440\pi\)
\(62\) 431.132 252.491i 0.883125 0.517200i
\(63\) 0 0
\(64\) 511.646 19.0445i 0.999308 0.0371964i
\(65\) 595.317i 1.13600i
\(66\) 0 0
\(67\) 838.691i 1.52929i 0.644451 + 0.764645i \(0.277086\pi\)
−0.644451 + 0.764645i \(0.722914\pi\)
\(68\) 222.742 + 124.943i 0.397227 + 0.222817i
\(69\) 0 0
\(70\) −157.864 269.554i −0.269547 0.460255i
\(71\) 70.1497 0.117257 0.0586285 0.998280i \(-0.481327\pi\)
0.0586285 + 0.998280i \(0.481327\pi\)
\(72\) 0 0
\(73\) 726.789 1.16526 0.582632 0.812736i \(-0.302023\pi\)
0.582632 + 0.812736i \(0.302023\pi\)
\(74\) 483.783 + 826.064i 0.759981 + 1.29768i
\(75\) 0 0
\(76\) 201.507 + 113.031i 0.304137 + 0.170600i
\(77\) 164.587i 0.243591i
\(78\) 0 0
\(79\) 992.308i 1.41321i −0.707610 0.706604i \(-0.750226\pi\)
0.707610 0.706604i \(-0.249774\pi\)
\(80\) −861.687 + 526.412i −1.20424 + 0.735683i
\(81\) 0 0
\(82\) 189.855 111.188i 0.255682 0.149740i
\(83\) −1116.85 −1.47700 −0.738498 0.674256i \(-0.764464\pi\)
−0.738498 + 0.674256i \(0.764464\pi\)
\(84\) 0 0
\(85\) −503.680 −0.642726
\(86\) 1130.16 661.878i 1.41708 0.829909i
\(87\) 0 0
\(88\) −531.935 + 9.89644i −0.644368 + 0.0119882i
\(89\) 1592.19i 1.89631i −0.317810 0.948155i \(-0.602947\pi\)
0.317810 0.948155i \(-0.397053\pi\)
\(90\) 0 0
\(91\) 264.124i 0.304261i
\(92\) 199.050 354.857i 0.225570 0.402134i
\(93\) 0 0
\(94\) −503.353 859.481i −0.552308 0.943072i
\(95\) −455.661 −0.492103
\(96\) 0 0
\(97\) −1263.10 −1.32215 −0.661075 0.750320i \(-0.729899\pi\)
−0.661075 + 0.750320i \(0.729899\pi\)
\(98\) 70.0394 + 119.593i 0.0721943 + 0.123273i
\(99\) 0 0
\(100\) 485.031 864.689i 0.485031 0.864689i
\(101\) 1484.69i 1.46269i −0.682006 0.731347i \(-0.738892\pi\)
0.682006 0.731347i \(-0.261108\pi\)
\(102\) 0 0
\(103\) 1244.15i 1.19019i 0.803655 + 0.595095i \(0.202886\pi\)
−0.803655 + 0.595095i \(0.797114\pi\)
\(104\) −853.631 + 15.8815i −0.804859 + 0.0149741i
\(105\) 0 0
\(106\) −379.649 + 222.341i −0.347875 + 0.203732i
\(107\) −1825.93 −1.64972 −0.824858 0.565340i \(-0.808745\pi\)
−0.824858 + 0.565340i \(0.808745\pi\)
\(108\) 0 0
\(109\) 209.445 0.184048 0.0920238 0.995757i \(-0.470666\pi\)
0.0920238 + 0.995757i \(0.470666\pi\)
\(110\) 905.412 530.252i 0.784797 0.459614i
\(111\) 0 0
\(112\) 382.305 233.553i 0.322539 0.197042i
\(113\) 1021.23i 0.850169i −0.905154 0.425084i \(-0.860244\pi\)
0.905154 0.425084i \(-0.139756\pi\)
\(114\) 0 0
\(115\) 802.426i 0.650666i
\(116\) −1431.45 802.948i −1.14575 0.642688i
\(117\) 0 0
\(118\) 1088.32 + 1858.32i 0.849054 + 1.44977i
\(119\) 223.467 0.172145
\(120\) 0 0
\(121\) −778.163 −0.584646
\(122\) 57.4906 + 98.1659i 0.0426636 + 0.0728485i
\(123\) 0 0
\(124\) −1232.50 691.347i −0.892593 0.500684i
\(125\) 16.8921i 0.0120870i
\(126\) 0 0
\(127\) 2003.37i 1.39976i −0.714258 0.699882i \(-0.753236\pi\)
0.714258 0.699882i \(-0.246764\pi\)
\(128\) −777.815 1221.54i −0.537108 0.843514i
\(129\) 0 0
\(130\) 1452.97 850.931i 0.980264 0.574089i
\(131\) 1168.94 0.779624 0.389812 0.920894i \(-0.372540\pi\)
0.389812 + 0.920894i \(0.372540\pi\)
\(132\) 0 0
\(133\) 202.163 0.131803
\(134\) 2046.97 1198.80i 1.31964 0.772843i
\(135\) 0 0
\(136\) −13.4368 722.231i −0.00847205 0.455373i
\(137\) 472.985i 0.294962i −0.989065 0.147481i \(-0.952883\pi\)
0.989065 0.147481i \(-0.0471166\pi\)
\(138\) 0 0
\(139\) 2857.76i 1.74382i 0.489662 + 0.871912i \(0.337120\pi\)
−0.489662 + 0.871912i \(0.662880\pi\)
\(140\) −432.247 + 770.588i −0.260939 + 0.465190i
\(141\) 0 0
\(142\) −100.270 171.213i −0.0592570 0.101182i
\(143\) 887.174 0.518805
\(144\) 0 0
\(145\) 3236.90 1.85386
\(146\) −1038.85 1773.85i −0.588878 1.00552i
\(147\) 0 0
\(148\) 1324.65 2361.51i 0.735711 1.31159i
\(149\) 3076.95i 1.69177i 0.533368 + 0.845883i \(0.320926\pi\)
−0.533368 + 0.845883i \(0.679074\pi\)
\(150\) 0 0
\(151\) 1309.38i 0.705668i −0.935686 0.352834i \(-0.885218\pi\)
0.935686 0.352834i \(-0.114782\pi\)
\(152\) −12.1558 653.376i −0.00648662 0.348657i
\(153\) 0 0
\(154\) −401.704 + 235.257i −0.210196 + 0.123101i
\(155\) 2787.01 1.44424
\(156\) 0 0
\(157\) 48.9931 0.0249049 0.0124525 0.999922i \(-0.496036\pi\)
0.0124525 + 0.999922i \(0.496036\pi\)
\(158\) −2421.90 + 1418.38i −1.21947 + 0.714179i
\(159\) 0 0
\(160\) 2516.47 + 1350.66i 1.24340 + 0.667367i
\(161\) 356.012i 0.174271i
\(162\) 0 0
\(163\) 1861.23i 0.894371i −0.894441 0.447186i \(-0.852426\pi\)
0.894441 0.447186i \(-0.147574\pi\)
\(164\) −542.748 304.444i −0.258424 0.144958i
\(165\) 0 0
\(166\) 1596.40 + 2725.87i 0.746415 + 1.27451i
\(167\) 276.319 0.128037 0.0640186 0.997949i \(-0.479608\pi\)
0.0640186 + 0.997949i \(0.479608\pi\)
\(168\) 0 0
\(169\) −773.294 −0.351977
\(170\) 719.947 + 1229.32i 0.324808 + 0.554614i
\(171\) 0 0
\(172\) −3230.86 1812.29i −1.43227 0.803406i
\(173\) 304.273i 0.133719i 0.997762 + 0.0668597i \(0.0212980\pi\)
−0.997762 + 0.0668597i \(0.978702\pi\)
\(174\) 0 0
\(175\) 867.505i 0.374727i
\(176\) 784.488 + 1284.13i 0.335983 + 0.549973i
\(177\) 0 0
\(178\) −3886.01 + 2275.83i −1.63634 + 0.958320i
\(179\) −2828.65 −1.18113 −0.590567 0.806988i \(-0.701096\pi\)
−0.590567 + 0.806988i \(0.701096\pi\)
\(180\) 0 0
\(181\) 2289.94 0.940386 0.470193 0.882564i \(-0.344184\pi\)
0.470193 + 0.882564i \(0.344184\pi\)
\(182\) −644.641 + 377.533i −0.262549 + 0.153761i
\(183\) 0 0
\(184\) −1150.61 + 21.4066i −0.460999 + 0.00857671i
\(185\) 5340.01i 2.12219i
\(186\) 0 0
\(187\) 750.611i 0.293530i
\(188\) −1378.23 + 2457.04i −0.534670 + 0.953182i
\(189\) 0 0
\(190\) 651.310 + 1112.12i 0.248689 + 0.424640i
\(191\) 314.085 0.118986 0.0594932 0.998229i \(-0.481052\pi\)
0.0594932 + 0.998229i \(0.481052\pi\)
\(192\) 0 0
\(193\) −2133.16 −0.795587 −0.397793 0.917475i \(-0.630224\pi\)
−0.397793 + 0.917475i \(0.630224\pi\)
\(194\) 1805.45 + 3082.82i 0.668162 + 1.14089i
\(195\) 0 0
\(196\) 191.775 341.887i 0.0698888 0.124594i
\(197\) 1510.64i 0.546339i −0.961966 0.273170i \(-0.911928\pi\)
0.961966 0.273170i \(-0.0880720\pi\)
\(198\) 0 0
\(199\) 328.162i 0.116898i 0.998290 + 0.0584492i \(0.0186156\pi\)
−0.998290 + 0.0584492i \(0.981384\pi\)
\(200\) −2803.72 + 52.1621i −0.991263 + 0.0184421i
\(201\) 0 0
\(202\) −3623.64 + 2122.18i −1.26217 + 0.739187i
\(203\) −1436.12 −0.496530
\(204\) 0 0
\(205\) 1227.30 0.418138
\(206\) 3036.56 1778.36i 1.02703 0.601475i
\(207\) 0 0
\(208\) 1258.92 + 2060.73i 0.419665 + 0.686953i
\(209\) 679.050i 0.224741i
\(210\) 0 0
\(211\) 4199.04i 1.37002i −0.728535 0.685009i \(-0.759798\pi\)
0.728535 0.685009i \(-0.240202\pi\)
\(212\) 1085.32 + 608.791i 0.351605 + 0.197226i
\(213\) 0 0
\(214\) 2609.94 + 4456.50i 0.833701 + 1.42355i
\(215\) 7305.84 2.31746
\(216\) 0 0
\(217\) −1236.51 −0.386820
\(218\) −299.375 511.187i −0.0930104 0.158816i
\(219\) 0 0
\(220\) −2588.35 1451.88i −0.793210 0.444937i
\(221\) 1204.55i 0.366638i
\(222\) 0 0
\(223\) 1522.53i 0.457202i −0.973520 0.228601i \(-0.926585\pi\)
0.973520 0.228601i \(-0.0734152\pi\)
\(224\) −1116.48 599.246i −0.333028 0.178745i
\(225\) 0 0
\(226\) −2492.48 + 1459.72i −0.733618 + 0.429642i
\(227\) −1831.97 −0.535649 −0.267825 0.963468i \(-0.586305\pi\)
−0.267825 + 0.963468i \(0.586305\pi\)
\(228\) 0 0
\(229\) 417.356 0.120435 0.0602176 0.998185i \(-0.480821\pi\)
0.0602176 + 0.998185i \(0.480821\pi\)
\(230\) 1958.46 1146.97i 0.561465 0.328821i
\(231\) 0 0
\(232\) 86.3519 + 4641.42i 0.0244366 + 1.31347i
\(233\) 431.598i 0.121352i −0.998158 0.0606759i \(-0.980674\pi\)
0.998158 0.0606759i \(-0.0193256\pi\)
\(234\) 0 0
\(235\) 5556.03i 1.54228i
\(236\) 2979.94 5312.49i 0.821939 1.46531i
\(237\) 0 0
\(238\) −319.419 545.411i −0.0869952 0.148545i
\(239\) 3365.90 0.910971 0.455485 0.890243i \(-0.349466\pi\)
0.455485 + 0.890243i \(0.349466\pi\)
\(240\) 0 0
\(241\) 4055.66 1.08402 0.542008 0.840373i \(-0.317664\pi\)
0.542008 + 0.840373i \(0.317664\pi\)
\(242\) 1112.29 + 1899.24i 0.295457 + 0.504496i
\(243\) 0 0
\(244\) 157.415 280.632i 0.0413011 0.0736295i
\(245\) 773.097i 0.201597i
\(246\) 0 0
\(247\) 1089.72i 0.280717i
\(248\) 74.3500 + 3996.32i 0.0190372 + 1.02325i
\(249\) 0 0
\(250\) −41.2280 + 24.1451i −0.0104300 + 0.00610828i
\(251\) 1222.93 0.307531 0.153766 0.988107i \(-0.450860\pi\)
0.153766 + 0.988107i \(0.450860\pi\)
\(252\) 0 0
\(253\) 1195.82 0.297156
\(254\) −4889.57 + 2863.56i −1.20787 + 0.707386i
\(255\) 0 0
\(256\) −1869.59 + 3644.43i −0.456442 + 0.889753i
\(257\) 933.046i 0.226466i 0.993568 + 0.113233i \(0.0361207\pi\)
−0.993568 + 0.113233i \(0.963879\pi\)
\(258\) 0 0
\(259\) 2369.20i 0.568398i
\(260\) −4153.69 2329.94i −0.990773 0.555756i
\(261\) 0 0
\(262\) −1670.85 2853.00i −0.393991 0.672744i
\(263\) 2725.50 0.639018 0.319509 0.947583i \(-0.396482\pi\)
0.319509 + 0.947583i \(0.396482\pi\)
\(264\) 0 0
\(265\) −2454.20 −0.568907
\(266\) −288.967 493.414i −0.0666078 0.113734i
\(267\) 0 0
\(268\) −5851.78 3282.45i −1.33379 0.748162i
\(269\) 6736.86i 1.52697i 0.645828 + 0.763483i \(0.276512\pi\)
−0.645828 + 0.763483i \(0.723488\pi\)
\(270\) 0 0
\(271\) 4267.63i 0.956606i 0.878195 + 0.478303i \(0.158748\pi\)
−0.878195 + 0.478303i \(0.841252\pi\)
\(272\) −1743.52 + 1065.13i −0.388664 + 0.237438i
\(273\) 0 0
\(274\) −1154.40 + 676.073i −0.254526 + 0.149062i
\(275\) 2913.89 0.638960
\(276\) 0 0
\(277\) −7464.54 −1.61914 −0.809568 0.587026i \(-0.800299\pi\)
−0.809568 + 0.587026i \(0.800299\pi\)
\(278\) 6974.85 4084.80i 1.50476 0.881260i
\(279\) 0 0
\(280\) 2498.60 46.4854i 0.533284 0.00992155i
\(281\) 1541.92i 0.327343i −0.986515 0.163671i \(-0.947666\pi\)
0.986515 0.163671i \(-0.0523337\pi\)
\(282\) 0 0
\(283\) 5.84660i 0.00122807i −1.00000 0.000614036i \(-0.999805\pi\)
1.00000 0.000614036i \(-0.000195454\pi\)
\(284\) −274.550 + 489.454i −0.0573646 + 0.102267i
\(285\) 0 0
\(286\) −1268.10 2165.30i −0.262184 0.447682i
\(287\) −544.515 −0.111992
\(288\) 0 0
\(289\) 3893.86 0.792563
\(290\) −4626.75 7900.22i −0.936869 1.59971i
\(291\) 0 0
\(292\) −2844.49 + 5071.01i −0.570072 + 1.01630i
\(293\) 8241.62i 1.64328i −0.570008 0.821639i \(-0.693060\pi\)
0.570008 0.821639i \(-0.306940\pi\)
\(294\) 0 0
\(295\) 12013.0i 2.37092i
\(296\) −7657.09 + 142.457i −1.50358 + 0.0279735i
\(297\) 0 0
\(298\) 7509.82 4398.11i 1.45984 0.854952i
\(299\) 1919.01 0.371168
\(300\) 0 0
\(301\) −3241.38 −0.620698
\(302\) −3195.77 + 1871.59i −0.608927 + 0.356617i
\(303\) 0 0
\(304\) −1577.30 + 963.588i −0.297581 + 0.181795i
\(305\) 634.584i 0.119135i
\(306\) 0 0
\(307\) 9164.01i 1.70364i −0.523833 0.851821i \(-0.675499\pi\)
0.523833 0.851821i \(-0.324501\pi\)
\(308\) 1148.37 + 644.158i 0.212450 + 0.119170i
\(309\) 0 0
\(310\) −3983.68 6802.18i −0.729864 1.24625i
\(311\) −8767.25 −1.59854 −0.799269 0.600974i \(-0.794779\pi\)
−0.799269 + 0.600974i \(0.794779\pi\)
\(312\) 0 0
\(313\) −1440.96 −0.260216 −0.130108 0.991500i \(-0.541532\pi\)
−0.130108 + 0.991500i \(0.541532\pi\)
\(314\) −70.0295 119.576i −0.0125860 0.0214907i
\(315\) 0 0
\(316\) 6923.61 + 3883.67i 1.23254 + 0.691372i
\(317\) 1454.49i 0.257705i 0.991664 + 0.128852i \(0.0411294\pi\)
−0.991664 + 0.128852i \(0.958871\pi\)
\(318\) 0 0
\(319\) 4823.81i 0.846650i
\(320\) −300.475 8072.49i −0.0524908 1.41021i
\(321\) 0 0
\(322\) −868.910 + 508.875i −0.150380 + 0.0880699i
\(323\) −921.976 −0.158824
\(324\) 0 0
\(325\) 4676.11 0.798104
\(326\) −4542.65 + 2660.39i −0.771760 + 0.451980i
\(327\) 0 0
\(328\) 32.7410 + 1759.83i 0.00551165 + 0.296252i
\(329\) 2465.05i 0.413077i
\(330\) 0 0
\(331\) 240.686i 0.0399677i 0.999800 + 0.0199839i \(0.00636149\pi\)
−0.999800 + 0.0199839i \(0.993639\pi\)
\(332\) 4371.11 7792.59i 0.722578 1.28818i
\(333\) 0 0
\(334\) −394.964 674.405i −0.0647050 0.110484i
\(335\) 13232.5 2.15811
\(336\) 0 0
\(337\) −1392.47 −0.225083 −0.112541 0.993647i \(-0.535899\pi\)
−0.112541 + 0.993647i \(0.535899\pi\)
\(338\) 1105.33 + 1887.36i 0.177875 + 0.303724i
\(339\) 0 0
\(340\) 1971.29 3514.31i 0.314436 0.560560i
\(341\) 4153.35i 0.659579i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 194.900 + 10475.9i 0.0305474 + 1.64193i
\(345\) 0 0
\(346\) 742.631 434.920i 0.115388 0.0675765i
\(347\) −8230.21 −1.27326 −0.636629 0.771170i \(-0.719672\pi\)
−0.636629 + 0.771170i \(0.719672\pi\)
\(348\) 0 0
\(349\) 2298.41 0.352524 0.176262 0.984343i \(-0.443599\pi\)
0.176262 + 0.984343i \(0.443599\pi\)
\(350\) −2117.30 + 1239.99i −0.323355 + 0.189372i
\(351\) 0 0
\(352\) 2012.82 3750.19i 0.304783 0.567857i
\(353\) 6796.30i 1.02473i 0.858767 + 0.512366i \(0.171231\pi\)
−0.858767 + 0.512366i \(0.828769\pi\)
\(354\) 0 0
\(355\) 1106.79i 0.165471i
\(356\) 11109.1 + 6231.46i 1.65388 + 0.927716i
\(357\) 0 0
\(358\) 4043.20 + 6903.81i 0.596899 + 1.01921i
\(359\) −11252.7 −1.65430 −0.827150 0.561981i \(-0.810040\pi\)
−0.827150 + 0.561981i \(0.810040\pi\)
\(360\) 0 0
\(361\) 6024.92 0.878396
\(362\) −3273.18 5589.00i −0.475234 0.811467i
\(363\) 0 0
\(364\) 1842.87 + 1033.72i 0.265364 + 0.148851i
\(365\) 11466.9i 1.64440i
\(366\) 0 0
\(367\) 2173.56i 0.309152i 0.987981 + 0.154576i \(0.0494011\pi\)
−0.987981 + 0.154576i \(0.950599\pi\)
\(368\) 1696.89 + 2777.66i 0.240372 + 0.393466i
\(369\) 0 0
\(370\) 13033.2 7632.88i 1.83126 1.07247i
\(371\) 1088.86 0.152374
\(372\) 0 0
\(373\) 13792.9 1.91466 0.957330 0.288997i \(-0.0933217\pi\)
0.957330 + 0.288997i \(0.0933217\pi\)
\(374\) 1832.00 1072.90i 0.253289 0.148338i
\(375\) 0 0
\(376\) 7966.85 148.220i 1.09271 0.0203294i
\(377\) 7741.08i 1.05752i
\(378\) 0 0
\(379\) 404.932i 0.0548812i 0.999623 + 0.0274406i \(0.00873571\pi\)
−0.999623 + 0.0274406i \(0.991264\pi\)
\(380\) 1783.35 3179.27i 0.240748 0.429192i
\(381\) 0 0
\(382\) −448.946 766.579i −0.0601310 0.102674i
\(383\) −9664.87 −1.28943 −0.644715 0.764423i \(-0.723024\pi\)
−0.644715 + 0.764423i \(0.723024\pi\)
\(384\) 0 0
\(385\) −2596.78 −0.343751
\(386\) 3049.09 + 5206.35i 0.402058 + 0.686518i
\(387\) 0 0
\(388\) 4943.49 8813.00i 0.646824 1.15313i
\(389\) 3344.96i 0.435980i 0.975951 + 0.217990i \(0.0699500\pi\)
−0.975951 + 0.217990i \(0.930050\pi\)
\(390\) 0 0
\(391\) 1623.62i 0.209999i
\(392\) −1108.55 + 20.6242i −0.142832 + 0.00265734i
\(393\) 0 0
\(394\) −3686.98 + 2159.27i −0.471441 + 0.276098i
\(395\) −15656.1 −1.99429
\(396\) 0 0
\(397\) 5442.74 0.688069 0.344035 0.938957i \(-0.388206\pi\)
0.344035 + 0.938957i \(0.388206\pi\)
\(398\) 800.937 469.067i 0.100873 0.0590759i
\(399\) 0 0
\(400\) 4134.87 + 6768.40i 0.516859 + 0.846050i
\(401\) 14165.2i 1.76403i −0.471218 0.882017i \(-0.656186\pi\)
0.471218 0.882017i \(-0.343814\pi\)
\(402\) 0 0
\(403\) 6665.16i 0.823859i
\(404\) 10359.1 + 5810.73i 1.27570 + 0.715581i
\(405\) 0 0
\(406\) 2052.75 + 3505.09i 0.250927 + 0.428460i
\(407\) 7957.97 0.969194
\(408\) 0 0
\(409\) 9568.46 1.15680 0.578399 0.815754i \(-0.303678\pi\)
0.578399 + 0.815754i \(0.303678\pi\)
\(410\) −1754.27 2995.43i −0.211310 0.360814i
\(411\) 0 0
\(412\) −8680.77 4869.32i −1.03804 0.582267i
\(413\) 5329.79i 0.635016i
\(414\) 0 0
\(415\) 17621.1i 2.08431i
\(416\) 3230.11 6018.17i 0.380695 0.709291i
\(417\) 0 0
\(418\) 1657.34 970.618i 0.193931 0.113575i
\(419\) 3341.64 0.389618 0.194809 0.980841i \(-0.437591\pi\)
0.194809 + 0.980841i \(0.437591\pi\)
\(420\) 0 0
\(421\) −10585.4 −1.22542 −0.612708 0.790309i \(-0.709920\pi\)
−0.612708 + 0.790309i \(0.709920\pi\)
\(422\) −10248.5 + 6002.00i −1.18220 + 0.692353i
\(423\) 0 0
\(424\) −65.4716 3519.10i −0.00749901 0.403073i
\(425\) 3956.31i 0.451551i
\(426\) 0 0
\(427\) 281.546i 0.0319085i
\(428\) 7146.29 12740.0i 0.807077 1.43881i
\(429\) 0 0
\(430\) −10442.8 17831.2i −1.17115 1.99976i
\(431\) 4326.10 0.483482 0.241741 0.970341i \(-0.422281\pi\)
0.241741 + 0.970341i \(0.422281\pi\)
\(432\) 0 0
\(433\) −11443.7 −1.27009 −0.635046 0.772474i \(-0.719019\pi\)
−0.635046 + 0.772474i \(0.719019\pi\)
\(434\) 1767.44 + 3017.92i 0.195483 + 0.333790i
\(435\) 0 0
\(436\) −819.720 + 1461.36i −0.0900401 + 0.160519i
\(437\) 1468.83i 0.160786i
\(438\) 0 0
\(439\) 16418.3i 1.78497i 0.451075 + 0.892486i \(0.351041\pi\)
−0.451075 + 0.892486i \(0.648959\pi\)
\(440\) 156.141 + 8392.60i 0.0169176 + 0.909321i
\(441\) 0 0
\(442\) 2939.92 1721.76i 0.316375 0.185285i
\(443\) −13807.7 −1.48087 −0.740433 0.672130i \(-0.765380\pi\)
−0.740433 + 0.672130i \(0.765380\pi\)
\(444\) 0 0
\(445\) −25120.7 −2.67604
\(446\) −3716.00 + 2176.27i −0.394524 + 0.231052i
\(447\) 0 0
\(448\) 133.312 + 3581.52i 0.0140589 + 0.377703i
\(449\) 934.788i 0.0982525i −0.998793 0.0491263i \(-0.984356\pi\)
0.998793 0.0491263i \(-0.0156437\pi\)
\(450\) 0 0
\(451\) 1828.99i 0.190961i
\(452\) 7125.39 + 3996.86i 0.741483 + 0.415921i
\(453\) 0 0
\(454\) 2618.58 + 4471.25i 0.270696 + 0.462216i
\(455\) −4167.22 −0.429368
\(456\) 0 0
\(457\) −11772.2 −1.20499 −0.602493 0.798124i \(-0.705826\pi\)
−0.602493 + 0.798124i \(0.705826\pi\)
\(458\) −596.558 1018.63i −0.0608632 0.103925i
\(459\) 0 0
\(460\) −5598.75 3140.51i −0.567485 0.318320i
\(461\) 8920.56i 0.901240i 0.892716 + 0.450620i \(0.148797\pi\)
−0.892716 + 0.450620i \(0.851203\pi\)
\(462\) 0 0
\(463\) 4574.14i 0.459132i −0.973293 0.229566i \(-0.926269\pi\)
0.973293 0.229566i \(-0.0737307\pi\)
\(464\) 11204.8 6845.09i 1.12105 0.684861i
\(465\) 0 0
\(466\) −1053.39 + 616.916i −0.104715 + 0.0613264i
\(467\) −137.173 −0.0135923 −0.00679614 0.999977i \(-0.502163\pi\)
−0.00679614 + 0.999977i \(0.502163\pi\)
\(468\) 0 0
\(469\) −5870.84 −0.578018
\(470\) −13560.5 + 7941.66i −1.33085 + 0.779407i
\(471\) 0 0
\(472\) −17225.5 + 320.474i −1.67980 + 0.0312521i
\(473\) 10887.6i 1.05837i
\(474\) 0 0
\(475\) 3579.13i 0.345730i
\(476\) −874.601 + 1559.19i −0.0842170 + 0.150138i
\(477\) 0 0
\(478\) −4811.14 8215.07i −0.460369 0.786084i
\(479\) 10928.1 1.04242 0.521210 0.853428i \(-0.325481\pi\)
0.521210 + 0.853428i \(0.325481\pi\)
\(480\) 0 0
\(481\) 12770.7 1.21059
\(482\) −5797.06 9898.53i −0.547819 0.935406i
\(483\) 0 0
\(484\) 3045.55 5429.46i 0.286021 0.509904i
\(485\) 19928.6i 1.86579i
\(486\) 0 0
\(487\) 9011.53i 0.838504i 0.907870 + 0.419252i \(0.137708\pi\)
−0.907870 + 0.419252i \(0.862292\pi\)
\(488\) −909.936 + 16.9290i −0.0844075 + 0.00157037i
\(489\) 0 0
\(490\) 1886.88 1105.05i 0.173960 0.101879i
\(491\) −6797.47 −0.624777 −0.312388 0.949954i \(-0.601129\pi\)
−0.312388 + 0.949954i \(0.601129\pi\)
\(492\) 0 0
\(493\) 6549.49 0.598325
\(494\) 2659.64 1557.61i 0.242233 0.141863i
\(495\) 0 0
\(496\) 9647.43 5893.70i 0.873352 0.533538i
\(497\) 491.048i 0.0443189i
\(498\) 0 0
\(499\) 709.640i 0.0636630i 0.999493 + 0.0318315i \(0.0101340\pi\)
−0.999493 + 0.0318315i \(0.989866\pi\)
\(500\) 117.861 + 66.1117i 0.0105418 + 0.00591321i
\(501\) 0 0
\(502\) −1748.02 2984.76i −0.155414 0.265371i
\(503\) 1150.21 0.101959 0.0509795 0.998700i \(-0.483766\pi\)
0.0509795 + 0.998700i \(0.483766\pi\)
\(504\) 0 0
\(505\) −23424.7 −2.06413
\(506\) −1709.27 2918.60i −0.150171 0.256418i
\(507\) 0 0
\(508\) 13978.0 + 7840.73i 1.22082 + 0.684795i
\(509\) 3194.56i 0.278186i 0.990279 + 0.139093i \(0.0444186\pi\)
−0.990279 + 0.139093i \(0.955581\pi\)
\(510\) 0 0
\(511\) 5087.52i 0.440428i
\(512\) 11567.2 646.207i 0.998443 0.0557784i
\(513\) 0 0
\(514\) 2277.26 1333.67i 0.195420 0.114447i
\(515\) 19629.6 1.67958
\(516\) 0 0
\(517\) −8279.90 −0.704352
\(518\) −5782.45 + 3386.48i −0.490475 + 0.287246i
\(519\) 0 0
\(520\) 250.570 + 13468.2i 0.0211312 + 1.13580i
\(521\) 6422.65i 0.540079i 0.962849 + 0.270040i \(0.0870368\pi\)
−0.962849 + 0.270040i \(0.912963\pi\)
\(522\) 0 0
\(523\) 8840.42i 0.739129i 0.929205 + 0.369565i \(0.120493\pi\)
−0.929205 + 0.369565i \(0.879507\pi\)
\(524\) −4574.97 + 8156.02i −0.381409 + 0.679957i
\(525\) 0 0
\(526\) −3895.77 6652.07i −0.322934 0.551414i
\(527\) 5639.19 0.466123
\(528\) 0 0
\(529\) −9580.37 −0.787406
\(530\) 3507.98 + 5989.91i 0.287503 + 0.490915i
\(531\) 0 0
\(532\) −791.220 + 1410.55i −0.0644807 + 0.114953i
\(533\) 2935.10i 0.238524i
\(534\) 0 0
\(535\) 28808.6i 2.32805i
\(536\) 353.007 + 18974.1i 0.0284469 + 1.52903i
\(537\) 0 0
\(538\) 16442.5 9629.51i 1.31763 0.771668i
\(539\) 1152.11 0.0920686
\(540\) 0 0
\(541\) 13395.6 1.06455 0.532275 0.846571i \(-0.321337\pi\)
0.532275 + 0.846571i \(0.321337\pi\)
\(542\) 10415.9 6100.05i 0.825463 0.483431i
\(543\) 0 0
\(544\) 5091.79 + 2732.90i 0.401303 + 0.215390i
\(545\) 3304.52i 0.259725i
\(546\) 0 0
\(547\) 16033.9i 1.25331i −0.779297 0.626655i \(-0.784423\pi\)
0.779297 0.626655i \(-0.215577\pi\)
\(548\) 3300.15 + 1851.16i 0.257254 + 0.144302i
\(549\) 0 0
\(550\) −4165.04 7111.85i −0.322905 0.551364i
\(551\) 5925.09 0.458108
\(552\) 0 0
\(553\) 6946.15 0.534142
\(554\) 10669.6 + 18218.5i 0.818247 + 1.39717i
\(555\) 0 0
\(556\) −19939.3 11184.6i −1.52089 0.853117i
\(557\) 19550.5i 1.48722i −0.668613 0.743610i \(-0.733112\pi\)
0.668613 0.743610i \(-0.266888\pi\)
\(558\) 0 0
\(559\) 17472.0i 1.32198i
\(560\) −3684.89 6031.81i −0.278062 0.455162i
\(561\) 0 0
\(562\) −3763.33 + 2203.98i −0.282467 + 0.165426i
\(563\) −5558.55 −0.416101 −0.208051 0.978118i \(-0.566712\pi\)
−0.208051 + 0.978118i \(0.566712\pi\)
\(564\) 0 0
\(565\) −16112.4 −1.19974
\(566\) −14.2696 + 8.35698i −0.00105971 + 0.000620619i
\(567\) 0 0
\(568\) 1587.03 29.5261i 0.117237 0.00218114i
\(569\) 24053.5i 1.77219i 0.463502 + 0.886096i \(0.346593\pi\)
−0.463502 + 0.886096i \(0.653407\pi\)
\(570\) 0 0
\(571\) 7034.11i 0.515531i −0.966207 0.257766i \(-0.917014\pi\)
0.966207 0.257766i \(-0.0829862\pi\)
\(572\) −3472.20 + 6190.06i −0.253811 + 0.452481i
\(573\) 0 0
\(574\) 778.317 + 1328.98i 0.0565964 + 0.0966389i
\(575\) 6302.91 0.457130
\(576\) 0 0
\(577\) 21687.4 1.56475 0.782373 0.622810i \(-0.214009\pi\)
0.782373 + 0.622810i \(0.214009\pi\)
\(578\) −5565.79 9503.65i −0.400530 0.683909i
\(579\) 0 0
\(580\) −12668.5 + 22584.8i −0.906950 + 1.61686i
\(581\) 7817.97i 0.558252i
\(582\) 0 0
\(583\) 3657.39i 0.259817i
\(584\) 16442.5 305.907i 1.16506 0.0216755i
\(585\) 0 0
\(586\) −20115.1 + 11780.4i −1.41800 + 0.830448i
\(587\) −19803.0 −1.39243 −0.696215 0.717833i \(-0.745134\pi\)
−0.696215 + 0.717833i \(0.745134\pi\)
\(588\) 0 0
\(589\) 5101.57 0.356887
\(590\) 29319.7 17171.0i 2.04589 1.19817i
\(591\) 0 0
\(592\) 11292.5 + 18484.8i 0.783988 + 1.28331i
\(593\) 2320.01i 0.160660i 0.996768 + 0.0803301i \(0.0255974\pi\)
−0.996768 + 0.0803301i \(0.974403\pi\)
\(594\) 0 0
\(595\) 3525.76i 0.242928i
\(596\) −21468.7 12042.5i −1.47549 0.827649i
\(597\) 0 0
\(598\) −2742.98 4683.68i −0.187574 0.320284i
\(599\) 9216.77 0.628693 0.314346 0.949308i \(-0.398215\pi\)
0.314346 + 0.949308i \(0.398215\pi\)
\(600\) 0 0
\(601\) 3122.88 0.211955 0.105977 0.994369i \(-0.466203\pi\)
0.105977 + 0.994369i \(0.466203\pi\)
\(602\) 4633.15 + 7911.15i 0.313676 + 0.535605i
\(603\) 0 0
\(604\) 9135.90 + 5124.62i 0.615455 + 0.345228i
\(605\) 12277.5i 0.825041i
\(606\) 0 0
\(607\) 13819.8i 0.924099i −0.886854 0.462049i \(-0.847114\pi\)
0.886854 0.462049i \(-0.152886\pi\)
\(608\) 4606.36 + 2472.35i 0.307258 + 0.164913i
\(609\) 0 0
\(610\) 1548.81 907.058i 0.102803 0.0602061i
\(611\) −13287.3 −0.879782
\(612\) 0 0
\(613\) 21961.3 1.44700 0.723498 0.690327i \(-0.242533\pi\)
0.723498 + 0.690327i \(0.242533\pi\)
\(614\) −22366.4 + 13098.8i −1.47009 + 0.860953i
\(615\) 0 0
\(616\) −69.2751 3723.54i −0.00453112 0.243548i
\(617\) 8350.99i 0.544892i −0.962171 0.272446i \(-0.912167\pi\)
0.962171 0.272446i \(-0.0878326\pi\)
\(618\) 0 0
\(619\) 9479.90i 0.615556i 0.951458 + 0.307778i \(0.0995854\pi\)
−0.951458 + 0.307778i \(0.900415\pi\)
\(620\) −10907.7 + 19445.7i −0.706556 + 1.25961i
\(621\) 0 0
\(622\) 12531.7 + 21398.0i 0.807837 + 1.37939i
\(623\) 11145.3 0.716737
\(624\) 0 0
\(625\) −15757.7 −1.00849
\(626\) 2059.67 + 3516.90i 0.131503 + 0.224543i
\(627\) 0 0
\(628\) −191.748 + 341.838i −0.0121840 + 0.0217211i
\(629\) 10804.9i 0.684927i
\(630\) 0 0
\(631\) 12675.6i 0.799693i −0.916582 0.399846i \(-0.869063\pi\)
0.916582 0.399846i \(-0.130937\pi\)
\(632\) −417.664 22449.5i −0.0262876 1.41296i
\(633\) 0 0
\(634\) 3549.94 2079.02i 0.222376 0.130234i
\(635\) −31608.1 −1.97532
\(636\) 0 0
\(637\) 1848.87 0.115000
\(638\) −11773.3 + 6895.03i −0.730581 + 0.427863i
\(639\) 0 0
\(640\) −19272.8 + 12272.0i −1.19035 + 0.757957i
\(641\) 415.766i 0.0256190i 0.999918 + 0.0128095i \(0.00407750\pi\)
−0.999918 + 0.0128095i \(0.995922\pi\)
\(642\) 0 0
\(643\) 1748.72i 0.107252i 0.998561 + 0.0536258i \(0.0170778\pi\)
−0.998561 + 0.0536258i \(0.982922\pi\)
\(644\) 2484.00 + 1393.35i 0.151992 + 0.0852574i
\(645\) 0 0
\(646\) 1317.85 + 2250.24i 0.0802633 + 0.137051i
\(647\) 17144.4 1.04175 0.520877 0.853632i \(-0.325605\pi\)
0.520877 + 0.853632i \(0.325605\pi\)
\(648\) 0 0
\(649\) 17902.4 1.08279
\(650\) −6683.91 11412.8i −0.403330 0.688690i
\(651\) 0 0
\(652\) 12986.3 + 7284.42i 0.780034 + 0.437546i
\(653\) 13708.4i 0.821520i 0.911743 + 0.410760i \(0.134737\pi\)
−0.911743 + 0.410760i \(0.865263\pi\)
\(654\) 0 0
\(655\) 18442.9i 1.10019i
\(656\) 4248.38 2595.37i 0.252853 0.154470i
\(657\) 0 0
\(658\) 6016.37 3523.47i 0.356448 0.208753i
\(659\) −3117.98 −0.184308 −0.0921542 0.995745i \(-0.529375\pi\)
−0.0921542 + 0.995745i \(0.529375\pi\)
\(660\) 0 0
\(661\) 21138.9 1.24389 0.621944 0.783062i \(-0.286343\pi\)
0.621944 + 0.783062i \(0.286343\pi\)
\(662\) 587.437 344.031i 0.0344885 0.0201981i
\(663\) 0 0
\(664\) −25267.1 + 470.085i −1.47674 + 0.0274742i
\(665\) 3189.62i 0.185998i
\(666\) 0 0
\(667\) 10434.2i 0.605717i
\(668\) −1081.45 + 1927.96i −0.0626386 + 0.111669i
\(669\) 0 0
\(670\) −18914.1 32296.1i −1.09062 1.86225i
\(671\) 945.691 0.0544083
\(672\) 0 0
\(673\) −2307.32 −0.132156 −0.0660778 0.997814i \(-0.521049\pi\)
−0.0660778 + 0.997814i \(0.521049\pi\)
\(674\) 1990.37 + 3398.58i 0.113748 + 0.194226i
\(675\) 0 0
\(676\) 3026.50 5395.48i 0.172195 0.306980i
\(677\) 3314.25i 0.188149i −0.995565 0.0940746i \(-0.970011\pi\)
0.995565 0.0940746i \(-0.0299892\pi\)
\(678\) 0 0
\(679\) 8841.71i 0.499725i
\(680\) −11395.0 + 212.000i −0.642615 + 0.0119556i
\(681\) 0 0
\(682\) −10137.0 + 5936.70i −0.569157 + 0.333325i
\(683\) −24300.2 −1.36138 −0.680690 0.732571i \(-0.738320\pi\)
−0.680690 + 0.732571i \(0.738320\pi\)
\(684\) 0 0
\(685\) −7462.52 −0.416246
\(686\) −837.151 + 490.276i −0.0465927 + 0.0272869i
\(687\) 0 0
\(688\) 25289.7 15449.7i 1.40140 0.856125i
\(689\) 5869.25i 0.324529i
\(690\) 0 0
\(691\) 24627.2i 1.35580i −0.735152 0.677902i \(-0.762889\pi\)
0.735152 0.677902i \(-0.237111\pi\)
\(692\) −2123.00 1190.86i −0.116625 0.0654184i
\(693\) 0 0
\(694\) 11764.1 + 20087.3i 0.643455 + 1.09871i
\(695\) 45088.2 2.46085
\(696\) 0 0
\(697\) 2483.29 0.134952
\(698\) −3285.28 5609.66i −0.178152 0.304196i
\(699\) 0 0
\(700\) 6052.83 + 3395.22i 0.326822 + 0.183325i
\(701\) 11630.1i 0.626625i 0.949650 + 0.313313i \(0.101439\pi\)
−0.949650 + 0.313313i \(0.898561\pi\)
\(702\) 0 0
\(703\) 9774.79i 0.524414i
\(704\) −12030.1 + 447.784i −0.644034 + 0.0239723i
\(705\) 0 0
\(706\) 16587.6 9714.47i 0.884251 0.517859i
\(707\) 10392.8 0.552846
\(708\) 0 0
\(709\) 22039.3 1.16742 0.583711 0.811961i \(-0.301600\pi\)
0.583711 + 0.811961i \(0.301600\pi\)
\(710\) −2701.31 + 1582.01i −0.142786 + 0.0836224i
\(711\) 0 0
\(712\) −670.154 36020.8i −0.0352740 1.89598i
\(713\) 8983.95i 0.471881i
\(714\) 0 0
\(715\) 13997.4i 0.732129i
\(716\) 11070.7 19736.3i 0.577837 1.03014i
\(717\) 0 0
\(718\) 16084.3 + 27464.1i 0.836018 + 1.42751i
\(719\) 30873.4 1.60137 0.800684 0.599087i \(-0.204470\pi\)
0.800684 + 0.599087i \(0.204470\pi\)
\(720\) 0 0
\(721\) −8709.04 −0.449850
\(722\) −8611.87 14704.9i −0.443907 0.757976i
\(723\) 0 0
\(724\) −8962.31 + 15977.5i −0.460057 + 0.820167i
\(725\) 25425.3i 1.30244i
\(726\) 0 0
\(727\) 4726.44i 0.241120i 0.992706 + 0.120560i \(0.0384690\pi\)
−0.992706 + 0.120560i \(0.961531\pi\)
\(728\) −111.170 5975.41i −0.00565968 0.304208i
\(729\) 0 0
\(730\) −27987.0 + 16390.5i −1.41897 + 0.831014i
\(731\) 14782.5 0.747949
\(732\) 0 0
\(733\) −13188.7 −0.664580 −0.332290 0.943177i \(-0.607821\pi\)
−0.332290 + 0.943177i \(0.607821\pi\)
\(734\) 5304.94 3106.83i 0.266770 0.156233i
\(735\) 0 0
\(736\) 4353.85 8111.88i 0.218051 0.406261i
\(737\) 19719.7i 0.985597i
\(738\) 0 0
\(739\) 16007.0i 0.796786i 0.917215 + 0.398393i \(0.130432\pi\)
−0.917215 + 0.398393i \(0.869568\pi\)
\(740\) −37258.7 20899.6i −1.85089 1.03822i
\(741\) 0 0
\(742\) −1556.38 2657.54i −0.0770036 0.131484i
\(743\) −8589.38 −0.424110 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(744\) 0 0
\(745\) 48546.5 2.38739
\(746\) −19715.2 33663.9i −0.967593 1.65218i
\(747\) 0 0
\(748\) −5237.22 2937.72i −0.256005 0.143601i
\(749\) 12781.5i 0.623534i
\(750\) 0 0
\(751\) 15818.0i 0.768585i −0.923211 0.384292i \(-0.874445\pi\)
0.923211 0.384292i \(-0.125555\pi\)
\(752\) −11749.4 19232.6i −0.569755 0.932635i
\(753\) 0 0
\(754\) −18893.5 + 11064.9i −0.912545 + 0.534430i
\(755\) −20658.7 −0.995826
\(756\) 0 0
\(757\) −10993.9 −0.527846 −0.263923 0.964544i \(-0.585016\pi\)
−0.263923 + 0.964544i \(0.585016\pi\)
\(758\) 988.307 578.800i 0.0473574 0.0277348i
\(759\) 0 0
\(760\) −10308.6 + 191.788i −0.492018 + 0.00915381i
\(761\) 15944.5i 0.759508i 0.925087 + 0.379754i \(0.123991\pi\)
−0.925087 + 0.379754i \(0.876009\pi\)
\(762\) 0 0
\(763\) 1466.12i 0.0695635i
\(764\) −1229.26 + 2191.46i −0.0582107 + 0.103775i
\(765\) 0 0
\(766\) 13814.7 + 23588.8i 0.651627 + 1.11266i
\(767\) 28729.1 1.35247
\(768\) 0 0
\(769\) −21870.6 −1.02558 −0.512792 0.858513i \(-0.671389\pi\)
−0.512792 + 0.858513i \(0.671389\pi\)
\(770\) 3711.77 + 6337.88i 0.173718 + 0.296625i
\(771\) 0 0
\(772\) 8348.70 14883.6i 0.389218 0.693878i
\(773\) 19936.1i 0.927620i −0.885935 0.463810i \(-0.846482\pi\)
0.885935 0.463810i \(-0.153518\pi\)
\(774\) 0 0
\(775\) 21891.4i 1.01466i
\(776\) −28575.8 + 531.641i −1.32192 + 0.0245938i
\(777\) 0 0
\(778\) 8163.95 4781.20i 0.376211 0.220327i
\(779\) 2246.55 0.103326
\(780\) 0 0
\(781\) −1649.39 −0.0755697
\(782\) 3962.72 2320.76i 0.181210 0.106125i
\(783\) 0 0
\(784\) 1634.87 + 2676.13i 0.0744749 + 0.121908i
\(785\) 772.988i 0.0351454i
\(786\) 0 0
\(787\) 27000.3i 1.22294i 0.791266 + 0.611472i \(0.209422\pi\)
−0.791266 + 0.611472i \(0.790578\pi\)
\(788\) 10540.2 + 5912.31i 0.476495 + 0.267281i
\(789\) 0 0
\(790\) 22378.5 + 38211.5i 1.00784 + 1.72089i
\(791\) 7148.60 0.321334
\(792\) 0 0
\(793\) 1517.61 0.0679597
\(794\) −7779.72 13284.0i −0.347723 0.593741i
\(795\) 0 0
\(796\) −2289.68 1284.35i −0.101954 0.0571893i
\(797\) 16938.8i 0.752826i −0.926452 0.376413i \(-0.877157\pi\)
0.926452 0.376413i \(-0.122843\pi\)
\(798\) 0 0
\(799\) 11242.0i 0.497763i
\(800\) 10609.2 19766.5i 0.468863 0.873562i
\(801\) 0 0
\(802\) −34572.7 + 20247.4i −1.52220 + 0.891473i
\(803\) −17088.6 −0.750989
\(804\) 0 0
\(805\) −5616.98 −0.245929
\(806\) −16267.5 + 9527.01i −0.710915 + 0.416346i
\(807\) 0 0
\(808\) −624.908 33588.9i −0.0272081 1.46244i
\(809\) 9479.48i 0.411966i 0.978556 + 0.205983i \(0.0660392\pi\)
−0.978556 + 0.205983i \(0.933961\pi\)
\(810\) 0 0
\(811\) 32925.6i 1.42562i −0.701359 0.712808i \(-0.747423\pi\)
0.701359 0.712808i \(-0.252577\pi\)
\(812\) 5620.63 10020.2i 0.242913 0.433053i
\(813\) 0 0
\(814\) −11374.9 19422.8i −0.489792 0.836326i
\(815\) −29365.5 −1.26212
\(816\) 0 0
\(817\) 13373.2 0.572667
\(818\) −13676.9 23353.5i −0.584599 0.998210i
\(819\) 0 0
\(820\) −4803.37 + 8563.20i −0.204562 + 0.364683i
\(821\) 9381.63i 0.398808i 0.979917 + 0.199404i \(0.0639006\pi\)
−0.979917 + 0.199404i \(0.936099\pi\)
\(822\) 0 0
\(823\) 35540.1i 1.50529i 0.658428 + 0.752644i \(0.271222\pi\)
−0.658428 + 0.752644i \(0.728778\pi\)
\(824\) 523.664 + 28147.0i 0.0221392 + 1.18999i
\(825\) 0 0
\(826\) −13008.3 + 7618.27i −0.547961 + 0.320912i
\(827\) −1743.92 −0.0733278 −0.0366639 0.999328i \(-0.511673\pi\)
−0.0366639 + 0.999328i \(0.511673\pi\)
\(828\) 0 0
\(829\) −43358.5 −1.81653 −0.908264 0.418398i \(-0.862592\pi\)
−0.908264 + 0.418398i \(0.862592\pi\)
\(830\) 43007.5 25187.2i 1.79857 1.05333i
\(831\) 0 0
\(832\) −19305.4 + 718.589i −0.804442 + 0.0299430i
\(833\) 1564.27i 0.0650646i
\(834\) 0 0
\(835\) 4359.62i 0.180684i
\(836\) −4737.92 2657.65i −0.196010 0.109948i
\(837\) 0 0
\(838\) −4776.46 8155.86i −0.196898 0.336205i
\(839\) 13882.5 0.571248 0.285624 0.958342i \(-0.407799\pi\)
0.285624 + 0.958342i \(0.407799\pi\)
\(840\) 0 0
\(841\) −17701.4 −0.725794
\(842\) 15130.5 + 25835.5i 0.619277 + 1.05742i
\(843\) 0 0
\(844\) 29297.9 + 16434.1i 1.19487 + 0.670242i
\(845\) 12200.6i 0.496704i
\(846\) 0 0
\(847\) 5447.14i 0.220975i
\(848\) −8495.40 + 5189.92i −0.344025 + 0.210168i
\(849\) 0 0
\(850\) 9656.06 5655.05i 0.389647 0.228196i
\(851\) 17213.6 0.693388
\(852\) 0 0
\(853\) 26331.9 1.05696 0.528480 0.848946i \(-0.322762\pi\)
0.528480 + 0.848946i \(0.322762\pi\)
\(854\) −687.161 + 402.434i −0.0275342 + 0.0161253i
\(855\) 0 0
\(856\) −41309.0 + 768.538i −1.64943 + 0.0306870i
\(857\) 23177.4i 0.923832i 0.886924 + 0.461916i \(0.152838\pi\)
−0.886924 + 0.461916i \(0.847162\pi\)
\(858\) 0 0
\(859\) 27339.6i 1.08593i −0.839755 0.542965i \(-0.817302\pi\)
0.839755 0.542965i \(-0.182698\pi\)
\(860\) −28593.4 + 50974.9i −1.13375 + 2.02120i
\(861\) 0 0
\(862\) −6183.62 10558.6i −0.244333 0.417201i
\(863\) −10007.4 −0.394736 −0.197368 0.980330i \(-0.563239\pi\)
−0.197368 + 0.980330i \(0.563239\pi\)
\(864\) 0 0
\(865\) 4800.67 0.188702
\(866\) 16357.4 + 27930.4i 0.641854 + 1.09597i
\(867\) 0 0
\(868\) 4839.43 8627.48i 0.189241 0.337368i
\(869\) 23331.6i 0.910784i
\(870\) 0 0
\(871\) 31645.5i 1.23108i
\(872\) 4738.38 88.1557i 0.184016 0.00342354i
\(873\) 0 0
\(874\) 3584.93 2099.50i 0.138744 0.0812549i
\(875\) 118.244 0.00456845
\(876\) 0 0
\(877\) 33763.4 1.30001 0.650005 0.759930i \(-0.274767\pi\)
0.650005 + 0.759930i \(0.274767\pi\)
\(878\) 40071.7 23467.9i 1.54027 0.902054i
\(879\) 0 0
\(880\) 20260.4 12377.3i 0.776111 0.474133i
\(881\) 2440.72i 0.0933372i 0.998910 + 0.0466686i \(0.0148605\pi\)
−0.998910 + 0.0466686i \(0.985140\pi\)
\(882\) 0 0
\(883\) 11198.0i 0.426777i −0.976967 0.213388i \(-0.931550\pi\)
0.976967 0.213388i \(-0.0684499\pi\)
\(884\) −8404.51 4714.35i −0.319767 0.179367i
\(885\) 0 0
\(886\) 19736.4 + 33700.1i 0.748371 + 1.27785i
\(887\) −40801.1 −1.54449 −0.772247 0.635322i \(-0.780867\pi\)
−0.772247 + 0.635322i \(0.780867\pi\)
\(888\) 0 0
\(889\) 14023.6 0.529061
\(890\) 35906.9 + 61311.5i 1.35236 + 2.30917i
\(891\) 0 0
\(892\) 10623.1 + 5958.83i 0.398753 + 0.223673i
\(893\) 10170.2i 0.381112i
\(894\) 0 0
\(895\) 44629.0i 1.66680i
\(896\) 8550.77 5444.71i 0.318818 0.203008i
\(897\) 0 0
\(898\) −2281.51 + 1336.16i −0.0847829 + 0.0496529i
\(899\) −36240.3 −1.34447
\(900\) 0 0
\(901\) −4965.79 −0.183612
\(902\) −4463.96 + 2614.31i −0.164782 + 0.0965043i
\(903\) 0 0
\(904\) −429.837 23103.8i −0.0158143 0.850022i
\(905\) 36129.5i 1.32706i
\(906\) 0 0
\(907\) 13257.2i 0.485334i 0.970110 + 0.242667i \(0.0780222\pi\)
−0.970110 + 0.242667i \(0.921978\pi\)
\(908\) 7169.93 12782.2i 0.262051 0.467172i
\(909\) 0 0
\(910\) 5956.52 + 10170.8i 0.216985 + 0.370505i
\(911\) 10748.9 0.390919 0.195460 0.980712i \(-0.437380\pi\)
0.195460 + 0.980712i \(0.437380\pi\)
\(912\) 0 0
\(913\) 26260.0 0.951894
\(914\) 16826.8 + 28732.0i 0.608953 + 1.03979i
\(915\) 0 0
\(916\) −1633.44 + 2912.01i −0.0589195 + 0.105039i
\(917\) 8182.58i 0.294670i
\(918\) 0 0
\(919\) 36773.1i 1.31995i 0.751289 + 0.659973i \(0.229432\pi\)
−0.751289 + 0.659973i \(0.770568\pi\)
\(920\) 337.742 + 18153.7i 0.0121033 + 0.650554i
\(921\) 0 0
\(922\) 21772.2 12750.8i 0.777688 0.455451i
\(923\) −2646.89 −0.0943917
\(924\) 0 0
\(925\) 41944.8 1.49096
\(926\) −11164.0 + 6538.16i −0.396189 + 0.232027i
\(927\) 0 0
\(928\) −32722.5 17563.0i −1.15751 0.621264i
\(929\) 48989.7i 1.73014i 0.501651 + 0.865070i \(0.332726\pi\)
−0.501651 + 0.865070i \(0.667274\pi\)
\(930\) 0 0
\(931\) 1415.14i 0.0498167i
\(932\) 3011.38 + 1689.18i 0.105838 + 0.0593679i
\(933\) 0 0
\(934\) 196.071 + 334.794i 0.00686900 + 0.0117289i
\(935\) 11842.8 0.414224
\(936\) 0 0
\(937\) −36515.8 −1.27313 −0.636564 0.771224i \(-0.719645\pi\)
−0.636564 + 0.771224i \(0.719645\pi\)
\(938\) 8391.63 + 14328.8i 0.292107 + 0.498776i
\(939\) 0 0
\(940\) 38766.0 + 21745.1i 1.34511 + 0.754517i
\(941\) 5560.99i 0.192650i 0.995350 + 0.0963248i \(0.0307087\pi\)
−0.995350 + 0.0963248i \(0.969291\pi\)
\(942\) 0 0
\(943\) 3956.21i 0.136619i
\(944\) 25403.9 + 41583.7i 0.875874 + 1.43372i
\(945\) 0 0
\(946\) −26573.0 + 15562.4i −0.913279 + 0.534860i
\(947\) 42010.7 1.44157 0.720783 0.693160i \(-0.243782\pi\)
0.720783 + 0.693160i \(0.243782\pi\)
\(948\) 0 0
\(949\) −27423.2 −0.938035
\(950\) 8735.49 5115.92i 0.298333 0.174718i
\(951\) 0 0
\(952\) 5055.62 94.0578i 0.172115 0.00320213i
\(953\) 34345.1i 1.16742i −0.811964 0.583708i \(-0.801601\pi\)
0.811964 0.583708i \(-0.198399\pi\)
\(954\) 0 0
\(955\) 4955.48i 0.167911i
\(956\) −13173.4 + 23484.8i −0.445667 + 0.794512i
\(957\) 0 0
\(958\) −15620.4 26672.0i −0.526798 0.899513i
\(959\) 3310.90 0.111485
\(960\) 0 0
\(961\) −1412.29 −0.0474064
\(962\) −18254.1 31169.1i −0.611783 1.04463i
\(963\) 0 0
\(964\) −15872.9 + 28297.4i −0.530324 + 0.945435i
\(965\) 33655.9i 1.12272i
\(966\) 0 0
\(967\) 10449.5i 0.347499i −0.984790 0.173750i \(-0.944412\pi\)
0.984790 0.173750i \(-0.0555884\pi\)
\(968\) −17604.8 + 327.530i −0.584544 + 0.0108752i
\(969\) 0 0
\(970\) 48639.1 28485.4i 1.61001 0.942898i
\(971\) −17540.5 −0.579713 −0.289857 0.957070i \(-0.593608\pi\)
−0.289857 + 0.957070i \(0.593608\pi\)
\(972\) 0 0
\(973\) −20004.3 −0.659104
\(974\) 21994.2 12880.9i 0.723552 0.423747i
\(975\) 0 0
\(976\) 1341.96 + 2196.66i 0.0440113 + 0.0720423i
\(977\) 42272.5i 1.38425i 0.721776 + 0.692127i \(0.243326\pi\)
−0.721776 + 0.692127i \(0.756674\pi\)
\(978\) 0 0
\(979\) 37436.3i 1.22213i
\(980\) −5394.11 3025.73i −0.175825 0.0986258i
\(981\) 0 0
\(982\) 9716.13 + 16590.4i 0.315737 + 0.539125i
\(983\) 20775.1 0.674084 0.337042 0.941490i \(-0.390574\pi\)
0.337042 + 0.941490i \(0.390574\pi\)
\(984\) 0 0
\(985\) −23834.1 −0.770984
\(986\) −9361.68 15985.2i −0.302370 0.516300i
\(987\) 0 0
\(988\) −7603.26 4264.91i −0.244830 0.137333i
\(989\) 23550.4i 0.757190i
\(990\) 0 0
\(991\) 12344.0i 0.395683i 0.980234 + 0.197841i \(0.0633931\pi\)
−0.980234 + 0.197841i \(0.936607\pi\)
\(992\) −28174.4 15121.9i −0.901752 0.483993i
\(993\) 0 0
\(994\) 1198.49 701.892i 0.0382432 0.0223970i
\(995\) 5177.58 0.164965
\(996\) 0 0
\(997\) −50011.2 −1.58864 −0.794319 0.607501i \(-0.792172\pi\)
−0.794319 + 0.607501i \(0.792172\pi\)
\(998\) 1732.00 1014.34i 0.0549354 0.0321728i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.4.e.a.71.11 36
3.2 odd 2 inner 252.4.e.a.71.26 yes 36
4.3 odd 2 inner 252.4.e.a.71.25 yes 36
12.11 even 2 inner 252.4.e.a.71.12 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.e.a.71.11 36 1.1 even 1 trivial
252.4.e.a.71.12 yes 36 12.11 even 2 inner
252.4.e.a.71.25 yes 36 4.3 odd 2 inner
252.4.e.a.71.26 yes 36 3.2 odd 2 inner