Properties

Label 252.4.e.a.71.16
Level $252$
Weight $4$
Character 252.71
Analytic conductor $14.868$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,4,Mod(71,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.71");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.16
Character \(\chi\) \(=\) 252.71
Dual form 252.4.e.a.71.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.968530 + 2.65743i) q^{2} +(-6.12390 - 5.14761i) q^{4} -12.6551i q^{5} -7.00000i q^{7} +(19.6106 - 11.2882i) q^{8} +(33.6300 + 12.2568i) q^{10} -54.6738 q^{11} +20.4142 q^{13} +(18.6020 + 6.77971i) q^{14} +(11.0043 + 63.0469i) q^{16} +134.981i q^{17} -9.73506i q^{19} +(-65.1434 + 77.4984i) q^{20} +(52.9532 - 145.292i) q^{22} -161.089 q^{23} -35.1511 q^{25} +(-19.7718 + 54.2495i) q^{26} +(-36.0333 + 42.8673i) q^{28} +216.995i q^{29} +240.670i q^{31} +(-178.201 - 31.8197i) q^{32} +(-358.702 - 130.733i) q^{34} -88.5856 q^{35} +72.2696 q^{37} +(25.8703 + 9.42870i) q^{38} +(-142.853 - 248.174i) q^{40} -284.443i q^{41} -402.495i q^{43} +(334.816 + 281.439i) q^{44} +(156.020 - 428.084i) q^{46} -286.218 q^{47} -49.0000 q^{49} +(34.0449 - 93.4116i) q^{50} +(-125.015 - 105.084i) q^{52} +236.625i q^{53} +691.901i q^{55} +(-79.0176 - 137.274i) q^{56} +(-576.650 - 210.166i) q^{58} +445.000 q^{59} -230.853 q^{61} +(-639.563 - 233.096i) q^{62} +(257.152 - 442.738i) q^{64} -258.344i q^{65} +697.530i q^{67} +(694.828 - 826.608i) q^{68} +(85.7978 - 235.410i) q^{70} -786.567 q^{71} -400.494 q^{73} +(-69.9953 + 192.052i) q^{74} +(-50.1123 + 59.6165i) q^{76} +382.716i q^{77} +119.537i q^{79} +(797.863 - 139.260i) q^{80} +(755.887 + 275.491i) q^{82} -1304.02 q^{83} +1708.19 q^{85} +(1069.60 + 389.828i) q^{86} +(-1072.19 + 617.170i) q^{88} +557.553i q^{89} -142.900i q^{91} +(986.494 + 829.225i) q^{92} +(277.211 - 760.605i) q^{94} -123.198 q^{95} +149.617 q^{97} +(47.4580 - 130.214i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 24 q^{4} + 264 q^{10} - 468 q^{16} + 444 q^{22} - 900 q^{25} - 84 q^{28} - 432 q^{34} - 264 q^{37} + 1416 q^{40} + 180 q^{46} - 1764 q^{49} + 2736 q^{52} + 636 q^{58} - 3960 q^{61} + 1392 q^{64}+ \cdots + 5496 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.968530 + 2.65743i −0.342427 + 0.939544i
\(3\) 0 0
\(4\) −6.12390 5.14761i −0.765487 0.643451i
\(5\) 12.6551i 1.13190i −0.824438 0.565952i \(-0.808509\pi\)
0.824438 0.565952i \(-0.191491\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 19.6106 11.2882i 0.866674 0.498874i
\(9\) 0 0
\(10\) 33.6300 + 12.2568i 1.06347 + 0.387595i
\(11\) −54.6738 −1.49861 −0.749307 0.662223i \(-0.769613\pi\)
−0.749307 + 0.662223i \(0.769613\pi\)
\(12\) 0 0
\(13\) 20.4142 0.435530 0.217765 0.976001i \(-0.430123\pi\)
0.217765 + 0.976001i \(0.430123\pi\)
\(14\) 18.6020 + 6.77971i 0.355114 + 0.129425i
\(15\) 0 0
\(16\) 11.0043 + 63.0469i 0.171941 + 0.985107i
\(17\) 134.981i 1.92574i 0.269959 + 0.962872i \(0.412990\pi\)
−0.269959 + 0.962872i \(0.587010\pi\)
\(18\) 0 0
\(19\) 9.73506i 0.117546i −0.998271 0.0587731i \(-0.981281\pi\)
0.998271 0.0587731i \(-0.0187188\pi\)
\(20\) −65.1434 + 77.4984i −0.728325 + 0.866459i
\(21\) 0 0
\(22\) 52.9532 145.292i 0.513166 1.40801i
\(23\) −161.089 −1.46041 −0.730205 0.683228i \(-0.760576\pi\)
−0.730205 + 0.683228i \(0.760576\pi\)
\(24\) 0 0
\(25\) −35.1511 −0.281208
\(26\) −19.7718 + 54.2495i −0.149137 + 0.409200i
\(27\) 0 0
\(28\) −36.0333 + 42.8673i −0.243202 + 0.289327i
\(29\) 216.995i 1.38948i 0.719260 + 0.694742i \(0.244481\pi\)
−0.719260 + 0.694742i \(0.755519\pi\)
\(30\) 0 0
\(31\) 240.670i 1.39437i 0.716890 + 0.697186i \(0.245565\pi\)
−0.716890 + 0.697186i \(0.754435\pi\)
\(32\) −178.201 31.8197i −0.984429 0.175781i
\(33\) 0 0
\(34\) −358.702 130.733i −1.80932 0.659427i
\(35\) −88.5856 −0.427820
\(36\) 0 0
\(37\) 72.2696 0.321109 0.160555 0.987027i \(-0.448672\pi\)
0.160555 + 0.987027i \(0.448672\pi\)
\(38\) 25.8703 + 9.42870i 0.110440 + 0.0402510i
\(39\) 0 0
\(40\) −142.853 248.174i −0.564678 0.980993i
\(41\) 284.443i 1.08347i −0.840548 0.541737i \(-0.817767\pi\)
0.840548 0.541737i \(-0.182233\pi\)
\(42\) 0 0
\(43\) 402.495i 1.42744i −0.700431 0.713720i \(-0.747009\pi\)
0.700431 0.713720i \(-0.252991\pi\)
\(44\) 334.816 + 281.439i 1.14717 + 0.964285i
\(45\) 0 0
\(46\) 156.020 428.084i 0.500084 1.37212i
\(47\) −286.218 −0.888280 −0.444140 0.895957i \(-0.646491\pi\)
−0.444140 + 0.895957i \(0.646491\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 34.0449 93.4116i 0.0962934 0.264208i
\(51\) 0 0
\(52\) −125.015 105.084i −0.333393 0.280242i
\(53\) 236.625i 0.613262i 0.951828 + 0.306631i \(0.0992018\pi\)
−0.951828 + 0.306631i \(0.900798\pi\)
\(54\) 0 0
\(55\) 691.901i 1.69629i
\(56\) −79.0176 137.274i −0.188557 0.327572i
\(57\) 0 0
\(58\) −576.650 210.166i −1.30548 0.475797i
\(59\) 445.000 0.981934 0.490967 0.871178i \(-0.336644\pi\)
0.490967 + 0.871178i \(0.336644\pi\)
\(60\) 0 0
\(61\) −230.853 −0.484553 −0.242276 0.970207i \(-0.577894\pi\)
−0.242276 + 0.970207i \(0.577894\pi\)
\(62\) −639.563 233.096i −1.31007 0.477471i
\(63\) 0 0
\(64\) 257.152 442.738i 0.502249 0.864723i
\(65\) 258.344i 0.492978i
\(66\) 0 0
\(67\) 697.530i 1.27189i 0.771733 + 0.635947i \(0.219390\pi\)
−0.771733 + 0.635947i \(0.780610\pi\)
\(68\) 694.828 826.608i 1.23912 1.47413i
\(69\) 0 0
\(70\) 85.7978 235.410i 0.146497 0.401956i
\(71\) −786.567 −1.31477 −0.657383 0.753557i \(-0.728336\pi\)
−0.657383 + 0.753557i \(0.728336\pi\)
\(72\) 0 0
\(73\) −400.494 −0.642113 −0.321056 0.947060i \(-0.604038\pi\)
−0.321056 + 0.947060i \(0.604038\pi\)
\(74\) −69.9953 + 192.052i −0.109957 + 0.301697i
\(75\) 0 0
\(76\) −50.1123 + 59.6165i −0.0756352 + 0.0899801i
\(77\) 382.716i 0.566423i
\(78\) 0 0
\(79\) 119.537i 0.170240i 0.996371 + 0.0851202i \(0.0271274\pi\)
−0.996371 + 0.0851202i \(0.972873\pi\)
\(80\) 797.863 139.260i 1.11505 0.194621i
\(81\) 0 0
\(82\) 755.887 + 275.491i 1.01797 + 0.371011i
\(83\) −1304.02 −1.72451 −0.862255 0.506474i \(-0.830949\pi\)
−0.862255 + 0.506474i \(0.830949\pi\)
\(84\) 0 0
\(85\) 1708.19 2.17976
\(86\) 1069.60 + 389.828i 1.34114 + 0.488794i
\(87\) 0 0
\(88\) −1072.19 + 617.170i −1.29881 + 0.747620i
\(89\) 557.553i 0.664051i 0.943270 + 0.332025i \(0.107732\pi\)
−0.943270 + 0.332025i \(0.892268\pi\)
\(90\) 0 0
\(91\) 142.900i 0.164615i
\(92\) 986.494 + 829.225i 1.11793 + 0.939703i
\(93\) 0 0
\(94\) 277.211 760.605i 0.304171 0.834579i
\(95\) −123.198 −0.133051
\(96\) 0 0
\(97\) 149.617 0.156611 0.0783055 0.996929i \(-0.475049\pi\)
0.0783055 + 0.996929i \(0.475049\pi\)
\(98\) 47.4580 130.214i 0.0489182 0.134221i
\(99\) 0 0
\(100\) 215.261 + 180.944i 0.215261 + 0.180944i
\(101\) 500.841i 0.493421i 0.969089 + 0.246711i \(0.0793497\pi\)
−0.969089 + 0.246711i \(0.920650\pi\)
\(102\) 0 0
\(103\) 779.386i 0.745584i 0.927915 + 0.372792i \(0.121600\pi\)
−0.927915 + 0.372792i \(0.878400\pi\)
\(104\) 400.335 230.441i 0.377463 0.217275i
\(105\) 0 0
\(106\) −628.814 229.178i −0.576187 0.209998i
\(107\) 977.734 0.883375 0.441688 0.897169i \(-0.354380\pi\)
0.441688 + 0.897169i \(0.354380\pi\)
\(108\) 0 0
\(109\) −237.461 −0.208667 −0.104333 0.994542i \(-0.533271\pi\)
−0.104333 + 0.994542i \(0.533271\pi\)
\(110\) −1838.68 670.127i −1.59374 0.580855i
\(111\) 0 0
\(112\) 441.328 77.0298i 0.372336 0.0649878i
\(113\) 1614.68i 1.34422i −0.740453 0.672109i \(-0.765389\pi\)
0.740453 0.672109i \(-0.234611\pi\)
\(114\) 0 0
\(115\) 2038.60i 1.65305i
\(116\) 1117.01 1328.86i 0.894064 1.06363i
\(117\) 0 0
\(118\) −430.996 + 1182.56i −0.336241 + 0.922571i
\(119\) 944.865 0.727863
\(120\) 0 0
\(121\) 1658.22 1.24584
\(122\) 223.588 613.477i 0.165924 0.455259i
\(123\) 0 0
\(124\) 1238.87 1473.84i 0.897210 1.06737i
\(125\) 1137.05i 0.813604i
\(126\) 0 0
\(127\) 218.111i 0.152395i 0.997093 + 0.0761976i \(0.0242780\pi\)
−0.997093 + 0.0761976i \(0.975722\pi\)
\(128\) 927.488 + 1112.17i 0.640462 + 0.767990i
\(129\) 0 0
\(130\) 686.531 + 250.214i 0.463175 + 0.168809i
\(131\) 711.211 0.474342 0.237171 0.971468i \(-0.423780\pi\)
0.237171 + 0.971468i \(0.423780\pi\)
\(132\) 0 0
\(133\) −68.1454 −0.0444283
\(134\) −1853.64 675.579i −1.19500 0.435531i
\(135\) 0 0
\(136\) 1523.69 + 2647.05i 0.960704 + 1.66899i
\(137\) 1593.43i 0.993695i 0.867838 + 0.496848i \(0.165509\pi\)
−0.867838 + 0.496848i \(0.834491\pi\)
\(138\) 0 0
\(139\) 539.813i 0.329398i 0.986344 + 0.164699i \(0.0526653\pi\)
−0.986344 + 0.164699i \(0.947335\pi\)
\(140\) 542.489 + 456.004i 0.327491 + 0.275281i
\(141\) 0 0
\(142\) 761.814 2090.25i 0.450211 1.23528i
\(143\) −1116.12 −0.652691
\(144\) 0 0
\(145\) 2746.09 1.57276
\(146\) 387.890 1064.28i 0.219877 0.603293i
\(147\) 0 0
\(148\) −442.572 372.016i −0.245805 0.206618i
\(149\) 979.850i 0.538741i −0.963037 0.269371i \(-0.913184\pi\)
0.963037 0.269371i \(-0.0868156\pi\)
\(150\) 0 0
\(151\) 168.456i 0.0907865i 0.998969 + 0.0453932i \(0.0144541\pi\)
−0.998969 + 0.0453932i \(0.985546\pi\)
\(152\) −109.892 190.910i −0.0586407 0.101874i
\(153\) 0 0
\(154\) −1017.04 370.672i −0.532179 0.193959i
\(155\) 3045.69 1.57830
\(156\) 0 0
\(157\) −3816.10 −1.93986 −0.969929 0.243389i \(-0.921741\pi\)
−0.969929 + 0.243389i \(0.921741\pi\)
\(158\) −317.662 115.775i −0.159948 0.0582949i
\(159\) 0 0
\(160\) −402.681 + 2255.14i −0.198967 + 1.11428i
\(161\) 1127.62i 0.551983i
\(162\) 0 0
\(163\) 1209.54i 0.581219i −0.956842 0.290610i \(-0.906142\pi\)
0.956842 0.290610i \(-0.0938581\pi\)
\(164\) −1464.20 + 1741.90i −0.697163 + 0.829386i
\(165\) 0 0
\(166\) 1262.98 3465.33i 0.590519 1.62025i
\(167\) −1486.01 −0.688570 −0.344285 0.938865i \(-0.611879\pi\)
−0.344285 + 0.938865i \(0.611879\pi\)
\(168\) 0 0
\(169\) −1780.26 −0.810314
\(170\) −1654.44 + 4539.41i −0.746409 + 2.04798i
\(171\) 0 0
\(172\) −2071.89 + 2464.84i −0.918487 + 1.09269i
\(173\) 3971.30i 1.74527i −0.488371 0.872636i \(-0.662409\pi\)
0.488371 0.872636i \(-0.337591\pi\)
\(174\) 0 0
\(175\) 246.057i 0.106287i
\(176\) −601.644 3447.01i −0.257674 1.47630i
\(177\) 0 0
\(178\) −1481.66 540.007i −0.623905 0.227389i
\(179\) 1135.53 0.474154 0.237077 0.971491i \(-0.423811\pi\)
0.237077 + 0.971491i \(0.423811\pi\)
\(180\) 0 0
\(181\) 71.1317 0.0292109 0.0146055 0.999893i \(-0.495351\pi\)
0.0146055 + 0.999893i \(0.495351\pi\)
\(182\) 379.746 + 138.403i 0.154663 + 0.0563686i
\(183\) 0 0
\(184\) −3159.06 + 1818.41i −1.26570 + 0.728561i
\(185\) 914.578i 0.363465i
\(186\) 0 0
\(187\) 7379.90i 2.88595i
\(188\) 1752.77 + 1473.34i 0.679967 + 0.571565i
\(189\) 0 0
\(190\) 119.321 327.390i 0.0455603 0.125007i
\(191\) 1042.58 0.394964 0.197482 0.980307i \(-0.436724\pi\)
0.197482 + 0.980307i \(0.436724\pi\)
\(192\) 0 0
\(193\) −2859.76 −1.06658 −0.533290 0.845933i \(-0.679045\pi\)
−0.533290 + 0.845933i \(0.679045\pi\)
\(194\) −144.908 + 397.596i −0.0536279 + 0.147143i
\(195\) 0 0
\(196\) 300.071 + 252.233i 0.109355 + 0.0919216i
\(197\) 3286.10i 1.18845i 0.804299 + 0.594225i \(0.202541\pi\)
−0.804299 + 0.594225i \(0.797459\pi\)
\(198\) 0 0
\(199\) 2542.88i 0.905829i −0.891554 0.452915i \(-0.850384\pi\)
0.891554 0.452915i \(-0.149616\pi\)
\(200\) −689.333 + 396.793i −0.243716 + 0.140288i
\(201\) 0 0
\(202\) −1330.95 485.080i −0.463591 0.168961i
\(203\) 1518.97 0.525175
\(204\) 0 0
\(205\) −3599.64 −1.22639
\(206\) −2071.17 754.859i −0.700509 0.255308i
\(207\) 0 0
\(208\) 224.643 + 1287.05i 0.0748857 + 0.429044i
\(209\) 532.252i 0.176156i
\(210\) 0 0
\(211\) 3587.17i 1.17038i −0.810895 0.585191i \(-0.801019\pi\)
0.810895 0.585191i \(-0.198981\pi\)
\(212\) 1218.05 1449.07i 0.394604 0.469445i
\(213\) 0 0
\(214\) −946.965 + 2598.26i −0.302492 + 0.829970i
\(215\) −5093.60 −1.61573
\(216\) 0 0
\(217\) 1684.69 0.527023
\(218\) 229.988 631.037i 0.0714531 0.196052i
\(219\) 0 0
\(220\) 3561.63 4237.13i 1.09148 1.29849i
\(221\) 2755.53i 0.838719i
\(222\) 0 0
\(223\) 4638.93i 1.39303i −0.717542 0.696515i \(-0.754733\pi\)
0.717542 0.696515i \(-0.245267\pi\)
\(224\) −222.738 + 1247.41i −0.0664389 + 0.372079i
\(225\) 0 0
\(226\) 4290.91 + 1563.87i 1.26295 + 0.460297i
\(227\) −1111.26 −0.324920 −0.162460 0.986715i \(-0.551943\pi\)
−0.162460 + 0.986715i \(0.551943\pi\)
\(228\) 0 0
\(229\) −1778.98 −0.513354 −0.256677 0.966497i \(-0.582628\pi\)
−0.256677 + 0.966497i \(0.582628\pi\)
\(230\) −5417.44 1974.44i −1.55311 0.566048i
\(231\) 0 0
\(232\) 2449.49 + 4255.41i 0.693177 + 1.20423i
\(233\) 3753.80i 1.05545i 0.849416 + 0.527724i \(0.176955\pi\)
−0.849416 + 0.527724i \(0.823045\pi\)
\(234\) 0 0
\(235\) 3622.11i 1.00545i
\(236\) −2725.14 2290.69i −0.751658 0.631827i
\(237\) 0 0
\(238\) −915.131 + 2510.92i −0.249240 + 0.683859i
\(239\) −3976.89 −1.07633 −0.538167 0.842838i \(-0.680883\pi\)
−0.538167 + 0.842838i \(0.680883\pi\)
\(240\) 0 0
\(241\) −3970.27 −1.06119 −0.530596 0.847625i \(-0.678032\pi\)
−0.530596 + 0.847625i \(0.678032\pi\)
\(242\) −1606.04 + 4406.61i −0.426611 + 1.17053i
\(243\) 0 0
\(244\) 1413.72 + 1188.34i 0.370919 + 0.311786i
\(245\) 620.099i 0.161701i
\(246\) 0 0
\(247\) 198.734i 0.0511949i
\(248\) 2716.73 + 4719.68i 0.695616 + 1.20847i
\(249\) 0 0
\(250\) 3021.62 + 1101.26i 0.764417 + 0.278600i
\(251\) 3587.05 0.902043 0.451021 0.892513i \(-0.351060\pi\)
0.451021 + 0.892513i \(0.351060\pi\)
\(252\) 0 0
\(253\) 8807.35 2.18859
\(254\) −579.614 211.247i −0.143182 0.0521842i
\(255\) 0 0
\(256\) −3853.81 + 1387.57i −0.940872 + 0.338762i
\(257\) 3810.98i 0.924989i −0.886622 0.462495i \(-0.846954\pi\)
0.886622 0.462495i \(-0.153046\pi\)
\(258\) 0 0
\(259\) 505.887i 0.121368i
\(260\) −1329.85 + 1582.07i −0.317208 + 0.377369i
\(261\) 0 0
\(262\) −688.829 + 1889.99i −0.162428 + 0.445665i
\(263\) 7696.70 1.80456 0.902279 0.431152i \(-0.141893\pi\)
0.902279 + 0.431152i \(0.141893\pi\)
\(264\) 0 0
\(265\) 2994.51 0.694155
\(266\) 66.0009 181.092i 0.0152134 0.0417423i
\(267\) 0 0
\(268\) 3590.61 4271.60i 0.818401 0.973618i
\(269\) 4740.67i 1.07451i −0.843419 0.537256i \(-0.819461\pi\)
0.843419 0.537256i \(-0.180539\pi\)
\(270\) 0 0
\(271\) 600.724i 0.134655i 0.997731 + 0.0673273i \(0.0214472\pi\)
−0.997731 + 0.0673273i \(0.978553\pi\)
\(272\) −8510.11 + 1485.36i −1.89706 + 0.331115i
\(273\) 0 0
\(274\) −4234.44 1543.29i −0.933621 0.340268i
\(275\) 1921.84 0.421423
\(276\) 0 0
\(277\) 5664.46 1.22868 0.614340 0.789041i \(-0.289422\pi\)
0.614340 + 0.789041i \(0.289422\pi\)
\(278\) −1434.52 522.825i −0.309484 0.112795i
\(279\) 0 0
\(280\) −1737.22 + 999.974i −0.370780 + 0.213428i
\(281\) 3388.03i 0.719263i −0.933094 0.359632i \(-0.882902\pi\)
0.933094 0.359632i \(-0.117098\pi\)
\(282\) 0 0
\(283\) 1247.72i 0.262082i 0.991377 + 0.131041i \(0.0418319\pi\)
−0.991377 + 0.131041i \(0.958168\pi\)
\(284\) 4816.86 + 4048.94i 1.00644 + 0.845987i
\(285\) 0 0
\(286\) 1081.00 2966.02i 0.223499 0.613233i
\(287\) −1991.10 −0.409515
\(288\) 0 0
\(289\) −13306.8 −2.70849
\(290\) −2659.67 + 7297.56i −0.538557 + 1.47768i
\(291\) 0 0
\(292\) 2452.58 + 2061.58i 0.491529 + 0.413168i
\(293\) 2038.06i 0.406365i 0.979141 + 0.203183i \(0.0651285\pi\)
−0.979141 + 0.203183i \(0.934871\pi\)
\(294\) 0 0
\(295\) 5631.52i 1.11146i
\(296\) 1417.25 815.796i 0.278297 0.160193i
\(297\) 0 0
\(298\) 2603.89 + 949.014i 0.506171 + 0.184480i
\(299\) −3288.51 −0.636052
\(300\) 0 0
\(301\) −2817.46 −0.539521
\(302\) −447.661 163.155i −0.0852979 0.0310878i
\(303\) 0 0
\(304\) 613.765 107.127i 0.115796 0.0202111i
\(305\) 2921.47i 0.548468i
\(306\) 0 0
\(307\) 8630.77i 1.60451i 0.596983 + 0.802254i \(0.296366\pi\)
−0.596983 + 0.802254i \(0.703634\pi\)
\(308\) 1970.07 2343.72i 0.364465 0.433590i
\(309\) 0 0
\(310\) −2949.85 + 8093.72i −0.540452 + 1.48288i
\(311\) 4047.39 0.737963 0.368982 0.929437i \(-0.379707\pi\)
0.368982 + 0.929437i \(0.379707\pi\)
\(312\) 0 0
\(313\) 3682.50 0.665007 0.332503 0.943102i \(-0.392107\pi\)
0.332503 + 0.943102i \(0.392107\pi\)
\(314\) 3696.00 10141.0i 0.664260 1.82258i
\(315\) 0 0
\(316\) 615.331 732.034i 0.109541 0.130317i
\(317\) 6404.69i 1.13477i 0.823451 + 0.567387i \(0.192046\pi\)
−0.823451 + 0.567387i \(0.807954\pi\)
\(318\) 0 0
\(319\) 11863.9i 2.08230i
\(320\) −5602.89 3254.27i −0.978784 0.568498i
\(321\) 0 0
\(322\) −2996.59 1092.14i −0.518613 0.189014i
\(323\) 1314.05 0.226364
\(324\) 0 0
\(325\) −717.582 −0.122475
\(326\) 3214.28 + 1171.48i 0.546081 + 0.199025i
\(327\) 0 0
\(328\) −3210.85 5578.09i −0.540518 0.939020i
\(329\) 2003.53i 0.335738i
\(330\) 0 0
\(331\) 9148.17i 1.51912i 0.650437 + 0.759560i \(0.274586\pi\)
−0.650437 + 0.759560i \(0.725414\pi\)
\(332\) 7985.66 + 6712.56i 1.32009 + 1.10964i
\(333\) 0 0
\(334\) 1439.25 3948.98i 0.235785 0.646942i
\(335\) 8827.30 1.43966
\(336\) 0 0
\(337\) 3499.07 0.565597 0.282799 0.959179i \(-0.408737\pi\)
0.282799 + 0.959179i \(0.408737\pi\)
\(338\) 1724.23 4730.92i 0.277473 0.761326i
\(339\) 0 0
\(340\) −10460.8 8793.11i −1.66858 1.40257i
\(341\) 13158.3i 2.08963i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) −4543.46 7893.17i −0.712113 1.23713i
\(345\) 0 0
\(346\) 10553.5 + 3846.32i 1.63976 + 0.597629i
\(347\) 2078.62 0.321574 0.160787 0.986989i \(-0.448597\pi\)
0.160787 + 0.986989i \(0.448597\pi\)
\(348\) 0 0
\(349\) 440.842 0.0676153 0.0338076 0.999428i \(-0.489237\pi\)
0.0338076 + 0.999428i \(0.489237\pi\)
\(350\) −653.881 238.314i −0.0998612 0.0363955i
\(351\) 0 0
\(352\) 9742.90 + 1739.70i 1.47528 + 0.263428i
\(353\) 9178.79i 1.38396i −0.721917 0.691980i \(-0.756739\pi\)
0.721917 0.691980i \(-0.243261\pi\)
\(354\) 0 0
\(355\) 9954.07i 1.48819i
\(356\) 2870.07 3414.40i 0.427284 0.508323i
\(357\) 0 0
\(358\) −1099.80 + 3017.59i −0.162363 + 0.445488i
\(359\) −4145.03 −0.609377 −0.304689 0.952452i \(-0.598552\pi\)
−0.304689 + 0.952452i \(0.598552\pi\)
\(360\) 0 0
\(361\) 6764.23 0.986183
\(362\) −68.8932 + 189.028i −0.0100026 + 0.0274450i
\(363\) 0 0
\(364\) −735.591 + 875.103i −0.105922 + 0.126011i
\(365\) 5068.28i 0.726811i
\(366\) 0 0
\(367\) 8939.78i 1.27153i 0.771882 + 0.635766i \(0.219316\pi\)
−0.771882 + 0.635766i \(0.780684\pi\)
\(368\) −1772.67 10156.2i −0.251105 1.43866i
\(369\) 0 0
\(370\) 2430.43 + 885.796i 0.341492 + 0.124460i
\(371\) 1656.37 0.231791
\(372\) 0 0
\(373\) −3045.70 −0.422789 −0.211394 0.977401i \(-0.567800\pi\)
−0.211394 + 0.977401i \(0.567800\pi\)
\(374\) 19611.6 + 7147.66i 2.71148 + 0.988227i
\(375\) 0 0
\(376\) −5612.91 + 3230.90i −0.769850 + 0.443140i
\(377\) 4429.79i 0.605161i
\(378\) 0 0
\(379\) 2484.79i 0.336768i 0.985721 + 0.168384i \(0.0538549\pi\)
−0.985721 + 0.168384i \(0.946145\pi\)
\(380\) 754.452 + 634.175i 0.101849 + 0.0856118i
\(381\) 0 0
\(382\) −1009.77 + 2770.57i −0.135246 + 0.371086i
\(383\) −11581.0 −1.54506 −0.772532 0.634976i \(-0.781010\pi\)
−0.772532 + 0.634976i \(0.781010\pi\)
\(384\) 0 0
\(385\) 4843.31 0.641137
\(386\) 2769.76 7599.62i 0.365226 1.00210i
\(387\) 0 0
\(388\) −916.237 770.168i −0.119884 0.100772i
\(389\) 1830.00i 0.238521i 0.992863 + 0.119260i \(0.0380523\pi\)
−0.992863 + 0.119260i \(0.961948\pi\)
\(390\) 0 0
\(391\) 21744.0i 2.81238i
\(392\) −960.920 + 553.123i −0.123811 + 0.0712677i
\(393\) 0 0
\(394\) −8732.58 3182.68i −1.11660 0.406958i
\(395\) 1512.75 0.192696
\(396\) 0 0
\(397\) 588.740 0.0744283 0.0372141 0.999307i \(-0.488152\pi\)
0.0372141 + 0.999307i \(0.488152\pi\)
\(398\) 6757.53 + 2462.86i 0.851067 + 0.310181i
\(399\) 0 0
\(400\) −386.811 2216.16i −0.0483514 0.277020i
\(401\) 9109.24i 1.13440i −0.823580 0.567199i \(-0.808027\pi\)
0.823580 0.567199i \(-0.191973\pi\)
\(402\) 0 0
\(403\) 4913.08i 0.607291i
\(404\) 2578.13 3067.10i 0.317492 0.377708i
\(405\) 0 0
\(406\) −1471.17 + 4036.55i −0.179834 + 0.493425i
\(407\) −3951.25 −0.481219
\(408\) 0 0
\(409\) −13261.3 −1.60324 −0.801622 0.597831i \(-0.796029\pi\)
−0.801622 + 0.597831i \(0.796029\pi\)
\(410\) 3486.36 9565.81i 0.419949 1.15225i
\(411\) 0 0
\(412\) 4011.97 4772.88i 0.479747 0.570735i
\(413\) 3115.00i 0.371136i
\(414\) 0 0
\(415\) 16502.4i 1.95198i
\(416\) −3637.83 649.575i −0.428748 0.0765578i
\(417\) 0 0
\(418\) −1414.42 515.503i −0.165507 0.0603207i
\(419\) −11493.5 −1.34008 −0.670039 0.742326i \(-0.733722\pi\)
−0.670039 + 0.742326i \(0.733722\pi\)
\(420\) 0 0
\(421\) 3591.89 0.415815 0.207907 0.978149i \(-0.433335\pi\)
0.207907 + 0.978149i \(0.433335\pi\)
\(422\) 9532.65 + 3474.28i 1.09963 + 0.400771i
\(423\) 0 0
\(424\) 2671.08 + 4640.35i 0.305941 + 0.531499i
\(425\) 4744.72i 0.541535i
\(426\) 0 0
\(427\) 1615.97i 0.183144i
\(428\) −5987.55 5032.99i −0.676213 0.568409i
\(429\) 0 0
\(430\) 4933.31 13535.9i 0.553268 1.51805i
\(431\) −11259.5 −1.25835 −0.629176 0.777263i \(-0.716608\pi\)
−0.629176 + 0.777263i \(0.716608\pi\)
\(432\) 0 0
\(433\) 14951.7 1.65943 0.829717 0.558184i \(-0.188502\pi\)
0.829717 + 0.558184i \(0.188502\pi\)
\(434\) −1631.67 + 4476.94i −0.180467 + 0.495162i
\(435\) 0 0
\(436\) 1454.19 + 1222.36i 0.159732 + 0.134267i
\(437\) 1568.21i 0.171666i
\(438\) 0 0
\(439\) 11017.3i 1.19778i −0.800831 0.598891i \(-0.795608\pi\)
0.800831 0.598891i \(-0.204392\pi\)
\(440\) 7810.34 + 13568.6i 0.846234 + 1.47013i
\(441\) 0 0
\(442\) −7322.63 2668.81i −0.788014 0.287200i
\(443\) 14953.2 1.60372 0.801860 0.597511i \(-0.203844\pi\)
0.801860 + 0.597511i \(0.203844\pi\)
\(444\) 0 0
\(445\) 7055.88 0.751642
\(446\) 12327.6 + 4492.94i 1.30881 + 0.477011i
\(447\) 0 0
\(448\) −3099.17 1800.06i −0.326835 0.189832i
\(449\) 9385.12i 0.986439i 0.869905 + 0.493219i \(0.164180\pi\)
−0.869905 + 0.493219i \(0.835820\pi\)
\(450\) 0 0
\(451\) 15551.5i 1.62371i
\(452\) −8311.75 + 9888.15i −0.864938 + 1.02898i
\(453\) 0 0
\(454\) 1076.29 2953.10i 0.111262 0.305277i
\(455\) −1808.41 −0.186328
\(456\) 0 0
\(457\) −7640.65 −0.782089 −0.391044 0.920372i \(-0.627886\pi\)
−0.391044 + 0.920372i \(0.627886\pi\)
\(458\) 1722.99 4727.51i 0.175786 0.482319i
\(459\) 0 0
\(460\) 10493.9 12484.2i 1.06365 1.26539i
\(461\) 8794.02i 0.888456i 0.895914 + 0.444228i \(0.146522\pi\)
−0.895914 + 0.444228i \(0.853478\pi\)
\(462\) 0 0
\(463\) 16696.9i 1.67596i 0.545700 + 0.837981i \(0.316264\pi\)
−0.545700 + 0.837981i \(0.683736\pi\)
\(464\) −13680.9 + 2387.87i −1.36879 + 0.238910i
\(465\) 0 0
\(466\) −9975.47 3635.67i −0.991641 0.361414i
\(467\) 9385.67 0.930015 0.465008 0.885307i \(-0.346052\pi\)
0.465008 + 0.885307i \(0.346052\pi\)
\(468\) 0 0
\(469\) 4882.71 0.480731
\(470\) −9625.52 3508.12i −0.944664 0.344293i
\(471\) 0 0
\(472\) 8726.73 5023.27i 0.851017 0.489861i
\(473\) 22005.9i 2.13918i
\(474\) 0 0
\(475\) 342.198i 0.0330550i
\(476\) −5786.26 4863.80i −0.557170 0.468344i
\(477\) 0 0
\(478\) 3851.74 10568.3i 0.368566 1.01126i
\(479\) −9831.94 −0.937856 −0.468928 0.883236i \(-0.655360\pi\)
−0.468928 + 0.883236i \(0.655360\pi\)
\(480\) 0 0
\(481\) 1475.33 0.139853
\(482\) 3845.33 10550.7i 0.363381 0.997038i
\(483\) 0 0
\(484\) −10154.8 8535.86i −0.953678 0.801640i
\(485\) 1893.41i 0.177269i
\(486\) 0 0
\(487\) 2622.06i 0.243977i 0.992531 + 0.121989i \(0.0389272\pi\)
−0.992531 + 0.121989i \(0.961073\pi\)
\(488\) −4527.17 + 2605.92i −0.419950 + 0.241731i
\(489\) 0 0
\(490\) −1647.87 600.585i −0.151925 0.0553707i
\(491\) −5883.02 −0.540727 −0.270363 0.962758i \(-0.587144\pi\)
−0.270363 + 0.962758i \(0.587144\pi\)
\(492\) 0 0
\(493\) −29290.2 −2.67579
\(494\) 528.122 + 192.480i 0.0480998 + 0.0175305i
\(495\) 0 0
\(496\) −15173.5 + 2648.39i −1.37361 + 0.239750i
\(497\) 5505.97i 0.496935i
\(498\) 0 0
\(499\) 1441.12i 0.129285i 0.997908 + 0.0646426i \(0.0205907\pi\)
−0.997908 + 0.0646426i \(0.979409\pi\)
\(500\) −5853.07 + 6963.15i −0.523514 + 0.622803i
\(501\) 0 0
\(502\) −3474.17 + 9532.35i −0.308884 + 0.847509i
\(503\) −8788.30 −0.779028 −0.389514 0.921021i \(-0.627357\pi\)
−0.389514 + 0.921021i \(0.627357\pi\)
\(504\) 0 0
\(505\) 6338.18 0.558506
\(506\) −8530.19 + 23405.0i −0.749433 + 2.05628i
\(507\) 0 0
\(508\) 1122.75 1335.69i 0.0980588 0.116657i
\(509\) 10472.3i 0.911941i 0.889995 + 0.455970i \(0.150708\pi\)
−0.889995 + 0.455970i \(0.849292\pi\)
\(510\) 0 0
\(511\) 2803.46i 0.242696i
\(512\) 45.1682 11585.1i 0.00389877 0.999992i
\(513\) 0 0
\(514\) 10127.4 + 3691.05i 0.869068 + 0.316741i
\(515\) 9863.19 0.843930
\(516\) 0 0
\(517\) 15648.6 1.33119
\(518\) 1344.36 + 489.967i 0.114031 + 0.0415597i
\(519\) 0 0
\(520\) −2916.24 5066.28i −0.245934 0.427252i
\(521\) 9614.56i 0.808487i −0.914651 0.404243i \(-0.867535\pi\)
0.914651 0.404243i \(-0.132465\pi\)
\(522\) 0 0
\(523\) 14841.7i 1.24088i 0.784252 + 0.620442i \(0.213047\pi\)
−0.784252 + 0.620442i \(0.786953\pi\)
\(524\) −4355.38 3661.03i −0.363103 0.305216i
\(525\) 0 0
\(526\) −7454.49 + 20453.5i −0.617930 + 1.69546i
\(527\) −32485.8 −2.68520
\(528\) 0 0
\(529\) 13782.8 1.13280
\(530\) −2900.27 + 7957.70i −0.237697 + 0.652189i
\(531\) 0 0
\(532\) 417.316 + 350.786i 0.0340093 + 0.0285874i
\(533\) 5806.68i 0.471886i
\(534\) 0 0
\(535\) 12373.3i 0.999897i
\(536\) 7873.88 + 13679.0i 0.634515 + 1.10232i
\(537\) 0 0
\(538\) 12598.0 + 4591.48i 1.00955 + 0.367942i
\(539\) 2679.01 0.214088
\(540\) 0 0
\(541\) 13197.9 1.04884 0.524418 0.851461i \(-0.324283\pi\)
0.524418 + 0.851461i \(0.324283\pi\)
\(542\) −1596.38 581.819i −0.126514 0.0461094i
\(543\) 0 0
\(544\) 4295.05 24053.7i 0.338509 1.89576i
\(545\) 3005.09i 0.236191i
\(546\) 0 0
\(547\) 9310.59i 0.727774i −0.931443 0.363887i \(-0.881449\pi\)
0.931443 0.363887i \(-0.118551\pi\)
\(548\) 8202.37 9758.03i 0.639394 0.760661i
\(549\) 0 0
\(550\) −1861.36 + 5107.16i −0.144307 + 0.395946i
\(551\) 2112.46 0.163328
\(552\) 0 0
\(553\) 836.760 0.0643448
\(554\) −5486.20 + 15052.9i −0.420734 + 1.15440i
\(555\) 0 0
\(556\) 2778.75 3305.76i 0.211952 0.252150i
\(557\) 4384.04i 0.333496i −0.986000 0.166748i \(-0.946673\pi\)
0.986000 0.166748i \(-0.0533267\pi\)
\(558\) 0 0
\(559\) 8216.62i 0.621693i
\(560\) −974.818 5585.04i −0.0735600 0.421448i
\(561\) 0 0
\(562\) 9003.47 + 3281.41i 0.675780 + 0.246295i
\(563\) −11361.4 −0.850494 −0.425247 0.905077i \(-0.639813\pi\)
−0.425247 + 0.905077i \(0.639813\pi\)
\(564\) 0 0
\(565\) −20433.9 −1.52153
\(566\) −3315.73 1208.45i −0.246238 0.0897440i
\(567\) 0 0
\(568\) −15425.1 + 8878.95i −1.13947 + 0.655902i
\(569\) 21724.4i 1.60058i −0.599610 0.800292i \(-0.704678\pi\)
0.599610 0.800292i \(-0.295322\pi\)
\(570\) 0 0
\(571\) 10763.6i 0.788864i −0.918925 0.394432i \(-0.870941\pi\)
0.918925 0.394432i \(-0.129059\pi\)
\(572\) 6835.02 + 5745.36i 0.499627 + 0.419975i
\(573\) 0 0
\(574\) 1928.44 5291.21i 0.140229 0.384758i
\(575\) 5662.46 0.410680
\(576\) 0 0
\(577\) 5730.04 0.413422 0.206711 0.978402i \(-0.433724\pi\)
0.206711 + 0.978402i \(0.433724\pi\)
\(578\) 12888.0 35361.9i 0.927460 2.54475i
\(579\) 0 0
\(580\) −16816.8 14135.8i −1.20393 1.01200i
\(581\) 9128.11i 0.651804i
\(582\) 0 0
\(583\) 12937.2i 0.919044i
\(584\) −7853.92 + 4520.87i −0.556503 + 0.320333i
\(585\) 0 0
\(586\) −5416.02 1973.93i −0.381798 0.139150i
\(587\) 24254.9 1.70546 0.852731 0.522350i \(-0.174944\pi\)
0.852731 + 0.522350i \(0.174944\pi\)
\(588\) 0 0
\(589\) 2342.93 0.163903
\(590\) 14965.4 + 5454.29i 1.04426 + 0.380593i
\(591\) 0 0
\(592\) 795.273 + 4556.37i 0.0552120 + 0.316327i
\(593\) 20835.8i 1.44287i 0.692480 + 0.721437i \(0.256518\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(594\) 0 0
\(595\) 11957.3i 0.823871i
\(596\) −5043.88 + 6000.50i −0.346654 + 0.412399i
\(597\) 0 0
\(598\) 3185.03 8739.00i 0.217802 0.597599i
\(599\) −831.154 −0.0566946 −0.0283473 0.999598i \(-0.509024\pi\)
−0.0283473 + 0.999598i \(0.509024\pi\)
\(600\) 0 0
\(601\) −18473.9 −1.25385 −0.626925 0.779079i \(-0.715687\pi\)
−0.626925 + 0.779079i \(0.715687\pi\)
\(602\) 2728.80 7487.22i 0.184747 0.506904i
\(603\) 0 0
\(604\) 867.146 1031.61i 0.0584167 0.0694959i
\(605\) 20984.9i 1.41018i
\(606\) 0 0
\(607\) 6159.06i 0.411843i 0.978569 + 0.205921i \(0.0660191\pi\)
−0.978569 + 0.205921i \(0.933981\pi\)
\(608\) −309.767 + 1734.80i −0.0206624 + 0.115716i
\(609\) 0 0
\(610\) −7763.60 2829.53i −0.515310 0.187810i
\(611\) −5842.92 −0.386873
\(612\) 0 0
\(613\) −27005.1 −1.77932 −0.889661 0.456622i \(-0.849059\pi\)
−0.889661 + 0.456622i \(0.849059\pi\)
\(614\) −22935.7 8359.16i −1.50751 0.549427i
\(615\) 0 0
\(616\) 4320.19 + 7505.30i 0.282574 + 0.490904i
\(617\) 5795.62i 0.378157i 0.981962 + 0.189079i \(0.0605501\pi\)
−0.981962 + 0.189079i \(0.939450\pi\)
\(618\) 0 0
\(619\) 5231.26i 0.339680i 0.985472 + 0.169840i \(0.0543251\pi\)
−0.985472 + 0.169840i \(0.945675\pi\)
\(620\) −18651.5 15678.0i −1.20817 1.01556i
\(621\) 0 0
\(622\) −3920.02 + 10755.7i −0.252699 + 0.693349i
\(623\) 3902.87 0.250988
\(624\) 0 0
\(625\) −18783.3 −1.20213
\(626\) −3566.61 + 9785.99i −0.227716 + 0.624803i
\(627\) 0 0
\(628\) 23369.4 + 19643.8i 1.48494 + 1.24820i
\(629\) 9755.01i 0.618374i
\(630\) 0 0
\(631\) 23803.5i 1.50175i −0.660446 0.750873i \(-0.729633\pi\)
0.660446 0.750873i \(-0.270367\pi\)
\(632\) 1349.36 + 2344.20i 0.0849285 + 0.147543i
\(633\) 0 0
\(634\) −17020.0 6203.14i −1.06617 0.388577i
\(635\) 2760.21 0.172497
\(636\) 0 0
\(637\) −1000.30 −0.0622186
\(638\) 31527.6 + 11490.6i 1.95641 + 0.713036i
\(639\) 0 0
\(640\) 14074.6 11737.4i 0.869292 0.724942i
\(641\) 8168.04i 0.503305i −0.967818 0.251652i \(-0.919026\pi\)
0.967818 0.251652i \(-0.0809740\pi\)
\(642\) 0 0
\(643\) 17627.8i 1.08114i 0.841299 + 0.540570i \(0.181791\pi\)
−0.841299 + 0.540570i \(0.818209\pi\)
\(644\) 5804.57 6905.46i 0.355174 0.422536i
\(645\) 0 0
\(646\) −1272.69 + 3491.99i −0.0775131 + 0.212679i
\(647\) −28417.7 −1.72676 −0.863380 0.504554i \(-0.831657\pi\)
−0.863380 + 0.504554i \(0.831657\pi\)
\(648\) 0 0
\(649\) −24329.8 −1.47154
\(650\) 695.000 1906.93i 0.0419387 0.115070i
\(651\) 0 0
\(652\) −6226.25 + 7407.12i −0.373986 + 0.444916i
\(653\) 9922.03i 0.594608i −0.954783 0.297304i \(-0.903913\pi\)
0.954783 0.297304i \(-0.0960875\pi\)
\(654\) 0 0
\(655\) 9000.43i 0.536910i
\(656\) 17933.2 3130.08i 1.06734 0.186294i
\(657\) 0 0
\(658\) −5324.24 1940.48i −0.315441 0.114966i
\(659\) 31590.6 1.86737 0.933685 0.358096i \(-0.116574\pi\)
0.933685 + 0.358096i \(0.116574\pi\)
\(660\) 0 0
\(661\) −23653.3 −1.39184 −0.695922 0.718118i \(-0.745004\pi\)
−0.695922 + 0.718118i \(0.745004\pi\)
\(662\) −24310.6 8860.28i −1.42728 0.520188i
\(663\) 0 0
\(664\) −25572.5 + 14720.0i −1.49459 + 0.860313i
\(665\) 862.386i 0.0502886i
\(666\) 0 0
\(667\) 34955.6i 2.02922i
\(668\) 9100.19 + 7649.41i 0.527091 + 0.443061i
\(669\) 0 0
\(670\) −8549.51 + 23458.0i −0.492980 + 1.35263i
\(671\) 12621.6 0.726158
\(672\) 0 0
\(673\) 27532.0 1.57694 0.788471 0.615072i \(-0.210873\pi\)
0.788471 + 0.615072i \(0.210873\pi\)
\(674\) −3388.95 + 9298.54i −0.193676 + 0.531404i
\(675\) 0 0
\(676\) 10902.1 + 9164.08i 0.620285 + 0.521397i
\(677\) 968.353i 0.0549732i 0.999622 + 0.0274866i \(0.00875035\pi\)
−0.999622 + 0.0274866i \(0.991250\pi\)
\(678\) 0 0
\(679\) 1047.32i 0.0591934i
\(680\) 33498.7 19282.5i 1.88914 1.08743i
\(681\) 0 0
\(682\) 34967.3 + 12744.2i 1.96330 + 0.715545i
\(683\) 7733.59 0.433261 0.216631 0.976254i \(-0.430493\pi\)
0.216631 + 0.976254i \(0.430493\pi\)
\(684\) 0 0
\(685\) 20165.0 1.12477
\(686\) −911.499 332.206i −0.0507306 0.0184893i
\(687\) 0 0
\(688\) 25376.0 4429.16i 1.40618 0.245436i
\(689\) 4830.51i 0.267094i
\(690\) 0 0
\(691\) 2771.04i 0.152554i −0.997087 0.0762772i \(-0.975697\pi\)
0.997087 0.0762772i \(-0.0243034\pi\)
\(692\) −20442.7 + 24319.8i −1.12300 + 1.33598i
\(693\) 0 0
\(694\) −2013.21 + 5523.80i −0.110116 + 0.302133i
\(695\) 6831.38 0.372847
\(696\) 0 0
\(697\) 38394.3 2.08650
\(698\) −426.969 + 1171.51i −0.0231533 + 0.0635275i
\(699\) 0 0
\(700\) 1266.61 1506.83i 0.0683904 0.0813612i
\(701\) 17578.8i 0.947136i 0.880757 + 0.473568i \(0.157034\pi\)
−0.880757 + 0.473568i \(0.842966\pi\)
\(702\) 0 0
\(703\) 703.549i 0.0377452i
\(704\) −14059.4 + 24206.2i −0.752678 + 1.29589i
\(705\) 0 0
\(706\) 24392.0 + 8889.94i 1.30029 + 0.473905i
\(707\) 3505.89 0.186496
\(708\) 0 0
\(709\) 25369.8 1.34384 0.671921 0.740623i \(-0.265469\pi\)
0.671921 + 0.740623i \(0.265469\pi\)
\(710\) −26452.3 9640.82i −1.39822 0.509596i
\(711\) 0 0
\(712\) 6293.79 + 10934.0i 0.331278 + 0.575516i
\(713\) 38769.3i 2.03636i
\(714\) 0 0
\(715\) 14124.6i 0.738785i
\(716\) −6953.87 5845.26i −0.362959 0.305095i
\(717\) 0 0
\(718\) 4014.59 11015.1i 0.208667 0.572537i
\(719\) 17275.9 0.896079 0.448039 0.894014i \(-0.352122\pi\)
0.448039 + 0.894014i \(0.352122\pi\)
\(720\) 0 0
\(721\) 5455.70 0.281804
\(722\) −6551.36 + 17975.5i −0.337696 + 0.926563i
\(723\) 0 0
\(724\) −435.603 366.158i −0.0223606 0.0187958i
\(725\) 7627.61i 0.390734i
\(726\) 0 0
\(727\) 33464.3i 1.70718i 0.520942 + 0.853592i \(0.325581\pi\)
−0.520942 + 0.853592i \(0.674419\pi\)
\(728\) −1613.08 2802.35i −0.0821221 0.142667i
\(729\) 0 0
\(730\) −13468.6 4908.78i −0.682871 0.248880i
\(731\) 54329.1 2.74888
\(732\) 0 0
\(733\) 234.049 0.0117937 0.00589686 0.999983i \(-0.498123\pi\)
0.00589686 + 0.999983i \(0.498123\pi\)
\(734\) −23756.9 8658.44i −1.19466 0.435407i
\(735\) 0 0
\(736\) 28706.2 + 5125.82i 1.43767 + 0.256712i
\(737\) 38136.6i 1.90608i
\(738\) 0 0
\(739\) 6761.49i 0.336570i 0.985738 + 0.168285i \(0.0538229\pi\)
−0.985738 + 0.168285i \(0.946177\pi\)
\(740\) −4707.89 + 5600.78i −0.233872 + 0.278228i
\(741\) 0 0
\(742\) −1604.25 + 4401.70i −0.0793717 + 0.217778i
\(743\) −3237.46 −0.159853 −0.0799266 0.996801i \(-0.525469\pi\)
−0.0799266 + 0.996801i \(0.525469\pi\)
\(744\) 0 0
\(745\) −12400.1 −0.609804
\(746\) 2949.85 8093.73i 0.144774 0.397229i
\(747\) 0 0
\(748\) −37988.9 + 45193.8i −1.85697 + 2.20916i
\(749\) 6844.14i 0.333884i
\(750\) 0 0
\(751\) 3412.67i 0.165819i −0.996557 0.0829096i \(-0.973579\pi\)
0.996557 0.0829096i \(-0.0264213\pi\)
\(752\) −3149.62 18045.1i −0.152732 0.875051i
\(753\) 0 0
\(754\) −11771.9 4290.39i −0.568576 0.207224i
\(755\) 2131.82 0.102762
\(756\) 0 0
\(757\) 6746.45 0.323915 0.161958 0.986798i \(-0.448219\pi\)
0.161958 + 0.986798i \(0.448219\pi\)
\(758\) −6603.16 2406.59i −0.316408 0.115319i
\(759\) 0 0
\(760\) −2415.99 + 1390.69i −0.115312 + 0.0663757i
\(761\) 3036.45i 0.144640i 0.997381 + 0.0723202i \(0.0230403\pi\)
−0.997381 + 0.0723202i \(0.976960\pi\)
\(762\) 0 0
\(763\) 1662.23i 0.0788686i
\(764\) −6384.63 5366.77i −0.302340 0.254140i
\(765\) 0 0
\(766\) 11216.5 30775.6i 0.529072 1.45166i
\(767\) 9084.34 0.427662
\(768\) 0 0
\(769\) −34980.1 −1.64033 −0.820166 0.572126i \(-0.806119\pi\)
−0.820166 + 0.572126i \(0.806119\pi\)
\(770\) −4690.89 + 12870.8i −0.219543 + 0.602377i
\(771\) 0 0
\(772\) 17512.9 + 14720.9i 0.816453 + 0.686292i
\(773\) 30696.6i 1.42830i −0.699991 0.714152i \(-0.746812\pi\)
0.699991 0.714152i \(-0.253188\pi\)
\(774\) 0 0
\(775\) 8459.79i 0.392109i
\(776\) 2934.07 1688.91i 0.135731 0.0781292i
\(777\) 0 0
\(778\) −4863.09 1772.41i −0.224101 0.0816760i
\(779\) −2769.07 −0.127358
\(780\) 0 0
\(781\) 43004.6 1.97033
\(782\) 57783.1 + 21059.7i 2.64235 + 0.963034i
\(783\) 0 0
\(784\) −539.208 3089.30i −0.0245631 0.140730i
\(785\) 48293.0i 2.19573i
\(786\) 0 0
\(787\) 3052.05i 0.138239i −0.997608 0.0691194i \(-0.977981\pi\)
0.997608 0.0691194i \(-0.0220189\pi\)
\(788\) 16915.5 20123.7i 0.764709 0.909743i
\(789\) 0 0
\(790\) −1465.15 + 4020.04i −0.0659843 + 0.181046i
\(791\) −11302.8 −0.508066
\(792\) 0 0
\(793\) −4712.69 −0.211037
\(794\) −570.213 + 1564.54i −0.0254863 + 0.0699287i
\(795\) 0 0
\(796\) −13089.8 + 15572.3i −0.582857 + 0.693401i
\(797\) 1234.09i 0.0548478i −0.999624 0.0274239i \(-0.991270\pi\)
0.999624 0.0274239i \(-0.00873040\pi\)
\(798\) 0 0
\(799\) 38633.9i 1.71060i
\(800\) 6263.94 + 1118.50i 0.276830 + 0.0494311i
\(801\) 0 0
\(802\) 24207.2 + 8822.58i 1.06582 + 0.388449i
\(803\) 21896.5 0.962279
\(804\) 0 0
\(805\) 14270.2 0.624792
\(806\) −13056.2 4758.47i −0.570577 0.207953i
\(807\) 0 0
\(808\) 5653.61 + 9821.80i 0.246155 + 0.427636i
\(809\) 3433.48i 0.149215i 0.997213 + 0.0746074i \(0.0237704\pi\)
−0.997213 + 0.0746074i \(0.976230\pi\)
\(810\) 0 0
\(811\) 6937.93i 0.300399i −0.988656 0.150199i \(-0.952008\pi\)
0.988656 0.150199i \(-0.0479916\pi\)
\(812\) −9302.00 7819.05i −0.402015 0.337925i
\(813\) 0 0
\(814\) 3826.91 10500.2i 0.164783 0.452127i
\(815\) −15306.9 −0.657885
\(816\) 0 0
\(817\) −3918.31 −0.167790
\(818\) 12843.9 35240.9i 0.548994 1.50632i
\(819\) 0 0
\(820\) 22043.9 + 18529.6i 0.938786 + 0.789122i
\(821\) 13149.1i 0.558961i 0.960151 + 0.279480i \(0.0901622\pi\)
−0.960151 + 0.279480i \(0.909838\pi\)
\(822\) 0 0
\(823\) 954.970i 0.0404474i 0.999795 + 0.0202237i \(0.00643784\pi\)
−0.999795 + 0.0202237i \(0.993562\pi\)
\(824\) 8797.89 + 15284.2i 0.371953 + 0.646179i
\(825\) 0 0
\(826\) 8277.91 + 3016.97i 0.348699 + 0.127087i
\(827\) 43123.8 1.81325 0.906627 0.421933i \(-0.138648\pi\)
0.906627 + 0.421933i \(0.138648\pi\)
\(828\) 0 0
\(829\) −31968.7 −1.33935 −0.669674 0.742655i \(-0.733566\pi\)
−0.669674 + 0.742655i \(0.733566\pi\)
\(830\) −43854.1 15983.1i −1.83397 0.668411i
\(831\) 0 0
\(832\) 5249.55 9038.16i 0.218745 0.376613i
\(833\) 6614.06i 0.275106i
\(834\) 0 0
\(835\) 18805.6i 0.779395i
\(836\) 2739.83 3259.46i 0.113348 0.134845i
\(837\) 0 0
\(838\) 11131.8 30543.1i 0.458879 1.25906i
\(839\) −42957.3 −1.76764 −0.883820 0.467828i \(-0.845037\pi\)
−0.883820 + 0.467828i \(0.845037\pi\)
\(840\) 0 0
\(841\) −22697.9 −0.930663
\(842\) −3478.85 + 9545.21i −0.142386 + 0.390676i
\(843\) 0 0
\(844\) −18465.3 + 21967.4i −0.753084 + 0.895913i
\(845\) 22529.3i 0.917198i
\(846\) 0 0
\(847\) 11607.5i 0.470885i
\(848\) −14918.4 + 2603.88i −0.604129 + 0.105445i
\(849\) 0 0
\(850\) 12608.8 + 4595.40i 0.508797 + 0.185436i
\(851\) −11641.9 −0.468951
\(852\) 0 0
\(853\) 21646.3 0.868881 0.434440 0.900701i \(-0.356946\pi\)
0.434440 + 0.900701i \(0.356946\pi\)
\(854\) −4294.34 1565.12i −0.172072 0.0627134i
\(855\) 0 0
\(856\) 19174.0 11036.9i 0.765599 0.440693i
\(857\) 356.948i 0.0142277i −0.999975 0.00711383i \(-0.997736\pi\)
0.999975 0.00711383i \(-0.00226442\pi\)
\(858\) 0 0
\(859\) 1149.84i 0.0456717i −0.999739 0.0228358i \(-0.992730\pi\)
0.999739 0.0228358i \(-0.00726951\pi\)
\(860\) 31192.7 + 26219.9i 1.23682 + 1.03964i
\(861\) 0 0
\(862\) 10905.1 29921.3i 0.430894 1.18228i
\(863\) 2969.14 0.117116 0.0585578 0.998284i \(-0.481350\pi\)
0.0585578 + 0.998284i \(0.481350\pi\)
\(864\) 0 0
\(865\) −50257.1 −1.97548
\(866\) −14481.2 + 39733.3i −0.568236 + 1.55911i
\(867\) 0 0
\(868\) −10316.9 8672.11i −0.403429 0.339114i
\(869\) 6535.55i 0.255125i
\(870\) 0 0
\(871\) 14239.5i 0.553948i
\(872\) −4656.76 + 2680.52i −0.180846 + 0.104098i
\(873\) 0 0
\(874\) −4167.42 1518.86i −0.161287 0.0587830i
\(875\) −7959.32 −0.307513
\(876\) 0 0
\(877\) 5168.95 0.199023 0.0995114 0.995036i \(-0.468272\pi\)
0.0995114 + 0.995036i \(0.468272\pi\)
\(878\) 29277.7 + 10670.6i 1.12537 + 0.410153i
\(879\) 0 0
\(880\) −43622.2 + 7613.85i −1.67103 + 0.291662i
\(881\) 23562.0i 0.901047i 0.892764 + 0.450524i \(0.148763\pi\)
−0.892764 + 0.450524i \(0.851237\pi\)
\(882\) 0 0
\(883\) 2688.60i 0.102467i −0.998687 0.0512337i \(-0.983685\pi\)
0.998687 0.0512337i \(-0.0163153\pi\)
\(884\) 14184.4 16874.6i 0.539675 0.642029i
\(885\) 0 0
\(886\) −14482.6 + 39737.1i −0.549158 + 1.50677i
\(887\) 14185.3 0.536976 0.268488 0.963283i \(-0.413476\pi\)
0.268488 + 0.963283i \(0.413476\pi\)
\(888\) 0 0
\(889\) 1526.77 0.0576000
\(890\) −6833.84 + 18750.5i −0.257383 + 0.706201i
\(891\) 0 0
\(892\) −23879.4 + 28408.3i −0.896347 + 1.06635i
\(893\) 2786.35i 0.104414i
\(894\) 0 0
\(895\) 14370.2i 0.536697i
\(896\) 7785.18 6492.41i 0.290273 0.242072i
\(897\) 0 0
\(898\) −24940.3 9089.77i −0.926803 0.337783i
\(899\) −52224.2 −1.93746
\(900\) 0 0
\(901\) −31939.8 −1.18099
\(902\) −41327.2 15062.1i −1.52555 0.556003i
\(903\) 0 0
\(904\) −18226.9 31664.9i −0.670595 1.16500i
\(905\) 900.177i 0.0330640i
\(906\) 0 0
\(907\) 20699.4i 0.757786i −0.925441 0.378893i \(-0.876305\pi\)
0.925441 0.378893i \(-0.123695\pi\)
\(908\) 6805.24 + 5720.33i 0.248722 + 0.209070i
\(909\) 0 0
\(910\) 1751.50 4805.72i 0.0638039 0.175064i
\(911\) −9933.52 −0.361265 −0.180632 0.983551i \(-0.557814\pi\)
−0.180632 + 0.983551i \(0.557814\pi\)
\(912\) 0 0
\(913\) 71295.4 2.58438
\(914\) 7400.20 20304.5i 0.267808 0.734807i
\(915\) 0 0
\(916\) 10894.3 + 9157.47i 0.392966 + 0.330318i
\(917\) 4978.48i 0.179284i
\(918\) 0 0
\(919\) 25808.6i 0.926386i −0.886258 0.463193i \(-0.846704\pi\)
0.886258 0.463193i \(-0.153296\pi\)
\(920\) 23012.2 + 39978.1i 0.824661 + 1.43265i
\(921\) 0 0
\(922\) −23369.5 8517.27i −0.834744 0.304231i
\(923\) −16057.2 −0.572620
\(924\) 0 0
\(925\) −2540.35 −0.0902987
\(926\) −44370.9 16171.4i −1.57464 0.573895i
\(927\) 0 0
\(928\) 6904.73 38668.7i 0.244245 1.36785i
\(929\) 13319.7i 0.470404i −0.971946 0.235202i \(-0.924425\pi\)
0.971946 0.235202i \(-0.0755752\pi\)
\(930\) 0 0
\(931\) 477.018i 0.0167923i
\(932\) 19323.1 22987.9i 0.679130 0.807932i
\(933\) 0 0
\(934\) −9090.31 + 24941.8i −0.318462 + 0.873790i
\(935\) −93393.3 −3.26662
\(936\) 0 0
\(937\) −29536.0 −1.02977 −0.514887 0.857258i \(-0.672166\pi\)
−0.514887 + 0.857258i \(0.672166\pi\)
\(938\) −4729.05 + 12975.5i −0.164615 + 0.451668i
\(939\) 0 0
\(940\) 18645.2 22181.4i 0.646957 0.769658i
\(941\) 22509.8i 0.779809i −0.920855 0.389904i \(-0.872508\pi\)
0.920855 0.389904i \(-0.127492\pi\)
\(942\) 0 0
\(943\) 45820.7i 1.58232i
\(944\) 4896.90 + 28055.9i 0.168835 + 0.967310i
\(945\) 0 0
\(946\) −58479.2 21313.4i −2.00986 0.732514i
\(947\) 11623.6 0.398854 0.199427 0.979913i \(-0.436092\pi\)
0.199427 + 0.979913i \(0.436092\pi\)
\(948\) 0 0
\(949\) −8175.77 −0.279659
\(950\) −909.367 331.429i −0.0310566 0.0113189i
\(951\) 0 0
\(952\) 18529.4 10665.9i 0.630820 0.363112i
\(953\) 14400.8i 0.489493i −0.969587 0.244746i \(-0.921295\pi\)
0.969587 0.244746i \(-0.0787047\pi\)
\(954\) 0 0
\(955\) 13193.9i 0.447062i
\(956\) 24354.1 + 20471.5i 0.823920 + 0.692568i
\(957\) 0 0
\(958\) 9522.54 26127.7i 0.321147 0.881157i
\(959\) 11154.0 0.375581
\(960\) 0 0
\(961\) −28130.8 −0.944273
\(962\) −1428.90 + 3920.59i −0.0478894 + 0.131398i
\(963\) 0 0
\(964\) 24313.5 + 20437.4i 0.812330 + 0.682826i
\(965\) 36190.5i 1.20727i
\(966\) 0 0
\(967\) 29295.7i 0.974237i 0.873336 + 0.487118i \(0.161952\pi\)
−0.873336 + 0.487118i \(0.838048\pi\)
\(968\) 32518.7 18718.4i 1.07974 0.621520i
\(969\) 0 0
\(970\) 5031.61 + 1833.83i 0.166552 + 0.0607017i
\(971\) 44558.1 1.47264 0.736322 0.676632i \(-0.236561\pi\)
0.736322 + 0.676632i \(0.236561\pi\)
\(972\) 0 0
\(973\) 3778.69 0.124501
\(974\) −6967.96 2539.55i −0.229228 0.0835445i
\(975\) 0 0
\(976\) −2540.37 14554.6i −0.0833147 0.477336i
\(977\) 25091.0i 0.821630i −0.911719 0.410815i \(-0.865244\pi\)
0.911719 0.410815i \(-0.134756\pi\)
\(978\) 0 0
\(979\) 30483.5i 0.995156i
\(980\) 3192.03 3797.42i 0.104046 0.123780i
\(981\) 0 0
\(982\) 5697.88 15633.7i 0.185160 0.508037i
\(983\) 13047.8 0.423359 0.211679 0.977339i \(-0.432107\pi\)
0.211679 + 0.977339i \(0.432107\pi\)
\(984\) 0 0
\(985\) 41585.8 1.34521
\(986\) 28368.4 77836.7i 0.916263 2.51402i
\(987\) 0 0
\(988\) −1023.00 + 1217.03i −0.0329414 + 0.0391890i
\(989\) 64837.6i 2.08465i
\(990\) 0 0
\(991\) 18841.9i 0.603970i −0.953313 0.301985i \(-0.902351\pi\)
0.953313 0.301985i \(-0.0976492\pi\)
\(992\) 7658.04 42887.5i 0.245104 1.37266i
\(993\) 0 0
\(994\) −14631.7 5332.70i −0.466892 0.170164i
\(995\) −32180.4 −1.02531
\(996\) 0 0
\(997\) −32804.6 −1.04206 −0.521030 0.853539i \(-0.674452\pi\)
−0.521030 + 0.853539i \(0.674452\pi\)
\(998\) −3829.67 1395.77i −0.121469 0.0442707i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.4.e.a.71.16 yes 36
3.2 odd 2 inner 252.4.e.a.71.21 yes 36
4.3 odd 2 inner 252.4.e.a.71.22 yes 36
12.11 even 2 inner 252.4.e.a.71.15 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.e.a.71.15 36 12.11 even 2 inner
252.4.e.a.71.16 yes 36 1.1 even 1 trivial
252.4.e.a.71.21 yes 36 3.2 odd 2 inner
252.4.e.a.71.22 yes 36 4.3 odd 2 inner