Properties

Label 252.5.z.b.145.2
Level $252$
Weight $5$
Character 252.145
Analytic conductor $26.049$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,5,Mod(73,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0492306971\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.2
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 252.145
Dual form 252.5.z.b.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.23713 + 4.17836i) q^{5} +(-17.5000 - 45.7684i) q^{7} +(38.8866 + 67.3536i) q^{11} -94.1795i q^{13} +(-93.5257 + 53.9971i) q^{17} +(-253.304 - 146.245i) q^{19} +(-126.598 + 219.274i) q^{23} +(-277.583 - 480.787i) q^{25} -548.310 q^{29} +(354.232 - 204.516i) q^{31} +(64.5872 - 404.353i) q^{35} +(-135.232 + 234.229i) q^{37} -3063.45i q^{41} +553.062 q^{43} +(-2037.62 - 1176.42i) q^{47} +(-1788.50 + 1601.90i) q^{49} +(-2511.81 - 4350.58i) q^{53} +649.929i q^{55} +(-2913.62 + 1682.18i) q^{59} +(-2871.61 - 1657.92i) q^{61} +(393.516 - 681.589i) q^{65} +(-299.491 - 518.734i) q^{67} -5363.24 q^{71} +(-1241.26 + 716.640i) q^{73} +(2402.15 - 2958.47i) q^{77} +(5586.98 - 9676.93i) q^{79} +1326.79i q^{83} -902.477 q^{85} +(10705.2 + 6180.67i) q^{89} +(-4310.45 + 1648.14i) q^{91} +(-1222.13 - 2116.79i) q^{95} -5319.78i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 39 q^{5} - 70 q^{7} - 3 q^{11} - 510 q^{17} + 459 q^{19} - 144 q^{23} - 227 q^{25} + 570 q^{29} + 2640 q^{31} + 2478 q^{35} + 433 q^{37} - 98 q^{43} + 1770 q^{47} - 7154 q^{49} + 213 q^{53} + 4857 q^{59}+ \cdots - 19656 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.23713 + 4.17836i 0.289485 + 0.167134i 0.637710 0.770277i \(-0.279882\pi\)
−0.348225 + 0.937411i \(0.613215\pi\)
\(6\) 0 0
\(7\) −17.5000 45.7684i −0.357143 0.934050i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 38.8866 + 67.3536i 0.321377 + 0.556641i 0.980772 0.195155i \(-0.0625210\pi\)
−0.659395 + 0.751796i \(0.729188\pi\)
\(12\) 0 0
\(13\) 94.1795i 0.557275i −0.960396 0.278638i \(-0.910117\pi\)
0.960396 0.278638i \(-0.0898829\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −93.5257 + 53.9971i −0.323618 + 0.186841i −0.653004 0.757354i \(-0.726492\pi\)
0.329386 + 0.944195i \(0.393158\pi\)
\(18\) 0 0
\(19\) −253.304 146.245i −0.701674 0.405112i 0.106296 0.994334i \(-0.466101\pi\)
−0.807971 + 0.589223i \(0.799434\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −126.598 + 219.274i −0.239316 + 0.414507i −0.960518 0.278217i \(-0.910256\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(24\) 0 0
\(25\) −277.583 480.787i −0.444132 0.769260i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −548.310 −0.651974 −0.325987 0.945374i \(-0.605697\pi\)
−0.325987 + 0.945374i \(0.605697\pi\)
\(30\) 0 0
\(31\) 354.232 204.516i 0.368607 0.212816i −0.304242 0.952595i \(-0.598403\pi\)
0.672850 + 0.739779i \(0.265070\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 64.5872 404.353i 0.0527242 0.330084i
\(36\) 0 0
\(37\) −135.232 + 234.229i −0.0987817 + 0.171095i −0.911181 0.412007i \(-0.864828\pi\)
0.812399 + 0.583102i \(0.198161\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3063.45i 1.82239i −0.411970 0.911197i \(-0.635159\pi\)
0.411970 0.911197i \(-0.364841\pi\)
\(42\) 0 0
\(43\) 553.062 0.299114 0.149557 0.988753i \(-0.452215\pi\)
0.149557 + 0.988753i \(0.452215\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2037.62 1176.42i −0.922418 0.532558i −0.0380121 0.999277i \(-0.512103\pi\)
−0.884406 + 0.466719i \(0.845436\pi\)
\(48\) 0 0
\(49\) −1788.50 + 1601.90i −0.744898 + 0.667178i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2511.81 4350.58i −0.894199 1.54880i −0.834792 0.550565i \(-0.814412\pi\)
−0.0594072 0.998234i \(-0.518921\pi\)
\(54\) 0 0
\(55\) 649.929i 0.214853i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2913.62 + 1682.18i −0.837007 + 0.483246i −0.856246 0.516569i \(-0.827209\pi\)
0.0192386 + 0.999815i \(0.493876\pi\)
\(60\) 0 0
\(61\) −2871.61 1657.92i −0.771730 0.445559i 0.0617613 0.998091i \(-0.480328\pi\)
−0.833491 + 0.552532i \(0.813662\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 393.516 681.589i 0.0931398 0.161323i
\(66\) 0 0
\(67\) −299.491 518.734i −0.0667167 0.115557i 0.830737 0.556664i \(-0.187919\pi\)
−0.897454 + 0.441108i \(0.854586\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5363.24 −1.06392 −0.531962 0.846768i \(-0.678545\pi\)
−0.531962 + 0.846768i \(0.678545\pi\)
\(72\) 0 0
\(73\) −1241.26 + 716.640i −0.232925 + 0.134479i −0.611921 0.790919i \(-0.709603\pi\)
0.378996 + 0.925398i \(0.376269\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2402.15 2958.47i 0.405153 0.498983i
\(78\) 0 0
\(79\) 5586.98 9676.93i 0.895205 1.55054i 0.0616549 0.998098i \(-0.480362\pi\)
0.833550 0.552443i \(-0.186304\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1326.79i 0.192595i 0.995353 + 0.0962977i \(0.0307001\pi\)
−0.995353 + 0.0962977i \(0.969300\pi\)
\(84\) 0 0
\(85\) −902.477 −0.124910
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10705.2 + 6180.67i 1.35150 + 0.780289i 0.988460 0.151484i \(-0.0484051\pi\)
0.363041 + 0.931773i \(0.381738\pi\)
\(90\) 0 0
\(91\) −4310.45 + 1648.14i −0.520523 + 0.199027i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1222.13 2116.79i −0.135416 0.234548i
\(96\) 0 0
\(97\) 5319.78i 0.565393i −0.959209 0.282696i \(-0.908771\pi\)
0.959209 0.282696i \(-0.0912289\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3965.54 2289.51i 0.388740 0.224439i −0.292874 0.956151i \(-0.594612\pi\)
0.681614 + 0.731712i \(0.261278\pi\)
\(102\) 0 0
\(103\) −6332.08 3655.83i −0.596859 0.344597i 0.170946 0.985280i \(-0.445318\pi\)
−0.767805 + 0.640684i \(0.778651\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9698.96 + 16799.1i −0.847145 + 1.46730i 0.0366010 + 0.999330i \(0.488347\pi\)
−0.883746 + 0.467968i \(0.844986\pi\)
\(108\) 0 0
\(109\) 6465.30 + 11198.2i 0.544172 + 0.942533i 0.998659 + 0.0517795i \(0.0164893\pi\)
−0.454487 + 0.890753i \(0.650177\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5153.13 −0.403566 −0.201783 0.979430i \(-0.564674\pi\)
−0.201783 + 0.979430i \(0.564674\pi\)
\(114\) 0 0
\(115\) −1832.41 + 1057.94i −0.138557 + 0.0799957i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4108.06 + 3335.58i 0.290097 + 0.235547i
\(120\) 0 0
\(121\) 4296.16 7441.17i 0.293434 0.508242i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9862.31i 0.631188i
\(126\) 0 0
\(127\) 10320.4 0.639865 0.319932 0.947440i \(-0.396340\pi\)
0.319932 + 0.947440i \(0.396340\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 27221.9 + 15716.6i 1.58627 + 0.915832i 0.993915 + 0.110154i \(0.0351345\pi\)
0.592354 + 0.805678i \(0.298199\pi\)
\(132\) 0 0
\(133\) −2260.60 + 14152.6i −0.127797 + 0.800082i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6927.98 11999.6i −0.369118 0.639332i 0.620310 0.784357i \(-0.287007\pi\)
−0.989428 + 0.145025i \(0.953674\pi\)
\(138\) 0 0
\(139\) 24750.2i 1.28100i 0.767959 + 0.640499i \(0.221273\pi\)
−0.767959 + 0.640499i \(0.778727\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6343.33 3662.33i 0.310203 0.179096i
\(144\) 0 0
\(145\) −3968.19 2291.03i −0.188737 0.108967i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 85.4878 148.069i 0.00385063 0.00666949i −0.864094 0.503331i \(-0.832108\pi\)
0.867944 + 0.496662i \(0.165441\pi\)
\(150\) 0 0
\(151\) 18574.4 + 32171.7i 0.814629 + 1.41098i 0.909594 + 0.415498i \(0.136393\pi\)
−0.0949648 + 0.995481i \(0.530274\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3418.16 0.142275
\(156\) 0 0
\(157\) 13150.6 7592.49i 0.533514 0.308024i −0.208932 0.977930i \(-0.566999\pi\)
0.742446 + 0.669906i \(0.233665\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12251.3 + 1956.90i 0.472640 + 0.0754946i
\(162\) 0 0
\(163\) 1890.00 3273.58i 0.0711357 0.123211i −0.828264 0.560339i \(-0.810671\pi\)
0.899399 + 0.437128i \(0.144004\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10590.5i 0.379739i −0.981809 0.189869i \(-0.939194\pi\)
0.981809 0.189869i \(-0.0608064\pi\)
\(168\) 0 0
\(169\) 19691.2 0.689444
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 34763.8 + 20070.9i 1.16154 + 0.670616i 0.951673 0.307114i \(-0.0993632\pi\)
0.209868 + 0.977730i \(0.432697\pi\)
\(174\) 0 0
\(175\) −17147.2 + 21118.3i −0.559908 + 0.689577i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18788.4 + 32542.4i 0.586385 + 1.01565i 0.994701 + 0.102808i \(0.0327826\pi\)
−0.408317 + 0.912840i \(0.633884\pi\)
\(180\) 0 0
\(181\) 39852.1i 1.21645i −0.793765 0.608224i \(-0.791882\pi\)
0.793765 0.608224i \(-0.208118\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1957.38 + 1130.10i −0.0571917 + 0.0330196i
\(186\) 0 0
\(187\) −7273.80 4199.53i −0.208007 0.120093i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22747.5 + 39399.8i −0.623544 + 1.08001i 0.365277 + 0.930899i \(0.380974\pi\)
−0.988821 + 0.149111i \(0.952359\pi\)
\(192\) 0 0
\(193\) −6045.20 10470.6i −0.162292 0.281097i 0.773399 0.633920i \(-0.218555\pi\)
−0.935690 + 0.352823i \(0.885222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −43371.5 −1.11756 −0.558782 0.829315i \(-0.688731\pi\)
−0.558782 + 0.829315i \(0.688731\pi\)
\(198\) 0 0
\(199\) 19667.6 11355.1i 0.496645 0.286738i −0.230682 0.973029i \(-0.574096\pi\)
0.727327 + 0.686291i \(0.240762\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9595.42 + 25095.3i 0.232848 + 0.608976i
\(204\) 0 0
\(205\) 12800.2 22170.5i 0.304585 0.527556i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 22748.0i 0.520775i
\(210\) 0 0
\(211\) −75885.9 −1.70450 −0.852249 0.523137i \(-0.824762\pi\)
−0.852249 + 0.523137i \(0.824762\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4002.58 + 2310.89i 0.0865891 + 0.0499923i
\(216\) 0 0
\(217\) −15559.4 12633.6i −0.330426 0.268292i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5085.42 + 8808.21i 0.104122 + 0.180345i
\(222\) 0 0
\(223\) 18276.7i 0.367526i 0.982971 + 0.183763i \(0.0588279\pi\)
−0.982971 + 0.183763i \(0.941172\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10304.8 5949.48i 0.199981 0.115459i −0.396666 0.917963i \(-0.629833\pi\)
0.596646 + 0.802504i \(0.296500\pi\)
\(228\) 0 0
\(229\) −254.071 146.688i −0.00484488 0.00279720i 0.497576 0.867421i \(-0.334224\pi\)
−0.502420 + 0.864623i \(0.667557\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 35754.6 61928.8i 0.658598 1.14073i −0.322381 0.946610i \(-0.604483\pi\)
0.980979 0.194115i \(-0.0621835\pi\)
\(234\) 0 0
\(235\) −9831.01 17027.8i −0.178017 0.308335i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −62869.3 −1.10063 −0.550316 0.834956i \(-0.685493\pi\)
−0.550316 + 0.834956i \(0.685493\pi\)
\(240\) 0 0
\(241\) 52680.1 30414.9i 0.907011 0.523663i 0.0275425 0.999621i \(-0.491232\pi\)
0.879468 + 0.475958i \(0.157899\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −19636.9 + 4120.13i −0.327145 + 0.0686402i
\(246\) 0 0
\(247\) −13773.3 + 23856.1i −0.225759 + 0.391026i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 71630.1i 1.13697i −0.822695 0.568484i \(-0.807530\pi\)
0.822695 0.568484i \(-0.192470\pi\)
\(252\) 0 0
\(253\) −19691.9 −0.307642
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −50347.3 29068.0i −0.762271 0.440098i 0.0678393 0.997696i \(-0.478389\pi\)
−0.830111 + 0.557599i \(0.811723\pi\)
\(258\) 0 0
\(259\) 13086.9 + 2090.36i 0.195090 + 0.0311617i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15899.6 27539.0i −0.229866 0.398140i 0.727902 0.685681i \(-0.240496\pi\)
−0.957768 + 0.287541i \(0.907162\pi\)
\(264\) 0 0
\(265\) 41980.9i 0.597806i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 47568.2 27463.5i 0.657374 0.379535i −0.133902 0.990995i \(-0.542751\pi\)
0.791276 + 0.611460i \(0.209417\pi\)
\(270\) 0 0
\(271\) 79439.7 + 45864.6i 1.08168 + 0.624509i 0.931349 0.364127i \(-0.118633\pi\)
0.150332 + 0.988636i \(0.451966\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21588.5 37392.4i 0.285468 0.494445i
\(276\) 0 0
\(277\) −3667.78 6352.78i −0.0478018 0.0827951i 0.841135 0.540826i \(-0.181888\pi\)
−0.888936 + 0.458031i \(0.848555\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −133185. −1.68671 −0.843356 0.537355i \(-0.819424\pi\)
−0.843356 + 0.537355i \(0.819424\pi\)
\(282\) 0 0
\(283\) −108302. + 62528.0i −1.35227 + 0.780731i −0.988567 0.150785i \(-0.951820\pi\)
−0.363700 + 0.931516i \(0.618487\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −140209. + 53610.3i −1.70221 + 0.650855i
\(288\) 0 0
\(289\) −35929.1 + 62231.1i −0.430181 + 0.745095i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 137393.i 1.60040i −0.599730 0.800202i \(-0.704725\pi\)
0.599730 0.800202i \(-0.295275\pi\)
\(294\) 0 0
\(295\) −28115.0 −0.323068
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20651.1 + 11922.9i 0.230995 + 0.133365i
\(300\) 0 0
\(301\) −9678.59 25312.8i −0.106827 0.279388i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13854.8 23997.2i −0.148936 0.257965i
\(306\) 0 0
\(307\) 59400.1i 0.630247i −0.949051 0.315123i \(-0.897954\pi\)
0.949051 0.315123i \(-0.102046\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −39127.7 + 22590.4i −0.404542 + 0.233562i −0.688442 0.725291i \(-0.741705\pi\)
0.283900 + 0.958854i \(0.408372\pi\)
\(312\) 0 0
\(313\) 92305.3 + 53292.5i 0.942189 + 0.543973i 0.890646 0.454698i \(-0.150253\pi\)
0.0515431 + 0.998671i \(0.483586\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 76611.8 132696.i 0.762390 1.32050i −0.179225 0.983808i \(-0.557359\pi\)
0.941615 0.336691i \(-0.109308\pi\)
\(318\) 0 0
\(319\) −21321.9 36930.7i −0.209529 0.362916i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 31587.3 0.302766
\(324\) 0 0
\(325\) −45280.3 + 26142.6i −0.428689 + 0.247504i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18184.6 + 113846.i −0.168001 + 1.05178i
\(330\) 0 0
\(331\) 56180.6 97307.7i 0.512779 0.888160i −0.487111 0.873340i \(-0.661949\pi\)
0.999890 0.0148198i \(-0.00471745\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5005.53i 0.0446026i
\(336\) 0 0
\(337\) −141074. −1.24219 −0.621093 0.783737i \(-0.713311\pi\)
−0.621093 + 0.783737i \(0.713311\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 27549.8 + 15905.9i 0.236924 + 0.136788i
\(342\) 0 0
\(343\) 104615. + 53823.7i 0.889213 + 0.457494i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 100247. + 173633.i 0.832557 + 1.44203i 0.896004 + 0.444046i \(0.146457\pi\)
−0.0634473 + 0.997985i \(0.520209\pi\)
\(348\) 0 0
\(349\) 209647.i 1.72122i −0.509263 0.860611i \(-0.670082\pi\)
0.509263 0.860611i \(-0.329918\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 138290. 79841.9i 1.10979 0.640739i 0.171017 0.985268i \(-0.445295\pi\)
0.938776 + 0.344529i \(0.111961\pi\)
\(354\) 0 0
\(355\) −38814.4 22409.5i −0.307990 0.177818i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −35094.0 + 60784.5i −0.272297 + 0.471633i −0.969450 0.245290i \(-0.921117\pi\)
0.697152 + 0.716923i \(0.254450\pi\)
\(360\) 0 0
\(361\) −22385.1 38772.1i −0.171769 0.297512i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11977.5 −0.0899044
\(366\) 0 0
\(367\) 205812. 118826.i 1.52806 0.882223i 0.528613 0.848863i \(-0.322712\pi\)
0.999443 0.0333603i \(-0.0106209\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −155162. + 191097.i −1.12730 + 1.38837i
\(372\) 0 0
\(373\) −122554. + 212269.i −0.880863 + 1.52570i −0.0304807 + 0.999535i \(0.509704\pi\)
−0.850383 + 0.526165i \(0.823630\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 51639.6i 0.363329i
\(378\) 0 0
\(379\) −95402.6 −0.664174 −0.332087 0.943249i \(-0.607753\pi\)
−0.332087 + 0.943249i \(0.607753\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 57753.3 + 33343.9i 0.393712 + 0.227310i 0.683767 0.729700i \(-0.260340\pi\)
−0.290055 + 0.957010i \(0.593674\pi\)
\(384\) 0 0
\(385\) 29746.2 11373.8i 0.200683 0.0767331i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 77439.5 + 134129.i 0.511757 + 0.886389i 0.999907 + 0.0136291i \(0.00433840\pi\)
−0.488150 + 0.872760i \(0.662328\pi\)
\(390\) 0 0
\(391\) 27343.7i 0.178856i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 80867.3 46688.8i 0.518297 0.299239i
\(396\) 0 0
\(397\) 174546. + 100774.i 1.10746 + 0.639392i 0.938170 0.346174i \(-0.112519\pi\)
0.169290 + 0.985566i \(0.445853\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16945.5 29350.5i 0.105382 0.182527i −0.808512 0.588479i \(-0.799727\pi\)
0.913894 + 0.405952i \(0.133060\pi\)
\(402\) 0 0
\(403\) −19261.2 33361.4i −0.118597 0.205416i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21034.9 −0.126985
\(408\) 0 0
\(409\) −201013. + 116055.i −1.20165 + 0.693771i −0.960921 0.276822i \(-0.910719\pi\)
−0.240725 + 0.970593i \(0.577385\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 127979. + 103914.i 0.750307 + 0.609218i
\(414\) 0 0
\(415\) −5543.80 + 9602.15i −0.0321893 + 0.0557535i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 162717.i 0.926838i −0.886139 0.463419i \(-0.846622\pi\)
0.886139 0.463419i \(-0.153378\pi\)
\(420\) 0 0
\(421\) 244086. 1.37714 0.688570 0.725170i \(-0.258239\pi\)
0.688570 + 0.725170i \(0.258239\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 51922.2 + 29977.3i 0.287459 + 0.165964i
\(426\) 0 0
\(427\) −25627.4 + 160443.i −0.140556 + 0.879962i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 57761.7 + 100046.i 0.310946 + 0.538575i 0.978567 0.205926i \(-0.0660208\pi\)
−0.667621 + 0.744501i \(0.732687\pi\)
\(432\) 0 0
\(433\) 54296.2i 0.289597i 0.989461 + 0.144798i \(0.0462534\pi\)
−0.989461 + 0.144798i \(0.953747\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 64135.7 37028.7i 0.335843 0.193899i
\(438\) 0 0
\(439\) 279367. + 161293.i 1.44959 + 0.836923i 0.998457 0.0555326i \(-0.0176857\pi\)
0.451136 + 0.892455i \(0.351019\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 105739. 183146.i 0.538802 0.933232i −0.460167 0.887832i \(-0.652211\pi\)
0.998969 0.0453997i \(-0.0144562\pi\)
\(444\) 0 0
\(445\) 51650.1 + 89460.6i 0.260826 + 0.451764i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −223169. −1.10699 −0.553493 0.832854i \(-0.686705\pi\)
−0.553493 + 0.832854i \(0.686705\pi\)
\(450\) 0 0
\(451\) 206334. 119127.i 1.01442 0.585676i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −38081.8 6082.79i −0.183948 0.0293819i
\(456\) 0 0
\(457\) 93.6414 162.192i 0.000448369 0.000776598i −0.865801 0.500388i \(-0.833191\pi\)
0.866250 + 0.499612i \(0.166524\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8842.64i 0.0416083i 0.999784 + 0.0208042i \(0.00662265\pi\)
−0.999784 + 0.0208042i \(0.993377\pi\)
\(462\) 0 0
\(463\) −363326. −1.69486 −0.847431 0.530906i \(-0.821852\pi\)
−0.847431 + 0.530906i \(0.821852\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 211698. + 122224.i 0.970698 + 0.560433i 0.899449 0.437026i \(-0.143968\pi\)
0.0712488 + 0.997459i \(0.477302\pi\)
\(468\) 0 0
\(469\) −18500.6 + 22785.1i −0.0841084 + 0.103587i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21506.7 + 37250.8i 0.0961285 + 0.166499i
\(474\) 0 0
\(475\) 162381.i 0.719693i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30752.3 17754.8i 0.134031 0.0773829i −0.431485 0.902120i \(-0.642010\pi\)
0.565516 + 0.824737i \(0.308677\pi\)
\(480\) 0 0
\(481\) 22059.6 + 12736.1i 0.0953470 + 0.0550486i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22227.9 38499.9i 0.0944965 0.163673i
\(486\) 0 0
\(487\) −27074.8 46894.9i −0.114158 0.197728i 0.803285 0.595595i \(-0.203084\pi\)
−0.917443 + 0.397867i \(0.869750\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −92603.2 −0.384117 −0.192058 0.981384i \(-0.561516\pi\)
−0.192058 + 0.981384i \(0.561516\pi\)
\(492\) 0 0
\(493\) 51281.1 29607.1i 0.210991 0.121816i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 93856.7 + 245467.i 0.379973 + 0.993757i
\(498\) 0 0
\(499\) −3480.87 + 6029.05i −0.0139794 + 0.0242130i −0.872930 0.487845i \(-0.837783\pi\)
0.858951 + 0.512058i \(0.171117\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 466372.i 1.84330i −0.388021 0.921650i \(-0.626841\pi\)
0.388021 0.921650i \(-0.373159\pi\)
\(504\) 0 0
\(505\) 38265.5 0.150046
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 174228. + 100590.i 0.672483 + 0.388259i 0.797017 0.603957i \(-0.206410\pi\)
−0.124533 + 0.992215i \(0.539743\pi\)
\(510\) 0 0
\(511\) 54521.5 + 44269.2i 0.208798 + 0.169535i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −30550.7 52915.4i −0.115188 0.199511i
\(516\) 0 0
\(517\) 182988.i 0.684608i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −300077. + 173249.i −1.10549 + 0.638258i −0.937659 0.347557i \(-0.887011\pi\)
−0.167836 + 0.985815i \(0.553678\pi\)
\(522\) 0 0
\(523\) −252492. 145776.i −0.923090 0.532946i −0.0384707 0.999260i \(-0.512249\pi\)
−0.884620 + 0.466313i \(0.845582\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −22086.5 + 38255.0i −0.0795254 + 0.137742i
\(528\) 0 0
\(529\) 107866. + 186830.i 0.385456 + 0.667629i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −288514. −1.01558
\(534\) 0 0
\(535\) −140385. + 81051.4i −0.490471 + 0.283174i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −177442. 58169.6i −0.610772 0.200225i
\(540\) 0 0
\(541\) 193007. 334298.i 0.659445 1.14219i −0.321314 0.946973i \(-0.604125\pi\)
0.980759 0.195220i \(-0.0625422\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 108057.i 0.363799i
\(546\) 0 0
\(547\) 122247. 0.408566 0.204283 0.978912i \(-0.434514\pi\)
0.204283 + 0.978912i \(0.434514\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 138889. + 80187.8i 0.457473 + 0.264122i
\(552\) 0 0
\(553\) −540670. 86361.0i −1.76800 0.282402i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 53061.4 + 91905.1i 0.171029 + 0.296230i 0.938780 0.344518i \(-0.111958\pi\)
−0.767751 + 0.640748i \(0.778624\pi\)
\(558\) 0 0
\(559\) 52087.2i 0.166689i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 254823. 147122.i 0.803935 0.464152i −0.0409102 0.999163i \(-0.513026\pi\)
0.844845 + 0.535011i \(0.179692\pi\)
\(564\) 0 0
\(565\) −37293.9 21531.6i −0.116826 0.0674497i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −237514. + 411386.i −0.733609 + 1.27065i 0.221722 + 0.975110i \(0.428832\pi\)
−0.955331 + 0.295538i \(0.904501\pi\)
\(570\) 0 0
\(571\) −92589.2 160369.i −0.283980 0.491868i 0.688381 0.725349i \(-0.258322\pi\)
−0.972361 + 0.233481i \(0.924988\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 140566. 0.425151
\(576\) 0 0
\(577\) 139857. 80746.6i 0.420081 0.242534i −0.275031 0.961435i \(-0.588688\pi\)
0.695112 + 0.718901i \(0.255355\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 60725.1 23218.8i 0.179894 0.0687841i
\(582\) 0 0
\(583\) 195351. 338358.i 0.574750 0.995497i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 333168.i 0.966911i −0.875369 0.483456i \(-0.839381\pi\)
0.875369 0.483456i \(-0.160619\pi\)
\(588\) 0 0
\(589\) −119638. −0.344856
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −97432.1 56252.5i −0.277072 0.159968i 0.355025 0.934857i \(-0.384472\pi\)
−0.632097 + 0.774889i \(0.717806\pi\)
\(594\) 0 0
\(595\) 15793.3 + 41305.0i 0.0446108 + 0.116672i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −202632. 350970.i −0.564749 0.978174i −0.997073 0.0764554i \(-0.975640\pi\)
0.432324 0.901718i \(-0.357694\pi\)
\(600\) 0 0
\(601\) 372831.i 1.03220i −0.856529 0.516098i \(-0.827384\pi\)
0.856529 0.516098i \(-0.172616\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 62183.7 35901.8i 0.169889 0.0980856i
\(606\) 0 0
\(607\) −472368. 272722.i −1.28204 0.740188i −0.304822 0.952409i \(-0.598597\pi\)
−0.977222 + 0.212221i \(0.931930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −110795. + 191902.i −0.296782 + 0.514041i
\(612\) 0 0
\(613\) 219300. + 379838.i 0.583602 + 1.01083i 0.995048 + 0.0993946i \(0.0316906\pi\)
−0.411446 + 0.911434i \(0.634976\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −663957. −1.74409 −0.872046 0.489423i \(-0.837207\pi\)
−0.872046 + 0.489423i \(0.837207\pi\)
\(618\) 0 0
\(619\) 237343. 137030.i 0.619434 0.357630i −0.157215 0.987564i \(-0.550251\pi\)
0.776649 + 0.629934i \(0.216918\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 95538.1 598124.i 0.246150 1.54104i
\(624\) 0 0
\(625\) −132281. + 229117.i −0.338639 + 0.586540i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29208.6i 0.0738260i
\(630\) 0 0
\(631\) −217088. −0.545227 −0.272614 0.962124i \(-0.587888\pi\)
−0.272614 + 0.962124i \(0.587888\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 74689.9 + 43122.2i 0.185231 + 0.106943i
\(636\) 0 0
\(637\) 150866. + 168440.i 0.371802 + 0.415113i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −261433. 452815.i −0.636274 1.10206i −0.986244 0.165298i \(-0.947141\pi\)
0.349969 0.936761i \(-0.386192\pi\)
\(642\) 0 0
\(643\) 447328.i 1.08194i 0.841041 + 0.540971i \(0.181943\pi\)
−0.841041 + 0.540971i \(0.818057\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 168608. 97346.0i 0.402782 0.232546i −0.284901 0.958557i \(-0.591961\pi\)
0.687684 + 0.726010i \(0.258628\pi\)
\(648\) 0 0
\(649\) −226602. 130829.i −0.537990 0.310609i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 92320.8 159904.i 0.216508 0.375002i −0.737230 0.675642i \(-0.763867\pi\)
0.953738 + 0.300639i \(0.0972001\pi\)
\(654\) 0 0
\(655\) 131339. + 227486.i 0.306134 + 0.530240i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −269400. −0.620336 −0.310168 0.950682i \(-0.600385\pi\)
−0.310168 + 0.950682i \(0.600385\pi\)
\(660\) 0 0
\(661\) −273711. + 158027.i −0.626453 + 0.361683i −0.779377 0.626555i \(-0.784464\pi\)
0.152924 + 0.988238i \(0.451131\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −75495.0 + 92978.9i −0.170716 + 0.210252i
\(666\) 0 0
\(667\) 69414.9 120230.i 0.156028 0.270248i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 257884.i 0.572769i
\(672\) 0 0
\(673\) 85940.2 0.189743 0.0948716 0.995490i \(-0.469756\pi\)
0.0948716 + 0.995490i \(0.469756\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 43495.9 + 25112.3i 0.0949010 + 0.0547911i 0.546699 0.837329i \(-0.315884\pi\)
−0.451798 + 0.892120i \(0.649217\pi\)
\(678\) 0 0
\(679\) −243478. + 93096.1i −0.528105 + 0.201926i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −373719. 647301.i −0.801132 1.38760i −0.918871 0.394557i \(-0.870898\pi\)
0.117739 0.993045i \(-0.462435\pi\)
\(684\) 0 0
\(685\) 115790.i 0.246769i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −409735. + 236561.i −0.863108 + 0.498315i
\(690\) 0 0
\(691\) 151644. + 87551.7i 0.317592 + 0.183362i 0.650319 0.759662i \(-0.274635\pi\)
−0.332727 + 0.943023i \(0.607969\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −103415. + 179120.i −0.214099 + 0.370830i
\(696\) 0 0
\(697\) 165417. + 286511.i 0.340498 + 0.589761i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 91696.3 0.186602 0.0933009 0.995638i \(-0.470258\pi\)
0.0933009 + 0.995638i \(0.470258\pi\)
\(702\) 0 0
\(703\) 68509.8 39554.2i 0.138625 0.0800353i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −174184. 141430.i −0.348473 0.282946i
\(708\) 0 0
\(709\) 45597.2 78976.7i 0.0907081 0.157111i −0.817101 0.576494i \(-0.804420\pi\)
0.907809 + 0.419383i \(0.137754\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 103565.i 0.203720i
\(714\) 0 0
\(715\) 61210.0 0.119732
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 143600. + 82907.7i 0.277778 + 0.160375i 0.632417 0.774628i \(-0.282063\pi\)
−0.354639 + 0.935003i \(0.615396\pi\)
\(720\) 0 0
\(721\) −56510.1 + 353786.i −0.108707 + 0.680566i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 152201. + 263620.i 0.289563 + 0.501537i
\(726\) 0 0
\(727\) 90288.3i 0.170829i −0.996345 0.0854147i \(-0.972778\pi\)
0.996345 0.0854147i \(-0.0272215\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −51725.6 + 29863.8i −0.0967989 + 0.0558869i
\(732\) 0 0
\(733\) −272185. 157146.i −0.506590 0.292480i 0.224841 0.974395i \(-0.427814\pi\)
−0.731431 + 0.681916i \(0.761147\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23292.4 40343.7i 0.0428825 0.0742746i
\(738\) 0 0
\(739\) −56214.0 97365.4i −0.102933 0.178285i 0.809959 0.586487i \(-0.199489\pi\)
−0.912892 + 0.408201i \(0.866156\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 805662. 1.45940 0.729702 0.683765i \(-0.239659\pi\)
0.729702 + 0.683765i \(0.239659\pi\)
\(744\) 0 0
\(745\) 1237.37 714.397i 0.00222940 0.00128714i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 938600. + 149922.i 1.67308 + 0.267240i
\(750\) 0 0
\(751\) 184929. 320306.i 0.327887 0.567917i −0.654205 0.756317i \(-0.726997\pi\)
0.982092 + 0.188400i \(0.0603300\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 310441.i 0.544610i
\(756\) 0 0
\(757\) 736616. 1.28543 0.642716 0.766104i \(-0.277807\pi\)
0.642716 + 0.766104i \(0.277807\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 111743. + 64515.1i 0.192954 + 0.111402i 0.593365 0.804934i \(-0.297799\pi\)
−0.400411 + 0.916336i \(0.631133\pi\)
\(762\) 0 0
\(763\) 399383. 491876.i 0.686026 0.844902i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 158427. + 274404.i 0.269301 + 0.466444i
\(768\) 0 0
\(769\) 485806.i 0.821506i 0.911747 + 0.410753i \(0.134734\pi\)
−0.911747 + 0.410753i \(0.865266\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 239185. 138094.i 0.400290 0.231108i −0.286319 0.958134i \(-0.592432\pi\)
0.686609 + 0.727027i \(0.259098\pi\)
\(774\) 0 0
\(775\) −196657. 113540.i −0.327421 0.189037i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −448015. + 775984.i −0.738274 + 1.27873i
\(780\) 0 0
\(781\) −208558. 361233.i −0.341921 0.592224i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 126897. 0.205926
\(786\) 0 0
\(787\) 83633.8 48286.0i 0.135031 0.0779600i −0.430963 0.902370i \(-0.641826\pi\)
0.565994 + 0.824410i \(0.308493\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 90179.8 + 235851.i 0.144131 + 0.376951i
\(792\) 0 0
\(793\) −156142. + 270447.i −0.248299 + 0.430066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 540869.i 0.851481i 0.904845 + 0.425741i \(0.139986\pi\)
−0.904845 + 0.425741i \(0.860014\pi\)
\(798\) 0 0
\(799\) 254093. 0.398015
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −96536.6 55735.4i −0.149713 0.0864371i
\(804\) 0 0
\(805\) 80487.6 + 65352.6i 0.124205 + 0.100849i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 477611. + 827246.i 0.729755 + 1.26397i 0.956987 + 0.290132i \(0.0936992\pi\)
−0.227232 + 0.973841i \(0.572967\pi\)
\(810\) 0 0
\(811\) 352574.i 0.536055i 0.963411 + 0.268027i \(0.0863718\pi\)
−0.963411 + 0.268027i \(0.913628\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27356.4 15794.2i 0.0411854 0.0237784i
\(816\) 0 0
\(817\) −140093. 80882.8i −0.209881 0.121175i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 393020. 680731.i 0.583080 1.00992i −0.412031 0.911170i \(-0.635181\pi\)
0.995112 0.0987551i \(-0.0314860\pi\)
\(822\) 0 0
\(823\) −366023. 633971.i −0.540392 0.935987i −0.998881 0.0472866i \(-0.984943\pi\)
0.458489 0.888700i \(-0.348391\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 279220. 0.408258 0.204129 0.978944i \(-0.434564\pi\)
0.204129 + 0.978944i \(0.434564\pi\)
\(828\) 0 0
\(829\) −176164. + 101708.i −0.256335 + 0.147995i −0.622662 0.782491i \(-0.713949\pi\)
0.366327 + 0.930486i \(0.380615\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 80773.1 246392.i 0.116406 0.355089i
\(834\) 0 0
\(835\) 44251.0 76645.0i 0.0634674 0.109929i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.36972e6i 1.94584i 0.231134 + 0.972922i \(0.425756\pi\)
−0.231134 + 0.972922i \(0.574244\pi\)
\(840\) 0 0
\(841\) −406637. −0.574930
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 142508. + 82276.9i 0.199584 + 0.115230i
\(846\) 0 0
\(847\) −415753. 66408.1i −0.579521 0.0925666i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −34240.2 59305.8i −0.0472800 0.0818914i
\(852\) 0 0
\(853\) 110844.i 0.152340i 0.997095 + 0.0761702i \(0.0242692\pi\)
−0.997095 + 0.0761702i \(0.975731\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −917323. + 529617.i −1.24899 + 0.721107i −0.970909 0.239449i \(-0.923033\pi\)
−0.278086 + 0.960556i \(0.589700\pi\)
\(858\) 0 0
\(859\) 1.00197e6 + 578485.i 1.35790 + 0.783982i 0.989340 0.145624i \(-0.0465188\pi\)
0.368556 + 0.929605i \(0.379852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39295.5 + 68061.8i −0.0527620 + 0.0913864i −0.891200 0.453610i \(-0.850136\pi\)
0.838438 + 0.544997i \(0.183469\pi\)
\(864\) 0 0
\(865\) 167726. + 290511.i 0.224166 + 0.388267i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 869035. 1.15079
\(870\) 0 0
\(871\) −48854.2 + 28206.0i −0.0643970 + 0.0371796i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −451382. + 172590.i −0.589561 + 0.225424i
\(876\) 0 0
\(877\) −32541.5 + 56363.6i −0.0423096 + 0.0732824i −0.886405 0.462911i \(-0.846805\pi\)
0.844095 + 0.536193i \(0.180138\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 510450.i 0.657661i −0.944389 0.328830i \(-0.893346\pi\)
0.944389 0.328830i \(-0.106654\pi\)
\(882\) 0 0
\(883\) 684144. 0.877458 0.438729 0.898620i \(-0.355429\pi\)
0.438729 + 0.898620i \(0.355429\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −251921. 145447.i −0.320198 0.184866i 0.331283 0.943531i \(-0.392518\pi\)
−0.651481 + 0.758665i \(0.725852\pi\)
\(888\) 0 0
\(889\) −180607. 472348.i −0.228523 0.597665i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 344092. + 595985.i 0.431491 + 0.747365i
\(894\) 0 0
\(895\) 314018.i 0.392020i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −194229. + 112138.i −0.240322 + 0.138750i
\(900\) 0 0
\(901\) 469837. + 271261.i 0.578759 + 0.334147i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 166516. 288414.i 0.203310 0.352144i
\(906\) 0 0
\(907\) 19708.0 + 34135.2i 0.0239567 + 0.0414942i 0.877755 0.479109i \(-0.159040\pi\)
−0.853798 + 0.520604i \(0.825707\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.07089e6 1.29035 0.645173 0.764036i \(-0.276785\pi\)
0.645173 + 0.764036i \(0.276785\pi\)
\(912\) 0 0
\(913\) −89364.1 + 51594.4i −0.107207 + 0.0618958i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 242940. 1.52095e6i 0.288909 1.80874i
\(918\) 0 0
\(919\) −607876. + 1.05287e6i −0.719754 + 1.24665i 0.241343 + 0.970440i \(0.422412\pi\)
−0.961097 + 0.276211i \(0.910921\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 505107.i 0.592898i
\(924\) 0 0
\(925\) 150152. 0.175489
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.29549e6 747949.i −1.50107 0.866644i −0.999999 0.00123791i \(-0.999606\pi\)
−0.501072 0.865406i \(-0.667061\pi\)
\(930\) 0 0
\(931\) 687305. 144207.i 0.792958 0.166375i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −35094.3 60785.1i −0.0401433 0.0695303i
\(936\) 0 0
\(937\) 254082.i 0.289398i −0.989476 0.144699i \(-0.953779\pi\)
0.989476 0.144699i \(-0.0462213\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 642429. 370907.i 0.725514 0.418876i −0.0912645 0.995827i \(-0.529091\pi\)
0.816779 + 0.576951i \(0.195758\pi\)
\(942\) 0 0
\(943\) 671735. + 387826.i 0.755395 + 0.436128i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 477051. 826277.i 0.531943 0.921352i −0.467362 0.884066i \(-0.654795\pi\)
0.999305 0.0372859i \(-0.0118712\pi\)
\(948\) 0 0
\(949\) 67492.8 + 116901.i 0.0749420 + 0.129803i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 792911. 0.873049 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(954\) 0 0
\(955\) −329253. + 190094.i −0.361013 + 0.208431i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −427964. + 527076.i −0.465340 + 0.573108i
\(960\) 0 0
\(961\) −378107. + 654901.i −0.409419 + 0.709135i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 101036.i 0.108498i
\(966\) 0 0
\(967\) −23877.3 −0.0255348 −0.0127674 0.999918i \(-0.504064\pi\)
−0.0127674 + 0.999918i \(0.504064\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −969512. 559748.i −1.02829 0.593682i −0.111794 0.993731i \(-0.535660\pi\)
−0.916494 + 0.400049i \(0.868993\pi\)
\(972\) 0 0
\(973\) 1.13278e6 433128.i 1.19652 0.457500i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −522163. 904413.i −0.547037 0.947497i −0.998476 0.0551943i \(-0.982422\pi\)
0.451438 0.892302i \(-0.350911\pi\)
\(978\) 0 0
\(979\) 961382.i 1.00307i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 187897. 108482.i 0.194452 0.112267i −0.399613 0.916684i \(-0.630855\pi\)
0.594065 + 0.804417i \(0.297522\pi\)
\(984\) 0 0
\(985\) −313885. 181222.i −0.323518 0.186783i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −70016.6 + 121272.i −0.0715828 + 0.123985i
\(990\) 0 0
\(991\) −496994. 860819.i −0.506062 0.876525i −0.999975 0.00701423i \(-0.997767\pi\)
0.493913 0.869511i \(-0.335566\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 189783. 0.191695
\(996\) 0 0
\(997\) −674463. + 389402.i −0.678528 + 0.391748i −0.799300 0.600932i \(-0.794796\pi\)
0.120772 + 0.992680i \(0.461463\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.5.z.b.145.2 4
3.2 odd 2 84.5.m.a.61.1 4
7.3 odd 6 inner 252.5.z.b.73.2 4
12.11 even 2 336.5.bh.c.145.1 4
21.2 odd 6 588.5.d.a.97.4 4
21.5 even 6 588.5.d.a.97.1 4
21.11 odd 6 588.5.m.a.325.2 4
21.17 even 6 84.5.m.a.73.1 yes 4
21.20 even 2 588.5.m.a.313.2 4
84.59 odd 6 336.5.bh.c.241.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.5.m.a.61.1 4 3.2 odd 2
84.5.m.a.73.1 yes 4 21.17 even 6
252.5.z.b.73.2 4 7.3 odd 6 inner
252.5.z.b.145.2 4 1.1 even 1 trivial
336.5.bh.c.145.1 4 12.11 even 2
336.5.bh.c.241.1 4 84.59 odd 6
588.5.d.a.97.1 4 21.5 even 6
588.5.d.a.97.4 4 21.2 odd 6
588.5.m.a.313.2 4 21.20 even 2
588.5.m.a.325.2 4 21.11 odd 6