Properties

Label 84.5.m.a.73.1
Level $84$
Weight $5$
Character 84.73
Analytic conductor $8.683$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,5,Mod(61,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.61");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 84.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.68307689904\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.1
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 84.73
Dual form 84.5.m.a.61.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 2.59808i) q^{3} +(-7.23713 + 4.17836i) q^{5} +(-17.5000 + 45.7684i) q^{7} +(13.5000 + 23.3827i) q^{9} +(-38.8866 + 67.3536i) q^{11} +94.1795i q^{13} -43.4228 q^{15} +(93.5257 + 53.9971i) q^{17} +(-253.304 + 146.245i) q^{19} +(-197.660 + 160.492i) q^{21} +(126.598 + 219.274i) q^{23} +(-277.583 + 480.787i) q^{25} +140.296i q^{27} +548.310 q^{29} +(354.232 + 204.516i) q^{31} +(-349.980 + 202.061i) q^{33} +(-64.5872 - 404.353i) q^{35} +(-135.232 - 234.229i) q^{37} +(-244.686 + 423.808i) q^{39} -3063.45i q^{41} +553.062 q^{43} +(-195.402 - 112.816i) q^{45} +(2037.62 - 1176.42i) q^{47} +(-1788.50 - 1601.90i) q^{49} +(280.577 + 485.974i) q^{51} +(2511.81 - 4350.58i) q^{53} -649.929i q^{55} -1519.83 q^{57} +(2913.62 + 1682.18i) q^{59} +(-2871.61 + 1657.92i) q^{61} +(-1306.44 + 208.677i) q^{63} +(-393.516 - 681.589i) q^{65} +(-299.491 + 518.734i) q^{67} +1315.65i q^{69} +5363.24 q^{71} +(-1241.26 - 716.640i) q^{73} +(-2498.24 + 1442.36i) q^{75} +(-2402.15 - 2958.47i) q^{77} +(5586.98 + 9676.93i) q^{79} +(-364.500 + 631.333i) q^{81} +1326.79i q^{83} -902.477 q^{85} +(2467.39 + 1424.55i) q^{87} +(-10705.2 + 6180.67i) q^{89} +(-4310.45 - 1648.14i) q^{91} +(1062.70 + 1840.64i) q^{93} +(1222.13 - 2116.79i) q^{95} +5319.78i q^{97} -2099.88 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} + 39 q^{5} - 70 q^{7} + 54 q^{9} + 3 q^{11} + 234 q^{15} + 510 q^{17} + 459 q^{19} - 315 q^{21} + 144 q^{23} - 227 q^{25} - 570 q^{29} + 2640 q^{31} + 27 q^{33} - 2478 q^{35} + 433 q^{37}+ \cdots + 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 2.59808i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) −7.23713 + 4.17836i −0.289485 + 0.167134i −0.637710 0.770277i \(-0.720118\pi\)
0.348225 + 0.937411i \(0.386785\pi\)
\(6\) 0 0
\(7\) −17.5000 + 45.7684i −0.357143 + 0.934050i
\(8\) 0 0
\(9\) 13.5000 + 23.3827i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −38.8866 + 67.3536i −0.321377 + 0.556641i −0.980772 0.195155i \(-0.937479\pi\)
0.659395 + 0.751796i \(0.270812\pi\)
\(12\) 0 0
\(13\) 94.1795i 0.557275i 0.960396 + 0.278638i \(0.0898829\pi\)
−0.960396 + 0.278638i \(0.910117\pi\)
\(14\) 0 0
\(15\) −43.4228 −0.192990
\(16\) 0 0
\(17\) 93.5257 + 53.9971i 0.323618 + 0.186841i 0.653004 0.757354i \(-0.273508\pi\)
−0.329386 + 0.944195i \(0.606842\pi\)
\(18\) 0 0
\(19\) −253.304 + 146.245i −0.701674 + 0.405112i −0.807971 0.589223i \(-0.799434\pi\)
0.106296 + 0.994334i \(0.466101\pi\)
\(20\) 0 0
\(21\) −197.660 + 160.492i −0.448208 + 0.363927i
\(22\) 0 0
\(23\) 126.598 + 219.274i 0.239316 + 0.414507i 0.960518 0.278217i \(-0.0897436\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(24\) 0 0
\(25\) −277.583 + 480.787i −0.444132 + 0.769260i
\(26\) 0 0
\(27\) 140.296i 0.192450i
\(28\) 0 0
\(29\) 548.310 0.651974 0.325987 0.945374i \(-0.394303\pi\)
0.325987 + 0.945374i \(0.394303\pi\)
\(30\) 0 0
\(31\) 354.232 + 204.516i 0.368607 + 0.212816i 0.672850 0.739779i \(-0.265070\pi\)
−0.304242 + 0.952595i \(0.598403\pi\)
\(32\) 0 0
\(33\) −349.980 + 202.061i −0.321377 + 0.185547i
\(34\) 0 0
\(35\) −64.5872 404.353i −0.0527242 0.330084i
\(36\) 0 0
\(37\) −135.232 234.229i −0.0987817 0.171095i 0.812399 0.583102i \(-0.198161\pi\)
−0.911181 + 0.412007i \(0.864828\pi\)
\(38\) 0 0
\(39\) −244.686 + 423.808i −0.160872 + 0.278638i
\(40\) 0 0
\(41\) 3063.45i 1.82239i −0.411970 0.911197i \(-0.635159\pi\)
0.411970 0.911197i \(-0.364841\pi\)
\(42\) 0 0
\(43\) 553.062 0.299114 0.149557 0.988753i \(-0.452215\pi\)
0.149557 + 0.988753i \(0.452215\pi\)
\(44\) 0 0
\(45\) −195.402 112.816i −0.0964950 0.0557114i
\(46\) 0 0
\(47\) 2037.62 1176.42i 0.922418 0.532558i 0.0380121 0.999277i \(-0.487897\pi\)
0.884406 + 0.466719i \(0.154564\pi\)
\(48\) 0 0
\(49\) −1788.50 1601.90i −0.744898 0.667178i
\(50\) 0 0
\(51\) 280.577 + 485.974i 0.107873 + 0.186841i
\(52\) 0 0
\(53\) 2511.81 4350.58i 0.894199 1.54880i 0.0594072 0.998234i \(-0.481079\pi\)
0.834792 0.550565i \(-0.185588\pi\)
\(54\) 0 0
\(55\) 649.929i 0.214853i
\(56\) 0 0
\(57\) −1519.83 −0.467783
\(58\) 0 0
\(59\) 2913.62 + 1682.18i 0.837007 + 0.483246i 0.856246 0.516569i \(-0.172791\pi\)
−0.0192386 + 0.999815i \(0.506124\pi\)
\(60\) 0 0
\(61\) −2871.61 + 1657.92i −0.771730 + 0.445559i −0.833491 0.552532i \(-0.813662\pi\)
0.0617613 + 0.998091i \(0.480328\pi\)
\(62\) 0 0
\(63\) −1306.44 + 208.677i −0.329161 + 0.0525767i
\(64\) 0 0
\(65\) −393.516 681.589i −0.0931398 0.161323i
\(66\) 0 0
\(67\) −299.491 + 518.734i −0.0667167 + 0.115557i −0.897454 0.441108i \(-0.854586\pi\)
0.830737 + 0.556664i \(0.187919\pi\)
\(68\) 0 0
\(69\) 1315.65i 0.276338i
\(70\) 0 0
\(71\) 5363.24 1.06392 0.531962 0.846768i \(-0.321455\pi\)
0.531962 + 0.846768i \(0.321455\pi\)
\(72\) 0 0
\(73\) −1241.26 716.640i −0.232925 0.134479i 0.378996 0.925398i \(-0.376269\pi\)
−0.611921 + 0.790919i \(0.709603\pi\)
\(74\) 0 0
\(75\) −2498.24 + 1442.36i −0.444132 + 0.256420i
\(76\) 0 0
\(77\) −2402.15 2958.47i −0.405153 0.498983i
\(78\) 0 0
\(79\) 5586.98 + 9676.93i 0.895205 + 1.55054i 0.833550 + 0.552443i \(0.186304\pi\)
0.0616549 + 0.998098i \(0.480362\pi\)
\(80\) 0 0
\(81\) −364.500 + 631.333i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 1326.79i 0.192595i 0.995353 + 0.0962977i \(0.0307001\pi\)
−0.995353 + 0.0962977i \(0.969300\pi\)
\(84\) 0 0
\(85\) −902.477 −0.124910
\(86\) 0 0
\(87\) 2467.39 + 1424.55i 0.325987 + 0.188209i
\(88\) 0 0
\(89\) −10705.2 + 6180.67i −1.35150 + 0.780289i −0.988460 0.151484i \(-0.951595\pi\)
−0.363041 + 0.931773i \(0.618262\pi\)
\(90\) 0 0
\(91\) −4310.45 1648.14i −0.520523 0.199027i
\(92\) 0 0
\(93\) 1062.70 + 1840.64i 0.122869 + 0.212816i
\(94\) 0 0
\(95\) 1222.13 2116.79i 0.135416 0.234548i
\(96\) 0 0
\(97\) 5319.78i 0.565393i 0.959209 + 0.282696i \(0.0912289\pi\)
−0.959209 + 0.282696i \(0.908771\pi\)
\(98\) 0 0
\(99\) −2099.88 −0.214251
\(100\) 0 0
\(101\) −3965.54 2289.51i −0.388740 0.224439i 0.292874 0.956151i \(-0.405388\pi\)
−0.681614 + 0.731712i \(0.738722\pi\)
\(102\) 0 0
\(103\) −6332.08 + 3655.83i −0.596859 + 0.344597i −0.767805 0.640684i \(-0.778651\pi\)
0.170946 + 0.985280i \(0.445318\pi\)
\(104\) 0 0
\(105\) 759.898 1987.39i 0.0689250 0.180262i
\(106\) 0 0
\(107\) 9698.96 + 16799.1i 0.847145 + 1.46730i 0.883746 + 0.467968i \(0.155014\pi\)
−0.0366010 + 0.999330i \(0.511653\pi\)
\(108\) 0 0
\(109\) 6465.30 11198.2i 0.544172 0.942533i −0.454487 0.890753i \(-0.650177\pi\)
0.998659 0.0517795i \(-0.0164893\pi\)
\(110\) 0 0
\(111\) 1405.37i 0.114063i
\(112\) 0 0
\(113\) 5153.13 0.403566 0.201783 0.979430i \(-0.435326\pi\)
0.201783 + 0.979430i \(0.435326\pi\)
\(114\) 0 0
\(115\) −1832.41 1057.94i −0.138557 0.0799957i
\(116\) 0 0
\(117\) −2202.17 + 1271.42i −0.160872 + 0.0928792i
\(118\) 0 0
\(119\) −4108.06 + 3335.58i −0.290097 + 0.235547i
\(120\) 0 0
\(121\) 4296.16 + 7441.17i 0.293434 + 0.508242i
\(122\) 0 0
\(123\) 7959.07 13785.5i 0.526080 0.911197i
\(124\) 0 0
\(125\) 9862.31i 0.631188i
\(126\) 0 0
\(127\) 10320.4 0.639865 0.319932 0.947440i \(-0.396340\pi\)
0.319932 + 0.947440i \(0.396340\pi\)
\(128\) 0 0
\(129\) 2488.78 + 1436.90i 0.149557 + 0.0863469i
\(130\) 0 0
\(131\) −27221.9 + 15716.6i −1.58627 + 0.915832i −0.592354 + 0.805678i \(0.701801\pi\)
−0.993915 + 0.110154i \(0.964866\pi\)
\(132\) 0 0
\(133\) −2260.60 14152.6i −0.127797 0.800082i
\(134\) 0 0
\(135\) −586.207 1015.34i −0.0321650 0.0557114i
\(136\) 0 0
\(137\) 6927.98 11999.6i 0.369118 0.639332i −0.620310 0.784357i \(-0.712993\pi\)
0.989428 + 0.145025i \(0.0463264\pi\)
\(138\) 0 0
\(139\) 24750.2i 1.28100i −0.767959 0.640499i \(-0.778727\pi\)
0.767959 0.640499i \(-0.221273\pi\)
\(140\) 0 0
\(141\) 12225.7 0.614945
\(142\) 0 0
\(143\) −6343.33 3662.33i −0.310203 0.179096i
\(144\) 0 0
\(145\) −3968.19 + 2291.03i −0.188737 + 0.108967i
\(146\) 0 0
\(147\) −3886.40 11855.2i −0.179851 0.548623i
\(148\) 0 0
\(149\) −85.4878 148.069i −0.00385063 0.00666949i 0.864094 0.503331i \(-0.167892\pi\)
−0.867944 + 0.496662i \(0.834559\pi\)
\(150\) 0 0
\(151\) 18574.4 32171.7i 0.814629 1.41098i −0.0949648 0.995481i \(-0.530274\pi\)
0.909594 0.415498i \(-0.136393\pi\)
\(152\) 0 0
\(153\) 2915.84i 0.124561i
\(154\) 0 0
\(155\) −3418.16 −0.142275
\(156\) 0 0
\(157\) 13150.6 + 7592.49i 0.533514 + 0.308024i 0.742446 0.669906i \(-0.233665\pi\)
−0.208932 + 0.977930i \(0.566999\pi\)
\(158\) 0 0
\(159\) 22606.3 13051.7i 0.894199 0.516266i
\(160\) 0 0
\(161\) −12251.3 + 1956.90i −0.472640 + 0.0754946i
\(162\) 0 0
\(163\) 1890.00 + 3273.58i 0.0711357 + 0.123211i 0.899399 0.437128i \(-0.144004\pi\)
−0.828264 + 0.560339i \(0.810671\pi\)
\(164\) 0 0
\(165\) 1688.57 2924.68i 0.0620226 0.107426i
\(166\) 0 0
\(167\) 10590.5i 0.379739i −0.981809 0.189869i \(-0.939194\pi\)
0.981809 0.189869i \(-0.0608064\pi\)
\(168\) 0 0
\(169\) 19691.2 0.689444
\(170\) 0 0
\(171\) −6839.22 3948.63i −0.233891 0.135037i
\(172\) 0 0
\(173\) −34763.8 + 20070.9i −1.16154 + 0.670616i −0.951673 0.307114i \(-0.900637\pi\)
−0.209868 + 0.977730i \(0.567303\pi\)
\(174\) 0 0
\(175\) −17147.2 21118.3i −0.559908 0.689577i
\(176\) 0 0
\(177\) 8740.87 + 15139.6i 0.279002 + 0.483246i
\(178\) 0 0
\(179\) −18788.4 + 32542.4i −0.586385 + 1.01565i 0.408317 + 0.912840i \(0.366116\pi\)
−0.994701 + 0.102808i \(0.967217\pi\)
\(180\) 0 0
\(181\) 39852.1i 1.21645i 0.793765 + 0.608224i \(0.208118\pi\)
−0.793765 + 0.608224i \(0.791882\pi\)
\(182\) 0 0
\(183\) −17229.6 −0.514487
\(184\) 0 0
\(185\) 1957.38 + 1130.10i 0.0571917 + 0.0330196i
\(186\) 0 0
\(187\) −7273.80 + 4199.53i −0.208007 + 0.120093i
\(188\) 0 0
\(189\) −6421.13 2455.18i −0.179758 0.0687322i
\(190\) 0 0
\(191\) 22747.5 + 39399.8i 0.623544 + 1.08001i 0.988821 + 0.149111i \(0.0476411\pi\)
−0.365277 + 0.930899i \(0.619026\pi\)
\(192\) 0 0
\(193\) −6045.20 + 10470.6i −0.162292 + 0.281097i −0.935690 0.352823i \(-0.885222\pi\)
0.773399 + 0.633920i \(0.218555\pi\)
\(194\) 0 0
\(195\) 4089.54i 0.107549i
\(196\) 0 0
\(197\) 43371.5 1.11756 0.558782 0.829315i \(-0.311269\pi\)
0.558782 + 0.829315i \(0.311269\pi\)
\(198\) 0 0
\(199\) 19667.6 + 11355.1i 0.496645 + 0.286738i 0.727327 0.686291i \(-0.240762\pi\)
−0.230682 + 0.973029i \(0.574096\pi\)
\(200\) 0 0
\(201\) −2695.42 + 1556.20i −0.0667167 + 0.0385189i
\(202\) 0 0
\(203\) −9595.42 + 25095.3i −0.232848 + 0.608976i
\(204\) 0 0
\(205\) 12800.2 + 22170.5i 0.304585 + 0.527556i
\(206\) 0 0
\(207\) −3418.15 + 5920.40i −0.0797719 + 0.138169i
\(208\) 0 0
\(209\) 22748.0i 0.520775i
\(210\) 0 0
\(211\) −75885.9 −1.70450 −0.852249 0.523137i \(-0.824762\pi\)
−0.852249 + 0.523137i \(0.824762\pi\)
\(212\) 0 0
\(213\) 24134.6 + 13934.1i 0.531962 + 0.307128i
\(214\) 0 0
\(215\) −4002.58 + 2310.89i −0.0865891 + 0.0499923i
\(216\) 0 0
\(217\) −15559.4 + 12633.6i −0.330426 + 0.268292i
\(218\) 0 0
\(219\) −3723.77 6449.76i −0.0776416 0.134479i
\(220\) 0 0
\(221\) −5085.42 + 8808.21i −0.104122 + 0.180345i
\(222\) 0 0
\(223\) 18276.7i 0.367526i −0.982971 0.183763i \(-0.941172\pi\)
0.982971 0.183763i \(-0.0588279\pi\)
\(224\) 0 0
\(225\) −14989.5 −0.296088
\(226\) 0 0
\(227\) −10304.8 5949.48i −0.199981 0.115459i 0.396666 0.917963i \(-0.370167\pi\)
−0.596646 + 0.802504i \(0.703500\pi\)
\(228\) 0 0
\(229\) −254.071 + 146.688i −0.00484488 + 0.00279720i −0.502420 0.864623i \(-0.667557\pi\)
0.497576 + 0.867421i \(0.334224\pi\)
\(230\) 0 0
\(231\) −3123.37 19554.1i −0.0585327 0.366449i
\(232\) 0 0
\(233\) −35754.6 61928.8i −0.658598 1.14073i −0.980979 0.194115i \(-0.937816\pi\)
0.322381 0.946610i \(-0.395517\pi\)
\(234\) 0 0
\(235\) −9831.01 + 17027.8i −0.178017 + 0.308335i
\(236\) 0 0
\(237\) 58061.6i 1.03369i
\(238\) 0 0
\(239\) 62869.3 1.10063 0.550316 0.834956i \(-0.314507\pi\)
0.550316 + 0.834956i \(0.314507\pi\)
\(240\) 0 0
\(241\) 52680.1 + 30414.9i 0.907011 + 0.523663i 0.879468 0.475958i \(-0.157899\pi\)
0.0275425 + 0.999621i \(0.491232\pi\)
\(242\) 0 0
\(243\) −3280.50 + 1894.00i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 19636.9 + 4120.13i 0.327145 + 0.0686402i
\(246\) 0 0
\(247\) −13773.3 23856.1i −0.225759 0.391026i
\(248\) 0 0
\(249\) −3447.10 + 5970.56i −0.0555975 + 0.0962977i
\(250\) 0 0
\(251\) 71630.1i 1.13697i −0.822695 0.568484i \(-0.807530\pi\)
0.822695 0.568484i \(-0.192470\pi\)
\(252\) 0 0
\(253\) −19691.9 −0.307642
\(254\) 0 0
\(255\) −4061.15 2344.70i −0.0624552 0.0360585i
\(256\) 0 0
\(257\) 50347.3 29068.0i 0.762271 0.440098i −0.0678393 0.997696i \(-0.521611\pi\)
0.830111 + 0.557599i \(0.188277\pi\)
\(258\) 0 0
\(259\) 13086.9 2090.36i 0.195090 0.0311617i
\(260\) 0 0
\(261\) 7402.18 + 12821.0i 0.108662 + 0.188209i
\(262\) 0 0
\(263\) 15899.6 27539.0i 0.229866 0.398140i −0.727902 0.685681i \(-0.759504\pi\)
0.957768 + 0.287541i \(0.0928377\pi\)
\(264\) 0 0
\(265\) 41980.9i 0.597806i
\(266\) 0 0
\(267\) −64231.4 −0.901001
\(268\) 0 0
\(269\) −47568.2 27463.5i −0.657374 0.379535i 0.133902 0.990995i \(-0.457249\pi\)
−0.791276 + 0.611460i \(0.790583\pi\)
\(270\) 0 0
\(271\) 79439.7 45864.6i 1.08168 0.624509i 0.150332 0.988636i \(-0.451966\pi\)
0.931349 + 0.364127i \(0.118633\pi\)
\(272\) 0 0
\(273\) −15115.0 18615.5i −0.202807 0.249776i
\(274\) 0 0
\(275\) −21588.5 37392.4i −0.285468 0.494445i
\(276\) 0 0
\(277\) −3667.78 + 6352.78i −0.0478018 + 0.0827951i −0.888936 0.458031i \(-0.848555\pi\)
0.841135 + 0.540826i \(0.181888\pi\)
\(278\) 0 0
\(279\) 11043.9i 0.141877i
\(280\) 0 0
\(281\) 133185. 1.68671 0.843356 0.537355i \(-0.180576\pi\)
0.843356 + 0.537355i \(0.180576\pi\)
\(282\) 0 0
\(283\) −108302. 62528.0i −1.35227 0.780731i −0.363700 0.931516i \(-0.618487\pi\)
−0.988567 + 0.150785i \(0.951820\pi\)
\(284\) 0 0
\(285\) 10999.2 6350.38i 0.135416 0.0781826i
\(286\) 0 0
\(287\) 140209. + 53610.3i 1.70221 + 0.650855i
\(288\) 0 0
\(289\) −35929.1 62231.1i −0.430181 0.745095i
\(290\) 0 0
\(291\) −13821.2 + 23939.0i −0.163215 + 0.282696i
\(292\) 0 0
\(293\) 137393.i 1.60040i −0.599730 0.800202i \(-0.704725\pi\)
0.599730 0.800202i \(-0.295275\pi\)
\(294\) 0 0
\(295\) −28115.0 −0.323068
\(296\) 0 0
\(297\) −9449.45 5455.64i −0.107126 0.0618491i
\(298\) 0 0
\(299\) −20651.1 + 11922.9i −0.230995 + 0.133365i
\(300\) 0 0
\(301\) −9678.59 + 25312.8i −0.106827 + 0.279388i
\(302\) 0 0
\(303\) −11896.6 20605.5i −0.129580 0.224439i
\(304\) 0 0
\(305\) 13854.8 23997.2i 0.148936 0.257965i
\(306\) 0 0
\(307\) 59400.1i 0.630247i 0.949051 + 0.315123i \(0.102046\pi\)
−0.949051 + 0.315123i \(0.897954\pi\)
\(308\) 0 0
\(309\) −37992.5 −0.397906
\(310\) 0 0
\(311\) 39127.7 + 22590.4i 0.404542 + 0.233562i 0.688442 0.725291i \(-0.258295\pi\)
−0.283900 + 0.958854i \(0.591628\pi\)
\(312\) 0 0
\(313\) 92305.3 53292.5i 0.942189 0.543973i 0.0515431 0.998671i \(-0.483586\pi\)
0.890646 + 0.454698i \(0.150253\pi\)
\(314\) 0 0
\(315\) 8582.94 6968.99i 0.0864998 0.0702342i
\(316\) 0 0
\(317\) −76611.8 132696.i −0.762390 1.32050i −0.941615 0.336691i \(-0.890692\pi\)
0.179225 0.983808i \(-0.442641\pi\)
\(318\) 0 0
\(319\) −21321.9 + 36930.7i −0.209529 + 0.362916i
\(320\) 0 0
\(321\) 100795.i 0.978198i
\(322\) 0 0
\(323\) −31587.3 −0.302766
\(324\) 0 0
\(325\) −45280.3 26142.6i −0.428689 0.247504i
\(326\) 0 0
\(327\) 58187.7 33594.7i 0.544172 0.314178i
\(328\) 0 0
\(329\) 18184.6 + 113846.i 0.168001 + 1.05178i
\(330\) 0 0
\(331\) 56180.6 + 97307.7i 0.512779 + 0.888160i 0.999890 + 0.0148198i \(0.00471745\pi\)
−0.487111 + 0.873340i \(0.661949\pi\)
\(332\) 0 0
\(333\) 3651.27 6324.18i 0.0329272 0.0570316i
\(334\) 0 0
\(335\) 5005.53i 0.0446026i
\(336\) 0 0
\(337\) −141074. −1.24219 −0.621093 0.783737i \(-0.713311\pi\)
−0.621093 + 0.783737i \(0.713311\pi\)
\(338\) 0 0
\(339\) 23189.1 + 13388.2i 0.201783 + 0.116499i
\(340\) 0 0
\(341\) −27549.8 + 15905.9i −0.236924 + 0.136788i
\(342\) 0 0
\(343\) 104615. 53823.7i 0.889213 0.457494i
\(344\) 0 0
\(345\) −5497.24 9521.49i −0.0461856 0.0799957i
\(346\) 0 0
\(347\) −100247. + 173633.i −0.832557 + 1.44203i 0.0634473 + 0.997985i \(0.479791\pi\)
−0.896004 + 0.444046i \(0.853543\pi\)
\(348\) 0 0
\(349\) 209647.i 1.72122i 0.509263 + 0.860611i \(0.329918\pi\)
−0.509263 + 0.860611i \(0.670082\pi\)
\(350\) 0 0
\(351\) −13213.0 −0.107248
\(352\) 0 0
\(353\) −138290. 79841.9i −1.10979 0.640739i −0.171017 0.985268i \(-0.554705\pi\)
−0.938776 + 0.344529i \(0.888039\pi\)
\(354\) 0 0
\(355\) −38814.4 + 22409.5i −0.307990 + 0.177818i
\(356\) 0 0
\(357\) −27152.4 + 4337.04i −0.213045 + 0.0340296i
\(358\) 0 0
\(359\) 35094.0 + 60784.5i 0.272297 + 0.471633i 0.969450 0.245290i \(-0.0788832\pi\)
−0.697152 + 0.716923i \(0.745550\pi\)
\(360\) 0 0
\(361\) −22385.1 + 38772.1i −0.171769 + 0.297512i
\(362\) 0 0
\(363\) 44647.0i 0.338828i
\(364\) 0 0
\(365\) 11977.5 0.0899044
\(366\) 0 0
\(367\) 205812. + 118826.i 1.52806 + 0.882223i 0.999443 + 0.0333603i \(0.0106209\pi\)
0.528613 + 0.848863i \(0.322712\pi\)
\(368\) 0 0
\(369\) 71631.6 41356.5i 0.526080 0.303732i
\(370\) 0 0
\(371\) 155162. + 191097.i 1.12730 + 1.38837i
\(372\) 0 0
\(373\) −122554. 212269.i −0.880863 1.52570i −0.850383 0.526165i \(-0.823630\pi\)
−0.0304807 0.999535i \(-0.509704\pi\)
\(374\) 0 0
\(375\) 25623.0 44380.4i 0.182208 0.315594i
\(376\) 0 0
\(377\) 51639.6i 0.363329i
\(378\) 0 0
\(379\) −95402.6 −0.664174 −0.332087 0.943249i \(-0.607753\pi\)
−0.332087 + 0.943249i \(0.607753\pi\)
\(380\) 0 0
\(381\) 46441.7 + 26813.1i 0.319932 + 0.184713i
\(382\) 0 0
\(383\) −57753.3 + 33343.9i −0.393712 + 0.227310i −0.683767 0.729700i \(-0.739660\pi\)
0.290055 + 0.957010i \(0.406326\pi\)
\(384\) 0 0
\(385\) 29746.2 + 11373.8i 0.200683 + 0.0767331i
\(386\) 0 0
\(387\) 7466.34 + 12932.1i 0.0498524 + 0.0863469i
\(388\) 0 0
\(389\) −77439.5 + 134129.i −0.511757 + 0.886389i 0.488150 + 0.872760i \(0.337672\pi\)
−0.999907 + 0.0136291i \(0.995662\pi\)
\(390\) 0 0
\(391\) 27343.7i 0.178856i
\(392\) 0 0
\(393\) −163332. −1.05751
\(394\) 0 0
\(395\) −80867.3 46688.8i −0.518297 0.299239i
\(396\) 0 0
\(397\) 174546. 100774.i 1.10746 0.639392i 0.169290 0.985566i \(-0.445853\pi\)
0.938170 + 0.346174i \(0.112519\pi\)
\(398\) 0 0
\(399\) 26597.0 69560.1i 0.167065 0.436932i
\(400\) 0 0
\(401\) −16945.5 29350.5i −0.105382 0.182527i 0.808512 0.588479i \(-0.200273\pi\)
−0.913894 + 0.405952i \(0.866940\pi\)
\(402\) 0 0
\(403\) −19261.2 + 33361.4i −0.118597 + 0.205416i
\(404\) 0 0
\(405\) 6092.05i 0.0371410i
\(406\) 0 0
\(407\) 21034.9 0.126985
\(408\) 0 0
\(409\) −201013. 116055.i −1.20165 0.693771i −0.240725 0.970593i \(-0.577385\pi\)
−0.960921 + 0.276822i \(0.910719\pi\)
\(410\) 0 0
\(411\) 62351.8 35998.9i 0.369118 0.213111i
\(412\) 0 0
\(413\) −127979. + 103914.i −0.750307 + 0.609218i
\(414\) 0 0
\(415\) −5543.80 9602.15i −0.0321893 0.0557535i
\(416\) 0 0
\(417\) 64302.8 111376.i 0.369792 0.640499i
\(418\) 0 0
\(419\) 162717.i 0.926838i −0.886139 0.463419i \(-0.846622\pi\)
0.886139 0.463419i \(-0.153378\pi\)
\(420\) 0 0
\(421\) 244086. 1.37714 0.688570 0.725170i \(-0.258239\pi\)
0.688570 + 0.725170i \(0.258239\pi\)
\(422\) 0 0
\(423\) 55015.8 + 31763.4i 0.307473 + 0.177519i
\(424\) 0 0
\(425\) −51922.2 + 29977.3i −0.287459 + 0.165964i
\(426\) 0 0
\(427\) −25627.4 160443.i −0.140556 0.879962i
\(428\) 0 0
\(429\) −19030.0 32960.9i −0.103401 0.179096i
\(430\) 0 0
\(431\) −57761.7 + 100046.i −0.310946 + 0.538575i −0.978567 0.205926i \(-0.933979\pi\)
0.667621 + 0.744501i \(0.267313\pi\)
\(432\) 0 0
\(433\) 54296.2i 0.289597i −0.989461 0.144798i \(-0.953747\pi\)
0.989461 0.144798i \(-0.0462534\pi\)
\(434\) 0 0
\(435\) −23809.1 −0.125824
\(436\) 0 0
\(437\) −64135.7 37028.7i −0.335843 0.193899i
\(438\) 0 0
\(439\) 279367. 161293.i 1.44959 0.836923i 0.451136 0.892455i \(-0.351019\pi\)
0.998457 + 0.0555326i \(0.0176857\pi\)
\(440\) 0 0
\(441\) 13311.9 63445.5i 0.0684482 0.326230i
\(442\) 0 0
\(443\) −105739. 183146.i −0.538802 0.933232i −0.998969 0.0453997i \(-0.985544\pi\)
0.460167 0.887832i \(-0.347789\pi\)
\(444\) 0 0
\(445\) 51650.1 89460.6i 0.260826 0.451764i
\(446\) 0 0
\(447\) 888.416i 0.00444632i
\(448\) 0 0
\(449\) 223169. 1.10699 0.553493 0.832854i \(-0.313295\pi\)
0.553493 + 0.832854i \(0.313295\pi\)
\(450\) 0 0
\(451\) 206334. + 119127.i 1.01442 + 0.585676i
\(452\) 0 0
\(453\) 167169. 96515.2i 0.814629 0.470326i
\(454\) 0 0
\(455\) 38081.8 6082.79i 0.183948 0.0293819i
\(456\) 0 0
\(457\) 93.6414 + 162.192i 0.000448369 + 0.000776598i 0.866250 0.499612i \(-0.166524\pi\)
−0.865801 + 0.500388i \(0.833191\pi\)
\(458\) 0 0
\(459\) −7575.59 + 13121.3i −0.0359576 + 0.0622804i
\(460\) 0 0
\(461\) 8842.64i 0.0416083i 0.999784 + 0.0208042i \(0.00662265\pi\)
−0.999784 + 0.0208042i \(0.993377\pi\)
\(462\) 0 0
\(463\) −363326. −1.69486 −0.847431 0.530906i \(-0.821852\pi\)
−0.847431 + 0.530906i \(0.821852\pi\)
\(464\) 0 0
\(465\) −15381.7 8880.64i −0.0711376 0.0410713i
\(466\) 0 0
\(467\) −211698. + 122224.i −0.970698 + 0.560433i −0.899449 0.437026i \(-0.856032\pi\)
−0.0712488 + 0.997459i \(0.522698\pi\)
\(468\) 0 0
\(469\) −18500.6 22785.1i −0.0841084 0.103587i
\(470\) 0 0
\(471\) 39451.8 + 68332.4i 0.177838 + 0.308024i
\(472\) 0 0
\(473\) −21506.7 + 37250.8i −0.0961285 + 0.166499i
\(474\) 0 0
\(475\) 162381.i 0.719693i
\(476\) 0 0
\(477\) 135638. 0.596133
\(478\) 0 0
\(479\) −30752.3 17754.8i −0.134031 0.0773829i 0.431485 0.902120i \(-0.357990\pi\)
−0.565516 + 0.824737i \(0.691323\pi\)
\(480\) 0 0
\(481\) 22059.6 12736.1i 0.0953470 0.0550486i
\(482\) 0 0
\(483\) −60215.0 23023.8i −0.258113 0.0986921i
\(484\) 0 0
\(485\) −22227.9 38499.9i −0.0944965 0.163673i
\(486\) 0 0
\(487\) −27074.8 + 46894.9i −0.114158 + 0.197728i −0.917443 0.397867i \(-0.869750\pi\)
0.803285 + 0.595595i \(0.203084\pi\)
\(488\) 0 0
\(489\) 19641.5i 0.0821404i
\(490\) 0 0
\(491\) 92603.2 0.384117 0.192058 0.981384i \(-0.438484\pi\)
0.192058 + 0.981384i \(0.438484\pi\)
\(492\) 0 0
\(493\) 51281.1 + 29607.1i 0.210991 + 0.121816i
\(494\) 0 0
\(495\) 15197.1 8774.04i 0.0620226 0.0358088i
\(496\) 0 0
\(497\) −93856.7 + 245467.i −0.379973 + 0.993757i
\(498\) 0 0
\(499\) −3480.87 6029.05i −0.0139794 0.0242130i 0.858951 0.512058i \(-0.171117\pi\)
−0.872930 + 0.487845i \(0.837783\pi\)
\(500\) 0 0
\(501\) 27515.0 47657.4i 0.109621 0.189869i
\(502\) 0 0
\(503\) 466372.i 1.84330i −0.388021 0.921650i \(-0.626841\pi\)
0.388021 0.921650i \(-0.373159\pi\)
\(504\) 0 0
\(505\) 38265.5 0.150046
\(506\) 0 0
\(507\) 88610.5 + 51159.3i 0.344722 + 0.199025i
\(508\) 0 0
\(509\) −174228. + 100590.i −0.672483 + 0.388259i −0.797017 0.603957i \(-0.793590\pi\)
0.124533 + 0.992215i \(0.460257\pi\)
\(510\) 0 0
\(511\) 54521.5 44269.2i 0.208798 0.169535i
\(512\) 0 0
\(513\) −20517.7 35537.6i −0.0779638 0.135037i
\(514\) 0 0
\(515\) 30550.7 52915.4i 0.115188 0.199511i
\(516\) 0 0
\(517\) 182988.i 0.684608i
\(518\) 0 0
\(519\) −208583. −0.774361
\(520\) 0 0
\(521\) 300077. + 173249.i 1.10549 + 0.638258i 0.937659 0.347557i \(-0.112989\pi\)
0.167836 + 0.985815i \(0.446322\pi\)
\(522\) 0 0
\(523\) −252492. + 145776.i −0.923090 + 0.532946i −0.884620 0.466313i \(-0.845582\pi\)
−0.0384707 + 0.999260i \(0.512249\pi\)
\(524\) 0 0
\(525\) −22295.4 139582.i −0.0808903 0.506420i
\(526\) 0 0
\(527\) 22086.5 + 38255.0i 0.0795254 + 0.137742i
\(528\) 0 0
\(529\) 107866. 186830.i 0.385456 0.667629i
\(530\) 0 0
\(531\) 90837.7i 0.322164i
\(532\) 0 0
\(533\) 288514. 1.01558
\(534\) 0 0
\(535\) −140385. 81051.4i −0.490471 0.283174i
\(536\) 0 0
\(537\) −169095. + 97627.1i −0.586385 + 0.338549i
\(538\) 0 0
\(539\) 177442. 58169.6i 0.610772 0.200225i
\(540\) 0 0
\(541\) 193007. + 334298.i 0.659445 + 1.14219i 0.980759 + 0.195220i \(0.0625422\pi\)
−0.321314 + 0.946973i \(0.604125\pi\)
\(542\) 0 0
\(543\) −103539. + 179334.i −0.351158 + 0.608224i
\(544\) 0 0
\(545\) 108057.i 0.363799i
\(546\) 0 0
\(547\) 122247. 0.408566 0.204283 0.978912i \(-0.434514\pi\)
0.204283 + 0.978912i \(0.434514\pi\)
\(548\) 0 0
\(549\) −77533.4 44763.9i −0.257243 0.148520i
\(550\) 0 0
\(551\) −138889. + 80187.8i −0.457473 + 0.264122i
\(552\) 0 0
\(553\) −540670. + 86361.0i −1.76800 + 0.282402i
\(554\) 0 0
\(555\) 5872.15 + 10170.9i 0.0190639 + 0.0330196i
\(556\) 0 0
\(557\) −53061.4 + 91905.1i −0.171029 + 0.296230i −0.938780 0.344518i \(-0.888042\pi\)
0.767751 + 0.640748i \(0.221376\pi\)
\(558\) 0 0
\(559\) 52087.2i 0.166689i
\(560\) 0 0
\(561\) −43642.8 −0.138671
\(562\) 0 0
\(563\) −254823. 147122.i −0.803935 0.464152i 0.0409102 0.999163i \(-0.486974\pi\)
−0.844845 + 0.535011i \(0.820308\pi\)
\(564\) 0 0
\(565\) −37293.9 + 21531.6i −0.116826 + 0.0674497i
\(566\) 0 0
\(567\) −22516.4 27730.9i −0.0700377 0.0862577i
\(568\) 0 0
\(569\) 237514. + 411386.i 0.733609 + 1.27065i 0.955331 + 0.295538i \(0.0954988\pi\)
−0.221722 + 0.975110i \(0.571168\pi\)
\(570\) 0 0
\(571\) −92589.2 + 160369.i −0.283980 + 0.491868i −0.972361 0.233481i \(-0.924988\pi\)
0.688381 + 0.725349i \(0.258322\pi\)
\(572\) 0 0
\(573\) 236399.i 0.720006i
\(574\) 0 0
\(575\) −140566. −0.425151
\(576\) 0 0
\(577\) 139857. + 80746.6i 0.420081 + 0.242534i 0.695112 0.718901i \(-0.255355\pi\)
−0.275031 + 0.961435i \(0.588688\pi\)
\(578\) 0 0
\(579\) −54406.8 + 31411.8i −0.162292 + 0.0936992i
\(580\) 0 0
\(581\) −60725.1 23218.8i −0.179894 0.0687841i
\(582\) 0 0
\(583\) 195351. + 338358.i 0.574750 + 0.995497i
\(584\) 0 0
\(585\) 10624.9 18402.9i 0.0310466 0.0537743i
\(586\) 0 0
\(587\) 333168.i 0.966911i −0.875369 0.483456i \(-0.839381\pi\)
0.875369 0.483456i \(-0.160619\pi\)
\(588\) 0 0
\(589\) −119638. −0.344856
\(590\) 0 0
\(591\) 195172. + 112683.i 0.558782 + 0.322613i
\(592\) 0 0
\(593\) 97432.1 56252.5i 0.277072 0.159968i −0.355025 0.934857i \(-0.615528\pi\)
0.632097 + 0.774889i \(0.282194\pi\)
\(594\) 0 0
\(595\) 15793.3 41305.0i 0.0446108 0.116672i
\(596\) 0 0
\(597\) 59002.9 + 102196.i 0.165548 + 0.286738i
\(598\) 0 0
\(599\) 202632. 350970.i 0.564749 0.978174i −0.432324 0.901718i \(-0.642306\pi\)
0.997073 0.0764554i \(-0.0243603\pi\)
\(600\) 0 0
\(601\) 372831.i 1.03220i 0.856529 + 0.516098i \(0.172616\pi\)
−0.856529 + 0.516098i \(0.827384\pi\)
\(602\) 0 0
\(603\) −16172.5 −0.0444778
\(604\) 0 0
\(605\) −62183.7 35901.8i −0.169889 0.0980856i
\(606\) 0 0
\(607\) −472368. + 272722.i −1.28204 + 0.740188i −0.977222 0.212221i \(-0.931930\pi\)
−0.304822 + 0.952409i \(0.598597\pi\)
\(608\) 0 0
\(609\) −108379. + 87999.1i −0.292220 + 0.237271i
\(610\) 0 0
\(611\) 110795. + 191902.i 0.296782 + 0.514041i
\(612\) 0 0
\(613\) 219300. 379838.i 0.583602 1.01083i −0.411446 0.911434i \(-0.634976\pi\)
0.995048 0.0993946i \(-0.0316906\pi\)
\(614\) 0 0
\(615\) 133023.i 0.351704i
\(616\) 0 0
\(617\) 663957. 1.74409 0.872046 0.489423i \(-0.162793\pi\)
0.872046 + 0.489423i \(0.162793\pi\)
\(618\) 0 0
\(619\) 237343. + 137030.i 0.619434 + 0.357630i 0.776649 0.629934i \(-0.216918\pi\)
−0.157215 + 0.987564i \(0.550251\pi\)
\(620\) 0 0
\(621\) −30763.3 + 17761.2i −0.0797719 + 0.0460563i
\(622\) 0 0
\(623\) −95538.1 598124.i −0.246150 1.54104i
\(624\) 0 0
\(625\) −132281. 229117.i −0.338639 0.586540i
\(626\) 0 0
\(627\) 59100.9 102366.i 0.150335 0.260387i
\(628\) 0 0
\(629\) 29208.6i 0.0738260i
\(630\) 0 0
\(631\) −217088. −0.545227 −0.272614 0.962124i \(-0.587888\pi\)
−0.272614 + 0.962124i \(0.587888\pi\)
\(632\) 0 0
\(633\) −341487. 197157.i −0.852249 0.492046i
\(634\) 0 0
\(635\) −74689.9 + 43122.2i −0.185231 + 0.106943i
\(636\) 0 0
\(637\) 150866. 168440.i 0.371802 0.415113i
\(638\) 0 0
\(639\) 72403.7 + 125407.i 0.177321 + 0.307128i
\(640\) 0 0
\(641\) 261433. 452815.i 0.636274 1.10206i −0.349969 0.936761i \(-0.613808\pi\)
0.986244 0.165298i \(-0.0528587\pi\)
\(642\) 0 0
\(643\) 447328.i 1.08194i −0.841041 0.540971i \(-0.818057\pi\)
0.841041 0.540971i \(-0.181943\pi\)
\(644\) 0 0
\(645\) −24015.5 −0.0577261
\(646\) 0 0
\(647\) −168608. 97346.0i −0.402782 0.232546i 0.284901 0.958557i \(-0.408039\pi\)
−0.687684 + 0.726010i \(0.741372\pi\)
\(648\) 0 0
\(649\) −226602. + 130829.i −0.537990 + 0.310609i
\(650\) 0 0
\(651\) −102840. + 16426.7i −0.242662 + 0.0387603i
\(652\) 0 0
\(653\) −92320.8 159904.i −0.216508 0.375002i 0.737230 0.675642i \(-0.236133\pi\)
−0.953738 + 0.300639i \(0.902800\pi\)
\(654\) 0 0
\(655\) 131339. 227486.i 0.306134 0.530240i
\(656\) 0 0
\(657\) 38698.6i 0.0896528i
\(658\) 0 0
\(659\) 269400. 0.620336 0.310168 0.950682i \(-0.399615\pi\)
0.310168 + 0.950682i \(0.399615\pi\)
\(660\) 0 0
\(661\) −273711. 158027.i −0.626453 0.361683i 0.152924 0.988238i \(-0.451131\pi\)
−0.779377 + 0.626555i \(0.784464\pi\)
\(662\) 0 0
\(663\) −45768.8 + 26424.6i −0.104122 + 0.0601149i
\(664\) 0 0
\(665\) 75495.0 + 92978.9i 0.170716 + 0.210252i
\(666\) 0 0
\(667\) 69414.9 + 120230.i 0.156028 + 0.270248i
\(668\) 0 0
\(669\) 47484.3 82245.2i 0.106096 0.183763i
\(670\) 0 0
\(671\) 257884.i 0.572769i
\(672\) 0 0
\(673\) 85940.2 0.189743 0.0948716 0.995490i \(-0.469756\pi\)
0.0948716 + 0.995490i \(0.469756\pi\)
\(674\) 0 0
\(675\) −67452.6 38943.8i −0.148044 0.0854733i
\(676\) 0 0
\(677\) −43495.9 + 25112.3i −0.0949010 + 0.0547911i −0.546699 0.837329i \(-0.684116\pi\)
0.451798 + 0.892120i \(0.350783\pi\)
\(678\) 0 0
\(679\) −243478. 93096.1i −0.528105 0.201926i
\(680\) 0 0
\(681\) −30914.4 53545.3i −0.0666602 0.115459i
\(682\) 0 0
\(683\) 373719. 647301.i 0.801132 1.38760i −0.117739 0.993045i \(-0.537565\pi\)
0.918871 0.394557i \(-0.129102\pi\)
\(684\) 0 0
\(685\) 115790.i 0.246769i
\(686\) 0 0
\(687\) −1524.42 −0.00322992
\(688\) 0 0
\(689\) 409735. + 236561.i 0.863108 + 0.498315i
\(690\) 0 0
\(691\) 151644. 87551.7i 0.317592 0.183362i −0.332727 0.943023i \(-0.607969\pi\)
0.650319 + 0.759662i \(0.274635\pi\)
\(692\) 0 0
\(693\) 36747.9 96108.1i 0.0765184 0.200121i
\(694\) 0 0
\(695\) 103415. + 179120.i 0.214099 + 0.370830i
\(696\) 0 0
\(697\) 165417. 286511.i 0.340498 0.589761i
\(698\) 0 0
\(699\) 371573.i 0.760483i
\(700\) 0 0
\(701\) −91696.3 −0.186602 −0.0933009 0.995638i \(-0.529742\pi\)
−0.0933009 + 0.995638i \(0.529742\pi\)
\(702\) 0 0
\(703\) 68509.8 + 39554.2i 0.138625 + 0.0800353i
\(704\) 0 0
\(705\) −88479.1 + 51083.4i −0.178017 + 0.102778i
\(706\) 0 0
\(707\) 174184. 141430.i 0.348473 0.282946i
\(708\) 0 0
\(709\) 45597.2 + 78976.7i 0.0907081 + 0.157111i 0.907809 0.419383i \(-0.137754\pi\)
−0.817101 + 0.576494i \(0.804420\pi\)
\(710\) 0 0
\(711\) −150848. + 261277.i −0.298402 + 0.516847i
\(712\) 0 0
\(713\) 103565.i 0.203720i
\(714\) 0 0
\(715\) 61210.0 0.119732
\(716\) 0 0
\(717\) 282912. + 163339.i 0.550316 + 0.317725i
\(718\) 0 0
\(719\) −143600. + 82907.7i −0.277778 + 0.160375i −0.632417 0.774628i \(-0.717937\pi\)
0.354639 + 0.935003i \(0.384604\pi\)
\(720\) 0 0
\(721\) −56510.1 353786.i −0.108707 0.680566i
\(722\) 0 0
\(723\) 158040. + 273734.i 0.302337 + 0.523663i
\(724\) 0 0
\(725\) −152201. + 263620.i −0.289563 + 0.501537i
\(726\) 0 0
\(727\) 90288.3i 0.170829i 0.996345 + 0.0854147i \(0.0272215\pi\)
−0.996345 + 0.0854147i \(0.972778\pi\)
\(728\) 0 0
\(729\) −19683.0 −0.0370370
\(730\) 0 0
\(731\) 51725.6 + 29863.8i 0.0967989 + 0.0558869i
\(732\) 0 0
\(733\) −272185. + 157146.i −0.506590 + 0.292480i −0.731431 0.681916i \(-0.761147\pi\)
0.224841 + 0.974395i \(0.427814\pi\)
\(734\) 0 0
\(735\) 77661.6 + 69558.7i 0.143758 + 0.128759i
\(736\) 0 0
\(737\) −23292.4 40343.7i −0.0428825 0.0742746i
\(738\) 0 0
\(739\) −56214.0 + 97365.4i −0.102933 + 0.178285i −0.912892 0.408201i \(-0.866156\pi\)
0.809959 + 0.586487i \(0.199489\pi\)
\(740\) 0 0
\(741\) 143137.i 0.260684i
\(742\) 0 0
\(743\) −805662. −1.45940 −0.729702 0.683765i \(-0.760341\pi\)
−0.729702 + 0.683765i \(0.760341\pi\)
\(744\) 0 0
\(745\) 1237.37 + 714.397i 0.00222940 + 0.00128714i
\(746\) 0 0
\(747\) −31023.9 + 17911.7i −0.0555975 + 0.0320992i
\(748\) 0 0
\(749\) −938600. + 149922.i −1.67308 + 0.267240i
\(750\) 0 0
\(751\) 184929. + 320306.i 0.327887 + 0.567917i 0.982092 0.188400i \(-0.0603300\pi\)
−0.654205 + 0.756317i \(0.726997\pi\)
\(752\) 0 0
\(753\) 186100. 322335.i 0.328214 0.568484i
\(754\) 0 0
\(755\) 310441.i 0.544610i
\(756\) 0 0
\(757\) 736616. 1.28543 0.642716 0.766104i \(-0.277807\pi\)
0.642716 + 0.766104i \(0.277807\pi\)
\(758\) 0 0
\(759\) −88613.5 51161.0i −0.153821 0.0888087i
\(760\) 0 0
\(761\) −111743. + 64515.1i −0.192954 + 0.111402i −0.593365 0.804934i \(-0.702201\pi\)
0.400411 + 0.916336i \(0.368867\pi\)
\(762\) 0 0
\(763\) 399383. + 491876.i 0.686026 + 0.844902i
\(764\) 0 0
\(765\) −12183.4 21102.3i −0.0208184 0.0360585i
\(766\) 0 0
\(767\) −158427. + 274404.i −0.269301 + 0.466444i
\(768\) 0 0
\(769\) 485806.i 0.821506i −0.911747 0.410753i \(-0.865266\pi\)
0.911747 0.410753i \(-0.134734\pi\)
\(770\) 0 0
\(771\) 302084. 0.508181
\(772\) 0 0
\(773\) −239185. 138094.i −0.400290 0.231108i 0.286319 0.958134i \(-0.407568\pi\)
−0.686609 + 0.727027i \(0.740902\pi\)
\(774\) 0 0
\(775\) −196657. + 113540.i −0.327421 + 0.189037i
\(776\) 0 0
\(777\) 64321.8 + 24594.0i 0.106541 + 0.0407369i
\(778\) 0 0
\(779\) 448015. + 775984.i 0.738274 + 1.27873i
\(780\) 0 0
\(781\) −208558. + 361233.i −0.341921 + 0.592224i
\(782\) 0 0
\(783\) 76925.7i 0.125472i
\(784\) 0 0
\(785\) −126897. −0.205926
\(786\) 0 0
\(787\) 83633.8 + 48286.0i 0.135031 + 0.0779600i 0.565994 0.824410i \(-0.308493\pi\)
−0.430963 + 0.902370i \(0.641826\pi\)
\(788\) 0 0
\(789\) 143097. 82616.9i 0.229866 0.132713i
\(790\) 0 0
\(791\) −90179.8 + 235851.i −0.144131 + 0.376951i
\(792\) 0 0
\(793\) −156142. 270447.i −0.248299 0.430066i
\(794\) 0 0
\(795\) −109070. + 188914.i −0.172572 + 0.298903i
\(796\) 0 0
\(797\) 540869.i 0.851481i 0.904845 + 0.425741i \(0.139986\pi\)
−0.904845 + 0.425741i \(0.860014\pi\)
\(798\) 0 0
\(799\) 254093. 0.398015
\(800\) 0 0
\(801\) −289041. 166878.i −0.450500 0.260096i
\(802\) 0 0
\(803\) 96536.6 55735.4i 0.149713 0.0864371i
\(804\) 0 0
\(805\) 80487.6 65352.6i 0.124205 0.100849i
\(806\) 0 0
\(807\) −142705. 247172.i −0.219125 0.379535i
\(808\) 0 0
\(809\) −477611. + 827246.i −0.729755 + 1.26397i 0.227232 + 0.973841i \(0.427033\pi\)
−0.956987 + 0.290132i \(0.906301\pi\)
\(810\) 0 0
\(811\) 352574.i 0.536055i −0.963411 0.268027i \(-0.913628\pi\)
0.963411 0.268027i \(-0.0863718\pi\)
\(812\) 0 0
\(813\) 476638. 0.721121
\(814\) 0 0
\(815\) −27356.4 15794.2i −0.0411854 0.0237784i
\(816\) 0 0
\(817\) −140093. + 80882.8i −0.209881 + 0.121175i
\(818\) 0 0
\(819\) −19653.1 123040.i −0.0292997 0.183433i
\(820\) 0 0
\(821\) −393020. 680731.i −0.583080 1.00992i −0.995112 0.0987551i \(-0.968514\pi\)
0.412031 0.911170i \(-0.364819\pi\)
\(822\) 0 0
\(823\) −366023. + 633971.i −0.540392 + 0.935987i 0.458489 + 0.888700i \(0.348391\pi\)
−0.998881 + 0.0472866i \(0.984943\pi\)
\(824\) 0 0
\(825\) 224354.i 0.329630i
\(826\) 0 0
\(827\) −279220. −0.408258 −0.204129 0.978944i \(-0.565436\pi\)
−0.204129 + 0.978944i \(0.565436\pi\)
\(828\) 0 0
\(829\) −176164. 101708.i −0.256335 0.147995i 0.366327 0.930486i \(-0.380615\pi\)
−0.622662 + 0.782491i \(0.713949\pi\)
\(830\) 0 0
\(831\) −33010.0 + 19058.3i −0.0478018 + 0.0275984i
\(832\) 0 0
\(833\) −80773.1 246392.i −0.116406 0.355089i
\(834\) 0 0
\(835\) 44251.0 + 76645.0i 0.0634674 + 0.109929i
\(836\) 0 0
\(837\) −28692.8 + 49697.3i −0.0409564 + 0.0709385i
\(838\) 0 0
\(839\) 1.36972e6i 1.94584i 0.231134 + 0.972922i \(0.425756\pi\)
−0.231134 + 0.972922i \(0.574244\pi\)
\(840\) 0 0
\(841\) −406637. −0.574930
\(842\) 0 0
\(843\) 599330. + 346024.i 0.843356 + 0.486912i
\(844\) 0 0
\(845\) −142508. + 82276.9i −0.199584 + 0.115230i
\(846\) 0 0
\(847\) −415753. + 66408.1i −0.579521 + 0.0925666i
\(848\) 0 0
\(849\) −324905. 562752.i −0.450755 0.780731i
\(850\) 0 0
\(851\) 34240.2 59305.8i 0.0472800 0.0818914i
\(852\) 0 0
\(853\) 110844.i 0.152340i −0.997095 0.0761702i \(-0.975731\pi\)
0.997095 0.0761702i \(-0.0242692\pi\)
\(854\) 0 0
\(855\) 65995.1 0.0902774
\(856\) 0 0
\(857\) 917323. + 529617.i 1.24899 + 0.721107i 0.970909 0.239449i \(-0.0769667\pi\)
0.278086 + 0.960556i \(0.410300\pi\)
\(858\) 0 0
\(859\) 1.00197e6 578485.i 1.35790 0.783982i 0.368556 0.929605i \(-0.379852\pi\)
0.989340 + 0.145624i \(0.0465188\pi\)
\(860\) 0 0
\(861\) 491657. + 605520.i 0.663218 + 0.816813i
\(862\) 0 0
\(863\) 39295.5 + 68061.8i 0.0527620 + 0.0913864i 0.891200 0.453610i \(-0.149864\pi\)
−0.838438 + 0.544997i \(0.816531\pi\)
\(864\) 0 0
\(865\) 167726. 290511.i 0.224166 0.388267i
\(866\) 0 0
\(867\) 373386.i 0.496730i
\(868\) 0 0
\(869\) −869035. −1.15079
\(870\) 0 0
\(871\) −48854.2 28206.0i −0.0643970 0.0371796i
\(872\) 0 0
\(873\) −124391. + 71817.0i −0.163215 + 0.0942321i
\(874\) 0 0
\(875\) 451382. + 172590.i 0.589561 + 0.225424i
\(876\) 0 0
\(877\) −32541.5 56363.6i −0.0423096 0.0732824i 0.844095 0.536193i \(-0.180138\pi\)
−0.886405 + 0.462911i \(0.846805\pi\)
\(878\) 0 0
\(879\) 356958. 618269.i 0.461997 0.800202i
\(880\) 0 0
\(881\) 510450.i 0.657661i −0.944389 0.328830i \(-0.893346\pi\)
0.944389 0.328830i \(-0.106654\pi\)
\(882\) 0 0
\(883\) 684144. 0.877458 0.438729 0.898620i \(-0.355429\pi\)
0.438729 + 0.898620i \(0.355429\pi\)
\(884\) 0 0
\(885\) −126518. 73044.9i −0.161534 0.0932617i
\(886\) 0 0
\(887\) 251921. 145447.i 0.320198 0.184866i −0.331283 0.943531i \(-0.607482\pi\)
0.651481 + 0.758665i \(0.274148\pi\)
\(888\) 0 0
\(889\) −180607. + 472348.i −0.228523 + 0.597665i
\(890\) 0 0
\(891\) −28348.4 49100.8i −0.0357086 0.0618491i
\(892\) 0 0
\(893\) −344092. + 595985.i −0.431491 + 0.747365i
\(894\) 0 0
\(895\) 314018.i 0.392020i
\(896\) 0 0
\(897\) −123907. −0.153996
\(898\) 0 0
\(899\) 194229. + 112138.i 0.240322 + 0.138750i
\(900\) 0 0
\(901\) 469837. 271261.i 0.578759 0.334147i
\(902\) 0 0
\(903\) −109318. + 88761.9i −0.134066 + 0.108856i
\(904\) 0 0
\(905\) −166516. 288414.i −0.203310 0.352144i
\(906\) 0 0
\(907\) 19708.0 34135.2i 0.0239567 0.0414942i −0.853798 0.520604i \(-0.825707\pi\)
0.877755 + 0.479109i \(0.159040\pi\)
\(908\) 0 0
\(909\) 123633.i 0.149626i
\(910\) 0 0
\(911\) −1.07089e6 −1.29035 −0.645173 0.764036i \(-0.723215\pi\)
−0.645173 + 0.764036i \(0.723215\pi\)
\(912\) 0 0
\(913\) −89364.1 51594.4i −0.107207 0.0618958i
\(914\) 0 0
\(915\) 124693. 71991.6i 0.148936 0.0859884i
\(916\) 0 0
\(917\) −242940. 1.52095e6i −0.288909 1.80874i
\(918\) 0 0
\(919\) −607876. 1.05287e6i −0.719754 1.24665i −0.961097 0.276211i \(-0.910921\pi\)
0.241343 0.970440i \(-0.422412\pi\)
\(920\) 0 0
\(921\) −154326. + 267301.i −0.181937 + 0.315123i
\(922\) 0 0
\(923\) 505107.i 0.592898i
\(924\) 0 0
\(925\) 150152. 0.175489
\(926\) 0 0
\(927\) −170966. 98707.3i −0.198953 0.114866i
\(928\) 0 0
\(929\) 1.29549e6 747949.i 1.50107 0.866644i 0.501072 0.865406i \(-0.332939\pi\)
0.999999 0.00123791i \(-0.000394039\pi\)
\(930\) 0 0
\(931\) 687305. + 144207.i 0.792958 + 0.166375i
\(932\) 0 0
\(933\) 117383. + 203314.i 0.134847 + 0.233562i
\(934\) 0 0
\(935\) 35094.3 60785.1i 0.0401433 0.0695303i
\(936\) 0 0
\(937\) 254082.i 0.289398i 0.989476 + 0.144699i \(0.0462213\pi\)
−0.989476 + 0.144699i \(0.953779\pi\)
\(938\) 0 0
\(939\) 553832. 0.628126
\(940\) 0 0
\(941\) −642429. 370907.i −0.725514 0.418876i 0.0912645 0.995827i \(-0.470909\pi\)
−0.816779 + 0.576951i \(0.804242\pi\)
\(942\) 0 0
\(943\) 671735. 387826.i 0.755395 0.436128i
\(944\) 0 0
\(945\) 56729.2 9061.33i 0.0635248 0.0101468i
\(946\) 0 0
\(947\) −477051. 826277.i −0.531943 0.921352i −0.999305 0.0372859i \(-0.988129\pi\)
0.467362 0.884066i \(-0.345205\pi\)
\(948\) 0 0
\(949\) 67492.8 116901.i 0.0749420 0.129803i
\(950\) 0 0
\(951\) 796174.i 0.880332i
\(952\) 0 0
\(953\) −792911. −0.873049 −0.436525 0.899692i \(-0.643791\pi\)
−0.436525 + 0.899692i \(0.643791\pi\)
\(954\) 0 0
\(955\) −329253. 190094.i −0.361013 0.208431i
\(956\) 0 0
\(957\) −191897. + 110792.i −0.209529 + 0.120972i
\(958\) 0 0
\(959\) 427964. + 527076.i 0.465340 + 0.573108i
\(960\) 0 0
\(961\) −378107. 654901.i −0.409419 0.709135i
\(962\) 0 0
\(963\) −261872. + 453575.i −0.282382 + 0.489099i
\(964\) 0 0
\(965\) 101036.i 0.108498i
\(966\) 0 0
\(967\) −23877.3 −0.0255348 −0.0127674 0.999918i \(-0.504064\pi\)
−0.0127674 + 0.999918i \(0.504064\pi\)
\(968\) 0 0
\(969\) −142143. 82066.2i −0.151383 0.0874011i
\(970\) 0 0
\(971\) 969512. 559748.i 1.02829 0.593682i 0.111794 0.993731i \(-0.464340\pi\)
0.916494 + 0.400049i \(0.131007\pi\)
\(972\) 0 0
\(973\) 1.13278e6 + 433128.i 1.19652 + 0.457500i
\(974\) 0 0
\(975\) −135841. 235283.i −0.142896 0.247504i
\(976\) 0 0
\(977\) 522163. 904413.i 0.547037 0.947497i −0.451438 0.892302i \(-0.649089\pi\)
0.998476 0.0551943i \(-0.0175778\pi\)
\(978\) 0 0
\(979\) 961382.i 1.00307i
\(980\) 0 0
\(981\) 349126. 0.362781
\(982\) 0 0
\(983\) −187897. 108482.i −0.194452 0.112267i 0.399613 0.916684i \(-0.369145\pi\)
−0.594065 + 0.804417i \(0.702478\pi\)
\(984\) 0 0
\(985\) −313885. + 181222.i −0.323518 + 0.186783i
\(986\) 0 0
\(987\) −213950. + 559552.i −0.219623 + 0.574389i
\(988\) 0 0
\(989\) 70016.6 + 121272.i 0.0715828 + 0.123985i
\(990\) 0 0
\(991\) −496994. + 860819.i −0.506062 + 0.876525i 0.493913 + 0.869511i \(0.335566\pi\)
−0.999975 + 0.00701423i \(0.997767\pi\)
\(992\) 0 0
\(993\) 583846.i 0.592107i
\(994\) 0 0
\(995\) −189783. −0.191695
\(996\) 0 0
\(997\) −674463. 389402.i −0.678528 0.391748i 0.120772 0.992680i \(-0.461463\pi\)
−0.799300 + 0.600932i \(0.794796\pi\)
\(998\) 0 0
\(999\) 32861.4 18972.5i 0.0329272 0.0190105i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.5.m.a.73.1 yes 4
3.2 odd 2 252.5.z.b.73.2 4
4.3 odd 2 336.5.bh.c.241.1 4
7.2 even 3 588.5.m.a.313.2 4
7.3 odd 6 588.5.d.a.97.4 4
7.4 even 3 588.5.d.a.97.1 4
7.5 odd 6 inner 84.5.m.a.61.1 4
7.6 odd 2 588.5.m.a.325.2 4
21.5 even 6 252.5.z.b.145.2 4
28.19 even 6 336.5.bh.c.145.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.5.m.a.61.1 4 7.5 odd 6 inner
84.5.m.a.73.1 yes 4 1.1 even 1 trivial
252.5.z.b.73.2 4 3.2 odd 2
252.5.z.b.145.2 4 21.5 even 6
336.5.bh.c.145.1 4 28.19 even 6
336.5.bh.c.241.1 4 4.3 odd 2
588.5.d.a.97.1 4 7.4 even 3
588.5.d.a.97.4 4 7.3 odd 6
588.5.m.a.313.2 4 7.2 even 3
588.5.m.a.325.2 4 7.6 odd 2