Properties

Label 252.6.k.a
Level $252$
Weight $6$
Character orbit 252.k
Analytic conductor $40.417$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,6,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (69 \zeta_{6} - 69) q^{5} + (49 \zeta_{6} + 98) q^{7} + 123 \zeta_{6} q^{11} - 4 q^{13} + 1776 \zeta_{6} q^{17} + ( - 1396 \zeta_{6} + 1396) q^{19} + (1536 \zeta_{6} - 1536) q^{23} - 1636 \zeta_{6} q^{25} + \cdots - 161185 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 69 q^{5} + 245 q^{7} + 123 q^{11} - 8 q^{13} + 1776 q^{17} + 1396 q^{19} - 1536 q^{23} - 1636 q^{25} + 7230 q^{29} - 7295 q^{31} - 13524 q^{35} - 7640 q^{37} - 20064 q^{41} - 19508 q^{43} - 17622 q^{47}+ \cdots - 322370 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −34.5000 + 59.7558i 0 122.500 + 42.4352i 0 0 0
109.1 0 0 0 −34.5000 59.7558i 0 122.500 42.4352i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.6.k.a 2
3.b odd 2 1 84.6.i.a 2
7.c even 3 1 inner 252.6.k.a 2
12.b even 2 1 336.6.q.d 2
21.c even 2 1 588.6.i.d 2
21.g even 6 1 588.6.a.c 1
21.g even 6 1 588.6.i.d 2
21.h odd 6 1 84.6.i.a 2
21.h odd 6 1 588.6.a.d 1
84.n even 6 1 336.6.q.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.6.i.a 2 3.b odd 2 1
84.6.i.a 2 21.h odd 6 1
252.6.k.a 2 1.a even 1 1 trivial
252.6.k.a 2 7.c even 3 1 inner
336.6.q.d 2 12.b even 2 1
336.6.q.d 2 84.n even 6 1
588.6.a.c 1 21.g even 6 1
588.6.a.d 1 21.h odd 6 1
588.6.i.d 2 21.c even 2 1
588.6.i.d 2 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 69T_{5} + 4761 \) acting on \(S_{6}^{\mathrm{new}}(252, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 69T + 4761 \) Copy content Toggle raw display
$7$ \( T^{2} - 245T + 16807 \) Copy content Toggle raw display
$11$ \( T^{2} - 123T + 15129 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1776 T + 3154176 \) Copy content Toggle raw display
$19$ \( T^{2} - 1396 T + 1948816 \) Copy content Toggle raw display
$23$ \( T^{2} + 1536 T + 2359296 \) Copy content Toggle raw display
$29$ \( (T - 3615)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 7295 T + 53217025 \) Copy content Toggle raw display
$37$ \( T^{2} + 7640 T + 58369600 \) Copy content Toggle raw display
$41$ \( (T + 10032)^{2} \) Copy content Toggle raw display
$43$ \( (T + 9754)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 17622 T + 310534884 \) Copy content Toggle raw display
$53$ \( T^{2} - 4197 T + 17614809 \) Copy content Toggle raw display
$59$ \( T^{2} + 20133 T + 405337689 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1200345316 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1712800996 \) Copy content Toggle raw display
$71$ \( (T + 30762)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 6440704516 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 9720579649 \) Copy content Toggle raw display
$83$ \( (T + 73407)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 11353754916 \) Copy content Toggle raw display
$97$ \( (T + 161185)^{2} \) Copy content Toggle raw display
show more
show less