Properties

Label 252.8.a.h.1.4
Level $252$
Weight $8$
Character 252.1
Self dual yes
Analytic conductor $78.721$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(1,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4648x^{2} + 2987775 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(62.2692\) of defining polynomial
Character \(\chi\) \(=\) 252.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+373.615 q^{5} +343.000 q^{7} +4603.99 q^{11} -5287.16 q^{13} +16065.4 q^{17} +28391.5 q^{19} +39011.9 q^{23} +61463.1 q^{25} +97392.9 q^{29} -241746. q^{31} +128150. q^{35} +249203. q^{37} +108198. q^{41} -228813. q^{43} -352722. q^{47} +117649. q^{49} -778685. q^{53} +1.72012e6 q^{55} -1.76721e6 q^{59} +260500. q^{61} -1.97536e6 q^{65} -1.24096e6 q^{67} +1.36800e6 q^{71} +1.75423e6 q^{73} +1.57917e6 q^{77} +6.81583e6 q^{79} +7.92440e6 q^{83} +6.00229e6 q^{85} +2.49883e6 q^{89} -1.81350e6 q^{91} +1.06075e7 q^{95} +693361. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 1372 q^{7} + 10808 q^{13} + 17696 q^{19} + 22156 q^{25} + 87584 q^{31} - 121672 q^{37} - 20464 q^{43} + 470596 q^{49} + 840672 q^{55} + 4844840 q^{61} + 6220976 q^{67} + 10659992 q^{73} + 4446272 q^{79}+ \cdots + 25590488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 373.615 1.33669 0.668343 0.743853i \(-0.267004\pi\)
0.668343 + 0.743853i \(0.267004\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4603.99 1.04294 0.521471 0.853269i \(-0.325384\pi\)
0.521471 + 0.853269i \(0.325384\pi\)
\(12\) 0 0
\(13\) −5287.16 −0.667453 −0.333727 0.942670i \(-0.608306\pi\)
−0.333727 + 0.942670i \(0.608306\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 16065.4 0.793088 0.396544 0.918016i \(-0.370209\pi\)
0.396544 + 0.918016i \(0.370209\pi\)
\(18\) 0 0
\(19\) 28391.5 0.949621 0.474811 0.880088i \(-0.342517\pi\)
0.474811 + 0.880088i \(0.342517\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 39011.9 0.668575 0.334287 0.942471i \(-0.391504\pi\)
0.334287 + 0.942471i \(0.391504\pi\)
\(24\) 0 0
\(25\) 61463.1 0.786728
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 97392.9 0.741539 0.370770 0.928725i \(-0.379094\pi\)
0.370770 + 0.928725i \(0.379094\pi\)
\(30\) 0 0
\(31\) −241746. −1.45745 −0.728726 0.684806i \(-0.759887\pi\)
−0.728726 + 0.684806i \(0.759887\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 128150. 0.505220
\(36\) 0 0
\(37\) 249203. 0.808810 0.404405 0.914580i \(-0.367479\pi\)
0.404405 + 0.914580i \(0.367479\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 108198. 0.245175 0.122587 0.992458i \(-0.460881\pi\)
0.122587 + 0.992458i \(0.460881\pi\)
\(42\) 0 0
\(43\) −228813. −0.438874 −0.219437 0.975627i \(-0.570422\pi\)
−0.219437 + 0.975627i \(0.570422\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −352722. −0.495552 −0.247776 0.968817i \(-0.579700\pi\)
−0.247776 + 0.968817i \(0.579700\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −778685. −0.718449 −0.359225 0.933251i \(-0.616959\pi\)
−0.359225 + 0.933251i \(0.616959\pi\)
\(54\) 0 0
\(55\) 1.72012e6 1.39408
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.76721e6 −1.12023 −0.560113 0.828416i \(-0.689242\pi\)
−0.560113 + 0.828416i \(0.689242\pi\)
\(60\) 0 0
\(61\) 260500. 0.146944 0.0734722 0.997297i \(-0.476592\pi\)
0.0734722 + 0.997297i \(0.476592\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.97536e6 −0.892175
\(66\) 0 0
\(67\) −1.24096e6 −0.504077 −0.252038 0.967717i \(-0.581101\pi\)
−0.252038 + 0.967717i \(0.581101\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.36800e6 0.453610 0.226805 0.973940i \(-0.427172\pi\)
0.226805 + 0.973940i \(0.427172\pi\)
\(72\) 0 0
\(73\) 1.75423e6 0.527785 0.263893 0.964552i \(-0.414994\pi\)
0.263893 + 0.964552i \(0.414994\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.57917e6 0.394195
\(78\) 0 0
\(79\) 6.81583e6 1.55533 0.777667 0.628676i \(-0.216403\pi\)
0.777667 + 0.628676i \(0.216403\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.92440e6 1.52122 0.760612 0.649207i \(-0.224899\pi\)
0.760612 + 0.649207i \(0.224899\pi\)
\(84\) 0 0
\(85\) 6.00229e6 1.06011
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.49883e6 0.375726 0.187863 0.982195i \(-0.439844\pi\)
0.187863 + 0.982195i \(0.439844\pi\)
\(90\) 0 0
\(91\) −1.81350e6 −0.252274
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.06075e7 1.26935
\(96\) 0 0
\(97\) 693361. 0.0771362 0.0385681 0.999256i \(-0.487720\pi\)
0.0385681 + 0.999256i \(0.487720\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.52730e7 −1.47503 −0.737515 0.675331i \(-0.764001\pi\)
−0.737515 + 0.675331i \(0.764001\pi\)
\(102\) 0 0
\(103\) 6.03134e6 0.543855 0.271928 0.962318i \(-0.412339\pi\)
0.271928 + 0.962318i \(0.412339\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.57901e6 0.519179 0.259589 0.965719i \(-0.416413\pi\)
0.259589 + 0.965719i \(0.416413\pi\)
\(108\) 0 0
\(109\) 2.56522e7 1.89728 0.948639 0.316360i \(-0.102461\pi\)
0.948639 + 0.316360i \(0.102461\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.22526e7 −1.45079 −0.725397 0.688330i \(-0.758344\pi\)
−0.725397 + 0.688330i \(0.758344\pi\)
\(114\) 0 0
\(115\) 1.45754e7 0.893674
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.51045e6 0.299759
\(120\) 0 0
\(121\) 1.70955e6 0.0877272
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.22512e6 −0.285077
\(126\) 0 0
\(127\) 2.93911e7 1.27322 0.636609 0.771187i \(-0.280336\pi\)
0.636609 + 0.771187i \(0.280336\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.27085e7 0.882550 0.441275 0.897372i \(-0.354526\pi\)
0.441275 + 0.897372i \(0.354526\pi\)
\(132\) 0 0
\(133\) 9.73828e6 0.358923
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.89164e7 −0.960775 −0.480388 0.877056i \(-0.659504\pi\)
−0.480388 + 0.877056i \(0.659504\pi\)
\(138\) 0 0
\(139\) 4.55584e7 1.43886 0.719428 0.694567i \(-0.244404\pi\)
0.719428 + 0.694567i \(0.244404\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.43420e7 −0.696115
\(144\) 0 0
\(145\) 3.63874e7 0.991205
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.84743e7 0.705183 0.352591 0.935777i \(-0.385301\pi\)
0.352591 + 0.935777i \(0.385301\pi\)
\(150\) 0 0
\(151\) −5.87770e6 −0.138928 −0.0694638 0.997584i \(-0.522129\pi\)
−0.0694638 + 0.997584i \(0.522129\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.03200e7 −1.94815
\(156\) 0 0
\(157\) 4.55696e7 0.939780 0.469890 0.882725i \(-0.344294\pi\)
0.469890 + 0.882725i \(0.344294\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.33811e7 0.252697
\(162\) 0 0
\(163\) 2.71069e7 0.490257 0.245129 0.969491i \(-0.421170\pi\)
0.245129 + 0.969491i \(0.421170\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.20283e7 1.36287 0.681437 0.731877i \(-0.261355\pi\)
0.681437 + 0.731877i \(0.261355\pi\)
\(168\) 0 0
\(169\) −3.47944e7 −0.554506
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.32062e8 1.93917 0.969583 0.244763i \(-0.0787102\pi\)
0.969583 + 0.244763i \(0.0787102\pi\)
\(174\) 0 0
\(175\) 2.10819e7 0.297355
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.33808e7 −1.08663 −0.543314 0.839530i \(-0.682831\pi\)
−0.543314 + 0.839530i \(0.682831\pi\)
\(180\) 0 0
\(181\) −3.96597e7 −0.497135 −0.248567 0.968615i \(-0.579960\pi\)
−0.248567 + 0.968615i \(0.579960\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.31058e7 1.08112
\(186\) 0 0
\(187\) 7.39651e7 0.827145
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.21078e8 1.25733 0.628663 0.777678i \(-0.283603\pi\)
0.628663 + 0.777678i \(0.283603\pi\)
\(192\) 0 0
\(193\) 8.14383e7 0.815414 0.407707 0.913113i \(-0.366328\pi\)
0.407707 + 0.913113i \(0.366328\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.10941e8 −1.96575 −0.982877 0.184260i \(-0.941011\pi\)
−0.982877 + 0.184260i \(0.941011\pi\)
\(198\) 0 0
\(199\) −604097. −0.00543402 −0.00271701 0.999996i \(-0.500865\pi\)
−0.00271701 + 0.999996i \(0.500865\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.34058e7 0.280276
\(204\) 0 0
\(205\) 4.04244e7 0.327721
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.30714e8 0.990400
\(210\) 0 0
\(211\) −2.09618e7 −0.153618 −0.0768088 0.997046i \(-0.524473\pi\)
−0.0768088 + 0.997046i \(0.524473\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.54878e7 −0.586637
\(216\) 0 0
\(217\) −8.29190e7 −0.550865
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.49406e7 −0.529349
\(222\) 0 0
\(223\) 3.81109e7 0.230135 0.115067 0.993358i \(-0.463292\pi\)
0.115067 + 0.993358i \(0.463292\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.07890e8 −1.17963 −0.589813 0.807540i \(-0.700798\pi\)
−0.589813 + 0.807540i \(0.700798\pi\)
\(228\) 0 0
\(229\) −3.03688e8 −1.67111 −0.835553 0.549410i \(-0.814853\pi\)
−0.835553 + 0.549410i \(0.814853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.03389e8 −0.535459 −0.267730 0.963494i \(-0.586273\pi\)
−0.267730 + 0.963494i \(0.586273\pi\)
\(234\) 0 0
\(235\) −1.31782e8 −0.662398
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.53581e8 −1.20150 −0.600749 0.799437i \(-0.705131\pi\)
−0.600749 + 0.799437i \(0.705131\pi\)
\(240\) 0 0
\(241\) −2.28295e8 −1.05060 −0.525299 0.850918i \(-0.676046\pi\)
−0.525299 + 0.850918i \(0.676046\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.39554e7 0.190955
\(246\) 0 0
\(247\) −1.50110e8 −0.633828
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.39619e8 −0.557296 −0.278648 0.960393i \(-0.589886\pi\)
−0.278648 + 0.960393i \(0.589886\pi\)
\(252\) 0 0
\(253\) 1.79610e8 0.697284
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.94011e8 1.44791 0.723956 0.689847i \(-0.242322\pi\)
0.723956 + 0.689847i \(0.242322\pi\)
\(258\) 0 0
\(259\) 8.54765e7 0.305702
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.86267e8 0.970347 0.485173 0.874418i \(-0.338757\pi\)
0.485173 + 0.874418i \(0.338757\pi\)
\(264\) 0 0
\(265\) −2.90928e8 −0.960341
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.60724e8 −1.12991 −0.564953 0.825123i \(-0.691106\pi\)
−0.564953 + 0.825123i \(0.691106\pi\)
\(270\) 0 0
\(271\) −3.27558e8 −0.999761 −0.499881 0.866094i \(-0.666623\pi\)
−0.499881 + 0.866094i \(0.666623\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.82976e8 0.820511
\(276\) 0 0
\(277\) −4.07506e8 −1.15201 −0.576003 0.817448i \(-0.695388\pi\)
−0.576003 + 0.817448i \(0.695388\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.41823e8 1.45675 0.728376 0.685178i \(-0.240275\pi\)
0.728376 + 0.685178i \(0.240275\pi\)
\(282\) 0 0
\(283\) −3.43393e7 −0.0900615 −0.0450307 0.998986i \(-0.514339\pi\)
−0.0450307 + 0.998986i \(0.514339\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.71119e7 0.0926673
\(288\) 0 0
\(289\) −1.52240e8 −0.371011
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.69394e8 0.625679 0.312839 0.949806i \(-0.398720\pi\)
0.312839 + 0.949806i \(0.398720\pi\)
\(294\) 0 0
\(295\) −6.60256e8 −1.49739
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.06262e8 −0.446242
\(300\) 0 0
\(301\) −7.84827e7 −0.165879
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.73266e7 0.196418
\(306\) 0 0
\(307\) −1.50431e8 −0.296723 −0.148362 0.988933i \(-0.547400\pi\)
−0.148362 + 0.988933i \(0.547400\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.08437e8 0.204417 0.102208 0.994763i \(-0.467409\pi\)
0.102208 + 0.994763i \(0.467409\pi\)
\(312\) 0 0
\(313\) −8.51922e7 −0.157034 −0.0785172 0.996913i \(-0.525019\pi\)
−0.0785172 + 0.996913i \(0.525019\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.33084e8 −1.29255 −0.646274 0.763106i \(-0.723674\pi\)
−0.646274 + 0.763106i \(0.723674\pi\)
\(318\) 0 0
\(319\) 4.48396e8 0.773382
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.56122e8 0.753134
\(324\) 0 0
\(325\) −3.24966e8 −0.525104
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.20984e8 −0.187301
\(330\) 0 0
\(331\) 3.83682e8 0.581531 0.290766 0.956794i \(-0.406090\pi\)
0.290766 + 0.956794i \(0.406090\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.63642e8 −0.673792
\(336\) 0 0
\(337\) −1.00460e9 −1.42984 −0.714922 0.699205i \(-0.753538\pi\)
−0.714922 + 0.699205i \(0.753538\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.11300e9 −1.52004
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.27919e8 0.678288 0.339144 0.940734i \(-0.389863\pi\)
0.339144 + 0.940734i \(0.389863\pi\)
\(348\) 0 0
\(349\) −4.01377e8 −0.505433 −0.252717 0.967540i \(-0.581324\pi\)
−0.252717 + 0.967540i \(0.581324\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.58894e8 0.434264 0.217132 0.976142i \(-0.430330\pi\)
0.217132 + 0.976142i \(0.430330\pi\)
\(354\) 0 0
\(355\) 5.11106e8 0.606333
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.49771e8 −0.284913 −0.142456 0.989801i \(-0.545500\pi\)
−0.142456 + 0.989801i \(0.545500\pi\)
\(360\) 0 0
\(361\) −8.77953e7 −0.0982191
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.55408e8 0.705483
\(366\) 0 0
\(367\) 7.47532e8 0.789403 0.394701 0.918809i \(-0.370848\pi\)
0.394701 + 0.918809i \(0.370848\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.67089e8 −0.271548
\(372\) 0 0
\(373\) −1.40371e9 −1.40055 −0.700274 0.713874i \(-0.746939\pi\)
−0.700274 + 0.713874i \(0.746939\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.14932e8 −0.494943
\(378\) 0 0
\(379\) 8.25191e8 0.778605 0.389303 0.921110i \(-0.372716\pi\)
0.389303 + 0.921110i \(0.372716\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.01369e9 −0.921955 −0.460978 0.887412i \(-0.652501\pi\)
−0.460978 + 0.887412i \(0.652501\pi\)
\(384\) 0 0
\(385\) 5.90001e8 0.526915
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.89783e9 −1.63468 −0.817342 0.576153i \(-0.804553\pi\)
−0.817342 + 0.576153i \(0.804553\pi\)
\(390\) 0 0
\(391\) 6.26744e8 0.530239
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.54650e9 2.07899
\(396\) 0 0
\(397\) −1.67665e9 −1.34486 −0.672429 0.740162i \(-0.734749\pi\)
−0.672429 + 0.740162i \(0.734749\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.80128e8 −0.216946 −0.108473 0.994099i \(-0.534596\pi\)
−0.108473 + 0.994099i \(0.534596\pi\)
\(402\) 0 0
\(403\) 1.27815e9 0.972780
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.14733e9 0.843542
\(408\) 0 0
\(409\) 1.16783e9 0.844008 0.422004 0.906594i \(-0.361327\pi\)
0.422004 + 0.906594i \(0.361327\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.06153e8 −0.423406
\(414\) 0 0
\(415\) 2.96068e9 2.03340
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.17872e9 −0.782819 −0.391410 0.920217i \(-0.628012\pi\)
−0.391410 + 0.920217i \(0.628012\pi\)
\(420\) 0 0
\(421\) 1.86093e9 1.21547 0.607733 0.794141i \(-0.292079\pi\)
0.607733 + 0.794141i \(0.292079\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.87432e8 0.623945
\(426\) 0 0
\(427\) 8.93514e7 0.0555397
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.33812e9 1.40668 0.703341 0.710853i \(-0.251691\pi\)
0.703341 + 0.710853i \(0.251691\pi\)
\(432\) 0 0
\(433\) 7.11857e7 0.0421391 0.0210695 0.999778i \(-0.493293\pi\)
0.0210695 + 0.999778i \(0.493293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.10761e9 0.634893
\(438\) 0 0
\(439\) 6.25224e7 0.0352704 0.0176352 0.999844i \(-0.494386\pi\)
0.0176352 + 0.999844i \(0.494386\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.74681e8 0.478009 0.239005 0.971018i \(-0.423179\pi\)
0.239005 + 0.971018i \(0.423179\pi\)
\(444\) 0 0
\(445\) 9.33600e8 0.502228
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.33350e9 1.73795 0.868977 0.494852i \(-0.164778\pi\)
0.868977 + 0.494852i \(0.164778\pi\)
\(450\) 0 0
\(451\) 4.98142e8 0.255703
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.77549e8 −0.337210
\(456\) 0 0
\(457\) 1.26840e9 0.621653 0.310827 0.950467i \(-0.399394\pi\)
0.310827 + 0.950467i \(0.399394\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.33971e9 −0.636879 −0.318440 0.947943i \(-0.603159\pi\)
−0.318440 + 0.947943i \(0.603159\pi\)
\(462\) 0 0
\(463\) 6.04332e8 0.282971 0.141485 0.989940i \(-0.454812\pi\)
0.141485 + 0.989940i \(0.454812\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.09562e7 0.0367825 0.0183912 0.999831i \(-0.494146\pi\)
0.0183912 + 0.999831i \(0.494146\pi\)
\(468\) 0 0
\(469\) −4.25650e8 −0.190523
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.05345e9 −0.457720
\(474\) 0 0
\(475\) 1.74503e9 0.747094
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.21153e9 −0.919430 −0.459715 0.888067i \(-0.652048\pi\)
−0.459715 + 0.888067i \(0.652048\pi\)
\(480\) 0 0
\(481\) −1.31757e9 −0.539843
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.59050e8 0.103107
\(486\) 0 0
\(487\) 4.76077e9 1.86778 0.933890 0.357559i \(-0.116391\pi\)
0.933890 + 0.357559i \(0.116391\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.60736e9 −1.75657 −0.878287 0.478134i \(-0.841313\pi\)
−0.878287 + 0.478134i \(0.841313\pi\)
\(492\) 0 0
\(493\) 1.56466e9 0.588106
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.69224e8 0.171448
\(498\) 0 0
\(499\) 2.73796e9 0.986449 0.493224 0.869902i \(-0.335818\pi\)
0.493224 + 0.869902i \(0.335818\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.77627e9 −0.972688 −0.486344 0.873767i \(-0.661670\pi\)
−0.486344 + 0.873767i \(0.661670\pi\)
\(504\) 0 0
\(505\) −5.70624e9 −1.97165
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.05026e9 −1.02524 −0.512618 0.858616i \(-0.671324\pi\)
−0.512618 + 0.858616i \(0.671324\pi\)
\(510\) 0 0
\(511\) 6.01702e8 0.199484
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.25340e9 0.726963
\(516\) 0 0
\(517\) −1.62393e9 −0.516832
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.53878e8 0.264523 0.132262 0.991215i \(-0.457776\pi\)
0.132262 + 0.991215i \(0.457776\pi\)
\(522\) 0 0
\(523\) 3.41762e8 0.104464 0.0522321 0.998635i \(-0.483366\pi\)
0.0522321 + 0.998635i \(0.483366\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.88376e9 −1.15589
\(528\) 0 0
\(529\) −1.88290e9 −0.553008
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.72060e8 −0.163643
\(534\) 0 0
\(535\) 2.45801e9 0.693979
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.41655e8 0.148992
\(540\) 0 0
\(541\) 5.46752e9 1.48457 0.742283 0.670086i \(-0.233743\pi\)
0.742283 + 0.670086i \(0.233743\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.58403e9 2.53606
\(546\) 0 0
\(547\) 2.88623e9 0.754007 0.377004 0.926212i \(-0.376954\pi\)
0.377004 + 0.926212i \(0.376954\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.76513e9 0.704182
\(552\) 0 0
\(553\) 2.33783e9 0.587861
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.51107e9 −0.370502 −0.185251 0.982691i \(-0.559310\pi\)
−0.185251 + 0.982691i \(0.559310\pi\)
\(558\) 0 0
\(559\) 1.20977e9 0.292928
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.35341e9 −1.73664 −0.868319 0.496006i \(-0.834799\pi\)
−0.868319 + 0.496006i \(0.834799\pi\)
\(564\) 0 0
\(565\) −8.31390e9 −1.93926
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.81175e9 0.867424 0.433712 0.901052i \(-0.357204\pi\)
0.433712 + 0.901052i \(0.357204\pi\)
\(570\) 0 0
\(571\) 2.07708e8 0.0466902 0.0233451 0.999727i \(-0.492568\pi\)
0.0233451 + 0.999727i \(0.492568\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.39779e9 0.525986
\(576\) 0 0
\(577\) −5.18328e9 −1.12328 −0.561642 0.827380i \(-0.689830\pi\)
−0.561642 + 0.827380i \(0.689830\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.71807e9 0.574969
\(582\) 0 0
\(583\) −3.58506e9 −0.749301
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.43761e9 0.293365 0.146683 0.989184i \(-0.453140\pi\)
0.146683 + 0.989184i \(0.453140\pi\)
\(588\) 0 0
\(589\) −6.86354e9 −1.38403
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.73473e9 0.341618 0.170809 0.985304i \(-0.445362\pi\)
0.170809 + 0.985304i \(0.445362\pi\)
\(594\) 0 0
\(595\) 2.05879e9 0.400684
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.71944e9 0.516995 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(600\) 0 0
\(601\) −3.37029e9 −0.633295 −0.316647 0.948543i \(-0.602557\pi\)
−0.316647 + 0.948543i \(0.602557\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.38715e8 0.117264
\(606\) 0 0
\(607\) −7.98423e9 −1.44901 −0.724507 0.689267i \(-0.757933\pi\)
−0.724507 + 0.689267i \(0.757933\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.86490e9 0.330758
\(612\) 0 0
\(613\) 4.42191e9 0.775351 0.387676 0.921796i \(-0.373278\pi\)
0.387676 + 0.921796i \(0.373278\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.72972e9 −1.15345 −0.576725 0.816938i \(-0.695670\pi\)
−0.576725 + 0.816938i \(0.695670\pi\)
\(618\) 0 0
\(619\) 1.01216e10 1.71527 0.857633 0.514263i \(-0.171934\pi\)
0.857633 + 0.514263i \(0.171934\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.57098e8 0.142011
\(624\) 0 0
\(625\) −7.12761e9 −1.16779
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00355e9 0.641458
\(630\) 0 0
\(631\) −3.36807e9 −0.533677 −0.266838 0.963741i \(-0.585979\pi\)
−0.266838 + 0.963741i \(0.585979\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.09810e10 1.70189
\(636\) 0 0
\(637\) −6.22029e8 −0.0953505
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.27624e10 −1.91394 −0.956971 0.290183i \(-0.906284\pi\)
−0.956971 + 0.290183i \(0.906284\pi\)
\(642\) 0 0
\(643\) −1.15776e10 −1.71743 −0.858715 0.512453i \(-0.828737\pi\)
−0.858715 + 0.512453i \(0.828737\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.34167e9 −0.920532 −0.460266 0.887781i \(-0.652246\pi\)
−0.460266 + 0.887781i \(0.652246\pi\)
\(648\) 0 0
\(649\) −8.13621e9 −1.16833
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.08753e9 −0.574466 −0.287233 0.957861i \(-0.592735\pi\)
−0.287233 + 0.957861i \(0.592735\pi\)
\(654\) 0 0
\(655\) 8.48424e9 1.17969
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.38043e9 −1.14069 −0.570345 0.821405i \(-0.693190\pi\)
−0.570345 + 0.821405i \(0.693190\pi\)
\(660\) 0 0
\(661\) −8.35309e9 −1.12497 −0.562487 0.826806i \(-0.690155\pi\)
−0.562487 + 0.826806i \(0.690155\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.63837e9 0.479767
\(666\) 0 0
\(667\) 3.79948e9 0.495774
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.19934e9 0.153254
\(672\) 0 0
\(673\) −7.99625e9 −1.01119 −0.505596 0.862770i \(-0.668727\pi\)
−0.505596 + 0.862770i \(0.668727\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.26296e9 −0.899608 −0.449804 0.893127i \(-0.648506\pi\)
−0.449804 + 0.893127i \(0.648506\pi\)
\(678\) 0 0
\(679\) 2.37823e8 0.0291547
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.84973e8 0.0222145 0.0111073 0.999938i \(-0.496464\pi\)
0.0111073 + 0.999938i \(0.496464\pi\)
\(684\) 0 0
\(685\) −1.08036e10 −1.28425
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.11703e9 0.479531
\(690\) 0 0
\(691\) −1.69205e10 −1.95092 −0.975462 0.220170i \(-0.929339\pi\)
−0.975462 + 0.220170i \(0.929339\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.70213e10 1.92330
\(696\) 0 0
\(697\) 1.73825e9 0.194445
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.39267e10 −1.52699 −0.763494 0.645815i \(-0.776518\pi\)
−0.763494 + 0.645815i \(0.776518\pi\)
\(702\) 0 0
\(703\) 7.07523e9 0.768064
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.23865e9 −0.557509
\(708\) 0 0
\(709\) 1.04796e10 1.10429 0.552144 0.833749i \(-0.313810\pi\)
0.552144 + 0.833749i \(0.313810\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.43099e9 −0.974415
\(714\) 0 0
\(715\) −9.09455e9 −0.930486
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.18930e10 1.19327 0.596637 0.802511i \(-0.296503\pi\)
0.596637 + 0.802511i \(0.296503\pi\)
\(720\) 0 0
\(721\) 2.06875e9 0.205558
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.98607e9 0.583390
\(726\) 0 0
\(727\) 7.07722e9 0.683113 0.341556 0.939861i \(-0.389046\pi\)
0.341556 + 0.939861i \(0.389046\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.67597e9 −0.348066
\(732\) 0 0
\(733\) −1.73914e10 −1.63106 −0.815532 0.578712i \(-0.803555\pi\)
−0.815532 + 0.578712i \(0.803555\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.71338e9 −0.525723
\(738\) 0 0
\(739\) −8.22127e8 −0.0749347 −0.0374674 0.999298i \(-0.511929\pi\)
−0.0374674 + 0.999298i \(0.511929\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.44720e9 −0.576647 −0.288324 0.957533i \(-0.593098\pi\)
−0.288324 + 0.957533i \(0.593098\pi\)
\(744\) 0 0
\(745\) 1.06384e10 0.942608
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.25660e9 0.196231
\(750\) 0 0
\(751\) 1.83855e10 1.58393 0.791966 0.610565i \(-0.209058\pi\)
0.791966 + 0.610565i \(0.209058\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.19600e9 −0.185702
\(756\) 0 0
\(757\) −7.10090e9 −0.594946 −0.297473 0.954730i \(-0.596144\pi\)
−0.297473 + 0.954730i \(0.596144\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.39249e9 −0.443551 −0.221775 0.975098i \(-0.571185\pi\)
−0.221775 + 0.975098i \(0.571185\pi\)
\(762\) 0 0
\(763\) 8.79869e9 0.717104
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.34352e9 0.747699
\(768\) 0 0
\(769\) −7.24359e9 −0.574396 −0.287198 0.957871i \(-0.592724\pi\)
−0.287198 + 0.957871i \(0.592724\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.67950e10 1.30783 0.653916 0.756568i \(-0.273125\pi\)
0.653916 + 0.756568i \(0.273125\pi\)
\(774\) 0 0
\(775\) −1.48585e10 −1.14662
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.07190e9 0.232823
\(780\) 0 0
\(781\) 6.29826e9 0.473088
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.70255e10 1.25619
\(786\) 0 0
\(787\) −8.09876e9 −0.592253 −0.296126 0.955149i \(-0.595695\pi\)
−0.296126 + 0.955149i \(0.595695\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.63264e9 −0.548349
\(792\) 0 0
\(793\) −1.37730e9 −0.0980785
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.34199e10 1.63863 0.819315 0.573344i \(-0.194354\pi\)
0.819315 + 0.573344i \(0.194354\pi\)
\(798\) 0 0
\(799\) −5.66663e9 −0.393017
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.07647e9 0.550449
\(804\) 0 0
\(805\) 4.99937e9 0.337777
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.76599e10 −1.17265 −0.586326 0.810075i \(-0.699426\pi\)
−0.586326 + 0.810075i \(0.699426\pi\)
\(810\) 0 0
\(811\) 1.02969e10 0.677847 0.338924 0.940814i \(-0.389937\pi\)
0.338924 + 0.940814i \(0.389937\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.01276e10 0.655320
\(816\) 0 0
\(817\) −6.49633e9 −0.416764
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.55020e9 0.223899 0.111949 0.993714i \(-0.464291\pi\)
0.111949 + 0.993714i \(0.464291\pi\)
\(822\) 0 0
\(823\) 1.85370e10 1.15915 0.579574 0.814920i \(-0.303219\pi\)
0.579574 + 0.814920i \(0.303219\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.04188e9 0.0640543 0.0320271 0.999487i \(-0.489804\pi\)
0.0320271 + 0.999487i \(0.489804\pi\)
\(828\) 0 0
\(829\) 1.57283e10 0.958830 0.479415 0.877588i \(-0.340849\pi\)
0.479415 + 0.877588i \(0.340849\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.89008e9 0.113298
\(834\) 0 0
\(835\) 3.06470e10 1.82173
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.09602e10 −1.22526 −0.612632 0.790368i \(-0.709889\pi\)
−0.612632 + 0.790368i \(0.709889\pi\)
\(840\) 0 0
\(841\) −7.76450e9 −0.450119
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.29997e10 −0.741200
\(846\) 0 0
\(847\) 5.86377e8 0.0331578
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9.72187e9 0.540750
\(852\) 0 0
\(853\) 2.15633e10 1.18958 0.594789 0.803882i \(-0.297236\pi\)
0.594789 + 0.803882i \(0.297236\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.49287e9 −0.515187 −0.257593 0.966253i \(-0.582929\pi\)
−0.257593 + 0.966253i \(0.582929\pi\)
\(858\) 0 0
\(859\) −3.57195e10 −1.92278 −0.961389 0.275193i \(-0.911258\pi\)
−0.961389 + 0.275193i \(0.911258\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.36759e10 −1.78353 −0.891766 0.452496i \(-0.850534\pi\)
−0.891766 + 0.452496i \(0.850534\pi\)
\(864\) 0 0
\(865\) 4.93402e10 2.59205
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.13800e10 1.62212
\(870\) 0 0
\(871\) 6.56117e9 0.336448
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.13522e9 −0.107749
\(876\) 0 0
\(877\) 3.20092e10 1.60242 0.801210 0.598384i \(-0.204190\pi\)
0.801210 + 0.598384i \(0.204190\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.52093e10 −1.24207 −0.621035 0.783783i \(-0.713287\pi\)
−0.621035 + 0.783783i \(0.713287\pi\)
\(882\) 0 0
\(883\) −1.03766e9 −0.0507215 −0.0253608 0.999678i \(-0.508073\pi\)
−0.0253608 + 0.999678i \(0.508073\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.95294e10 −1.42076 −0.710381 0.703818i \(-0.751477\pi\)
−0.710381 + 0.703818i \(0.751477\pi\)
\(888\) 0 0
\(889\) 1.00811e10 0.481231
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.00143e10 −0.470587
\(894\) 0 0
\(895\) −3.11523e10 −1.45248
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.35444e10 −1.08076
\(900\) 0 0
\(901\) −1.25099e10 −0.569794
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.48174e10 −0.664513
\(906\) 0 0
\(907\) 3.81643e10 1.69837 0.849184 0.528097i \(-0.177094\pi\)
0.849184 + 0.528097i \(0.177094\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.65595e10 1.60209 0.801044 0.598606i \(-0.204278\pi\)
0.801044 + 0.598606i \(0.204278\pi\)
\(912\) 0 0
\(913\) 3.64839e10 1.58655
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.78902e9 0.333572
\(918\) 0 0
\(919\) −1.48793e9 −0.0632379 −0.0316189 0.999500i \(-0.510066\pi\)
−0.0316189 + 0.999500i \(0.510066\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.23284e9 −0.302763
\(924\) 0 0
\(925\) 1.53168e10 0.636314
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.22706e10 −1.32054 −0.660271 0.751027i \(-0.729559\pi\)
−0.660271 + 0.751027i \(0.729559\pi\)
\(930\) 0 0
\(931\) 3.34023e9 0.135660
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.76345e10 1.10563
\(936\) 0 0
\(937\) −3.58587e10 −1.42399 −0.711994 0.702185i \(-0.752208\pi\)
−0.711994 + 0.702185i \(0.752208\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.56425e10 1.39446 0.697228 0.716849i \(-0.254416\pi\)
0.697228 + 0.716849i \(0.254416\pi\)
\(942\) 0 0
\(943\) 4.22101e9 0.163918
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.98005e10 0.757621 0.378810 0.925474i \(-0.376333\pi\)
0.378810 + 0.925474i \(0.376333\pi\)
\(948\) 0 0
\(949\) −9.27492e9 −0.352272
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.17008e10 1.18644 0.593219 0.805041i \(-0.297857\pi\)
0.593219 + 0.805041i \(0.297857\pi\)
\(954\) 0 0
\(955\) 4.52365e10 1.68065
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.91832e9 −0.363139
\(960\) 0 0
\(961\) 3.09287e10 1.12416
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.04266e10 1.08995
\(966\) 0 0
\(967\) −3.87099e10 −1.37667 −0.688334 0.725394i \(-0.741657\pi\)
−0.688334 + 0.725394i \(0.741657\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.92284e9 0.242671 0.121335 0.992612i \(-0.461282\pi\)
0.121335 + 0.992612i \(0.461282\pi\)
\(972\) 0 0
\(973\) 1.56265e10 0.543836
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.23668e10 0.424254 0.212127 0.977242i \(-0.431961\pi\)
0.212127 + 0.977242i \(0.431961\pi\)
\(978\) 0 0
\(979\) 1.15046e10 0.391860
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.38110e9 −0.180690 −0.0903449 0.995911i \(-0.528797\pi\)
−0.0903449 + 0.995911i \(0.528797\pi\)
\(984\) 0 0
\(985\) −7.88107e10 −2.62760
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.92641e9 −0.293420
\(990\) 0 0
\(991\) 2.07275e10 0.676533 0.338267 0.941050i \(-0.390159\pi\)
0.338267 + 0.941050i \(0.390159\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.25700e8 −0.00726357
\(996\) 0 0
\(997\) 3.85694e10 1.23257 0.616283 0.787525i \(-0.288638\pi\)
0.616283 + 0.787525i \(0.288638\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.a.h.1.4 yes 4
3.2 odd 2 inner 252.8.a.h.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.a.h.1.1 4 3.2 odd 2 inner
252.8.a.h.1.4 yes 4 1.1 even 1 trivial