Properties

Label 2523.2.a.r.1.7
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.53422\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53422 q^{2} +1.00000 q^{3} +4.42225 q^{4} +1.08952 q^{5} +2.53422 q^{6} +1.73057 q^{7} +6.13851 q^{8} +1.00000 q^{9} +2.76107 q^{10} +6.29513 q^{11} +4.42225 q^{12} -1.27948 q^{13} +4.38564 q^{14} +1.08952 q^{15} +6.71181 q^{16} -5.08291 q^{17} +2.53422 q^{18} -6.52684 q^{19} +4.81811 q^{20} +1.73057 q^{21} +15.9532 q^{22} -4.52415 q^{23} +6.13851 q^{24} -3.81296 q^{25} -3.24249 q^{26} +1.00000 q^{27} +7.65302 q^{28} +2.76107 q^{30} -6.85487 q^{31} +4.73216 q^{32} +6.29513 q^{33} -12.8812 q^{34} +1.88548 q^{35} +4.42225 q^{36} +6.17424 q^{37} -16.5404 q^{38} -1.27948 q^{39} +6.68800 q^{40} +4.04550 q^{41} +4.38564 q^{42} +1.83124 q^{43} +27.8387 q^{44} +1.08952 q^{45} -11.4652 q^{46} +1.51649 q^{47} +6.71181 q^{48} -4.00512 q^{49} -9.66286 q^{50} -5.08291 q^{51} -5.65820 q^{52} -3.77409 q^{53} +2.53422 q^{54} +6.85864 q^{55} +10.6231 q^{56} -6.52684 q^{57} -8.72197 q^{59} +4.81811 q^{60} -3.08764 q^{61} -17.3717 q^{62} +1.73057 q^{63} -1.43131 q^{64} -1.39402 q^{65} +15.9532 q^{66} -2.39689 q^{67} -22.4779 q^{68} -4.52415 q^{69} +4.77822 q^{70} +9.34384 q^{71} +6.13851 q^{72} -1.79781 q^{73} +15.6469 q^{74} -3.81296 q^{75} -28.8633 q^{76} +10.8942 q^{77} -3.24249 q^{78} -2.86562 q^{79} +7.31262 q^{80} +1.00000 q^{81} +10.2522 q^{82} +6.59352 q^{83} +7.65302 q^{84} -5.53791 q^{85} +4.64077 q^{86} +38.6427 q^{88} +3.34552 q^{89} +2.76107 q^{90} -2.21424 q^{91} -20.0069 q^{92} -6.85487 q^{93} +3.84311 q^{94} -7.11109 q^{95} +4.73216 q^{96} +2.26753 q^{97} -10.1498 q^{98} +6.29513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.53422 1.79196 0.895981 0.444093i \(-0.146474\pi\)
0.895981 + 0.444093i \(0.146474\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.42225 2.21113
\(5\) 1.08952 0.487246 0.243623 0.969870i \(-0.421664\pi\)
0.243623 + 0.969870i \(0.421664\pi\)
\(6\) 2.53422 1.03459
\(7\) 1.73057 0.654094 0.327047 0.945008i \(-0.393946\pi\)
0.327047 + 0.945008i \(0.393946\pi\)
\(8\) 6.13851 2.17029
\(9\) 1.00000 0.333333
\(10\) 2.76107 0.873126
\(11\) 6.29513 1.89805 0.949027 0.315195i \(-0.102070\pi\)
0.949027 + 0.315195i \(0.102070\pi\)
\(12\) 4.42225 1.27659
\(13\) −1.27948 −0.354865 −0.177432 0.984133i \(-0.556779\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(14\) 4.38564 1.17211
\(15\) 1.08952 0.281312
\(16\) 6.71181 1.67795
\(17\) −5.08291 −1.23279 −0.616393 0.787439i \(-0.711407\pi\)
−0.616393 + 0.787439i \(0.711407\pi\)
\(18\) 2.53422 0.597321
\(19\) −6.52684 −1.49736 −0.748680 0.662931i \(-0.769312\pi\)
−0.748680 + 0.662931i \(0.769312\pi\)
\(20\) 4.81811 1.07736
\(21\) 1.73057 0.377642
\(22\) 15.9532 3.40124
\(23\) −4.52415 −0.943351 −0.471675 0.881772i \(-0.656351\pi\)
−0.471675 + 0.881772i \(0.656351\pi\)
\(24\) 6.13851 1.25302
\(25\) −3.81296 −0.762591
\(26\) −3.24249 −0.635904
\(27\) 1.00000 0.192450
\(28\) 7.65302 1.44629
\(29\) 0 0
\(30\) 2.76107 0.504100
\(31\) −6.85487 −1.23117 −0.615586 0.788070i \(-0.711081\pi\)
−0.615586 + 0.788070i \(0.711081\pi\)
\(32\) 4.73216 0.836535
\(33\) 6.29513 1.09584
\(34\) −12.8812 −2.20911
\(35\) 1.88548 0.318705
\(36\) 4.42225 0.737042
\(37\) 6.17424 1.01504 0.507519 0.861640i \(-0.330563\pi\)
0.507519 + 0.861640i \(0.330563\pi\)
\(38\) −16.5404 −2.68321
\(39\) −1.27948 −0.204881
\(40\) 6.68800 1.05747
\(41\) 4.04550 0.631801 0.315901 0.948792i \(-0.397693\pi\)
0.315901 + 0.948792i \(0.397693\pi\)
\(42\) 4.38564 0.676719
\(43\) 1.83124 0.279262 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(44\) 27.8387 4.19684
\(45\) 1.08952 0.162415
\(46\) −11.4652 −1.69045
\(47\) 1.51649 0.221203 0.110601 0.993865i \(-0.464722\pi\)
0.110601 + 0.993865i \(0.464722\pi\)
\(48\) 6.71181 0.968766
\(49\) −4.00512 −0.572160
\(50\) −9.66286 −1.36653
\(51\) −5.08291 −0.711750
\(52\) −5.65820 −0.784651
\(53\) −3.77409 −0.518411 −0.259206 0.965822i \(-0.583461\pi\)
−0.259206 + 0.965822i \(0.583461\pi\)
\(54\) 2.53422 0.344863
\(55\) 6.85864 0.924819
\(56\) 10.6231 1.41958
\(57\) −6.52684 −0.864502
\(58\) 0 0
\(59\) −8.72197 −1.13550 −0.567752 0.823200i \(-0.692187\pi\)
−0.567752 + 0.823200i \(0.692187\pi\)
\(60\) 4.81811 0.622015
\(61\) −3.08764 −0.395332 −0.197666 0.980269i \(-0.563336\pi\)
−0.197666 + 0.980269i \(0.563336\pi\)
\(62\) −17.3717 −2.20621
\(63\) 1.73057 0.218031
\(64\) −1.43131 −0.178914
\(65\) −1.39402 −0.172906
\(66\) 15.9532 1.96371
\(67\) −2.39689 −0.292826 −0.146413 0.989224i \(-0.546773\pi\)
−0.146413 + 0.989224i \(0.546773\pi\)
\(68\) −22.4779 −2.72585
\(69\) −4.52415 −0.544644
\(70\) 4.77822 0.571107
\(71\) 9.34384 1.10891 0.554455 0.832214i \(-0.312927\pi\)
0.554455 + 0.832214i \(0.312927\pi\)
\(72\) 6.13851 0.723430
\(73\) −1.79781 −0.210417 −0.105209 0.994450i \(-0.533551\pi\)
−0.105209 + 0.994450i \(0.533551\pi\)
\(74\) 15.6469 1.81891
\(75\) −3.81296 −0.440282
\(76\) −28.8633 −3.31085
\(77\) 10.8942 1.24151
\(78\) −3.24249 −0.367139
\(79\) −2.86562 −0.322407 −0.161204 0.986921i \(-0.551538\pi\)
−0.161204 + 0.986921i \(0.551538\pi\)
\(80\) 7.31262 0.817576
\(81\) 1.00000 0.111111
\(82\) 10.2522 1.13216
\(83\) 6.59352 0.723733 0.361866 0.932230i \(-0.382140\pi\)
0.361866 + 0.932230i \(0.382140\pi\)
\(84\) 7.65302 0.835013
\(85\) −5.53791 −0.600670
\(86\) 4.64077 0.500427
\(87\) 0 0
\(88\) 38.6427 4.11933
\(89\) 3.34552 0.354624 0.177312 0.984155i \(-0.443260\pi\)
0.177312 + 0.984155i \(0.443260\pi\)
\(90\) 2.76107 0.291042
\(91\) −2.21424 −0.232115
\(92\) −20.0069 −2.08587
\(93\) −6.85487 −0.710817
\(94\) 3.84311 0.396387
\(95\) −7.11109 −0.729583
\(96\) 4.73216 0.482974
\(97\) 2.26753 0.230233 0.115116 0.993352i \(-0.463276\pi\)
0.115116 + 0.993352i \(0.463276\pi\)
\(98\) −10.1498 −1.02529
\(99\) 6.29513 0.632685
\(100\) −16.8619 −1.68619
\(101\) 12.5571 1.24948 0.624741 0.780832i \(-0.285204\pi\)
0.624741 + 0.780832i \(0.285204\pi\)
\(102\) −12.8812 −1.27543
\(103\) 2.77536 0.273464 0.136732 0.990608i \(-0.456340\pi\)
0.136732 + 0.990608i \(0.456340\pi\)
\(104\) −7.85412 −0.770160
\(105\) 1.88548 0.184004
\(106\) −9.56436 −0.928973
\(107\) 9.95779 0.962656 0.481328 0.876540i \(-0.340155\pi\)
0.481328 + 0.876540i \(0.340155\pi\)
\(108\) 4.42225 0.425531
\(109\) −4.72545 −0.452616 −0.226308 0.974056i \(-0.572666\pi\)
−0.226308 + 0.974056i \(0.572666\pi\)
\(110\) 17.3813 1.65724
\(111\) 6.17424 0.586033
\(112\) 11.6153 1.09754
\(113\) −0.548457 −0.0515945 −0.0257973 0.999667i \(-0.508212\pi\)
−0.0257973 + 0.999667i \(0.508212\pi\)
\(114\) −16.5404 −1.54915
\(115\) −4.92913 −0.459644
\(116\) 0 0
\(117\) −1.27948 −0.118288
\(118\) −22.1034 −2.03478
\(119\) −8.79634 −0.806359
\(120\) 6.68800 0.610528
\(121\) 28.6287 2.60261
\(122\) −7.82476 −0.708420
\(123\) 4.04550 0.364771
\(124\) −30.3140 −2.72228
\(125\) −9.60185 −0.858816
\(126\) 4.38564 0.390704
\(127\) 14.2467 1.26419 0.632096 0.774890i \(-0.282195\pi\)
0.632096 + 0.774890i \(0.282195\pi\)
\(128\) −13.0916 −1.15714
\(129\) 1.83124 0.161232
\(130\) −3.53274 −0.309842
\(131\) 6.83805 0.597443 0.298722 0.954340i \(-0.403440\pi\)
0.298722 + 0.954340i \(0.403440\pi\)
\(132\) 27.8387 2.42304
\(133\) −11.2952 −0.979415
\(134\) −6.07423 −0.524733
\(135\) 1.08952 0.0937705
\(136\) −31.2015 −2.67551
\(137\) 13.4742 1.15118 0.575588 0.817740i \(-0.304773\pi\)
0.575588 + 0.817740i \(0.304773\pi\)
\(138\) −11.4652 −0.975981
\(139\) 11.7820 0.999334 0.499667 0.866218i \(-0.333456\pi\)
0.499667 + 0.866218i \(0.333456\pi\)
\(140\) 8.33808 0.704697
\(141\) 1.51649 0.127711
\(142\) 23.6793 1.98712
\(143\) −8.05451 −0.673552
\(144\) 6.71181 0.559317
\(145\) 0 0
\(146\) −4.55603 −0.377060
\(147\) −4.00512 −0.330337
\(148\) 27.3040 2.24438
\(149\) 0.761963 0.0624224 0.0312112 0.999513i \(-0.490064\pi\)
0.0312112 + 0.999513i \(0.490064\pi\)
\(150\) −9.66286 −0.788969
\(151\) 18.4366 1.50035 0.750176 0.661238i \(-0.229969\pi\)
0.750176 + 0.661238i \(0.229969\pi\)
\(152\) −40.0651 −3.24971
\(153\) −5.08291 −0.410929
\(154\) 27.6082 2.22473
\(155\) −7.46849 −0.599883
\(156\) −5.65820 −0.453018
\(157\) 10.9681 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(158\) −7.26210 −0.577741
\(159\) −3.77409 −0.299305
\(160\) 5.15576 0.407598
\(161\) −7.82937 −0.617041
\(162\) 2.53422 0.199107
\(163\) 23.8504 1.86811 0.934054 0.357133i \(-0.116246\pi\)
0.934054 + 0.357133i \(0.116246\pi\)
\(164\) 17.8902 1.39699
\(165\) 6.85864 0.533944
\(166\) 16.7094 1.29690
\(167\) −14.3878 −1.11336 −0.556679 0.830728i \(-0.687925\pi\)
−0.556679 + 0.830728i \(0.687925\pi\)
\(168\) 10.6231 0.819592
\(169\) −11.3629 −0.874071
\(170\) −14.0342 −1.07638
\(171\) −6.52684 −0.499120
\(172\) 8.09822 0.617484
\(173\) −3.94904 −0.300240 −0.150120 0.988668i \(-0.547966\pi\)
−0.150120 + 0.988668i \(0.547966\pi\)
\(174\) 0 0
\(175\) −6.59859 −0.498807
\(176\) 42.2517 3.18484
\(177\) −8.72197 −0.655584
\(178\) 8.47826 0.635473
\(179\) 16.4137 1.22682 0.613410 0.789765i \(-0.289797\pi\)
0.613410 + 0.789765i \(0.289797\pi\)
\(180\) 4.81811 0.359121
\(181\) −16.7532 −1.24525 −0.622626 0.782519i \(-0.713934\pi\)
−0.622626 + 0.782519i \(0.713934\pi\)
\(182\) −5.61135 −0.415941
\(183\) −3.08764 −0.228245
\(184\) −27.7716 −2.04735
\(185\) 6.72693 0.494574
\(186\) −17.3717 −1.27376
\(187\) −31.9976 −2.33989
\(188\) 6.70630 0.489107
\(189\) 1.73057 0.125881
\(190\) −18.0211 −1.30738
\(191\) −2.95004 −0.213457 −0.106729 0.994288i \(-0.534038\pi\)
−0.106729 + 0.994288i \(0.534038\pi\)
\(192\) −1.43131 −0.103296
\(193\) −4.88334 −0.351511 −0.175755 0.984434i \(-0.556237\pi\)
−0.175755 + 0.984434i \(0.556237\pi\)
\(194\) 5.74640 0.412568
\(195\) −1.39402 −0.0998275
\(196\) −17.7117 −1.26512
\(197\) −2.51855 −0.179439 −0.0897195 0.995967i \(-0.528597\pi\)
−0.0897195 + 0.995967i \(0.528597\pi\)
\(198\) 15.9532 1.13375
\(199\) 25.5517 1.81131 0.905655 0.424015i \(-0.139380\pi\)
0.905655 + 0.424015i \(0.139380\pi\)
\(200\) −23.4059 −1.65505
\(201\) −2.39689 −0.169063
\(202\) 31.8225 2.23903
\(203\) 0 0
\(204\) −22.4779 −1.57377
\(205\) 4.40764 0.307843
\(206\) 7.03336 0.490038
\(207\) −4.52415 −0.314450
\(208\) −8.58765 −0.595446
\(209\) −41.0873 −2.84207
\(210\) 4.77822 0.329729
\(211\) −1.84511 −0.127023 −0.0635114 0.997981i \(-0.520230\pi\)
−0.0635114 + 0.997981i \(0.520230\pi\)
\(212\) −16.6900 −1.14627
\(213\) 9.34384 0.640229
\(214\) 25.2352 1.72504
\(215\) 1.99517 0.136069
\(216\) 6.13851 0.417673
\(217\) −11.8628 −0.805303
\(218\) −11.9753 −0.811070
\(219\) −1.79781 −0.121484
\(220\) 30.3306 2.04489
\(221\) 6.50349 0.437472
\(222\) 15.6469 1.05015
\(223\) −24.0492 −1.61045 −0.805225 0.592969i \(-0.797956\pi\)
−0.805225 + 0.592969i \(0.797956\pi\)
\(224\) 8.18933 0.547173
\(225\) −3.81296 −0.254197
\(226\) −1.38991 −0.0924554
\(227\) −22.6399 −1.50267 −0.751333 0.659924i \(-0.770589\pi\)
−0.751333 + 0.659924i \(0.770589\pi\)
\(228\) −28.8633 −1.91152
\(229\) −13.8021 −0.912070 −0.456035 0.889962i \(-0.650731\pi\)
−0.456035 + 0.889962i \(0.650731\pi\)
\(230\) −12.4915 −0.823664
\(231\) 10.8942 0.716784
\(232\) 0 0
\(233\) −6.69816 −0.438811 −0.219405 0.975634i \(-0.570412\pi\)
−0.219405 + 0.975634i \(0.570412\pi\)
\(234\) −3.24249 −0.211968
\(235\) 1.65224 0.107780
\(236\) −38.5708 −2.51074
\(237\) −2.86562 −0.186142
\(238\) −22.2918 −1.44496
\(239\) 12.1625 0.786726 0.393363 0.919383i \(-0.371312\pi\)
0.393363 + 0.919383i \(0.371312\pi\)
\(240\) 7.31262 0.472027
\(241\) 2.65618 0.171099 0.0855497 0.996334i \(-0.472735\pi\)
0.0855497 + 0.996334i \(0.472735\pi\)
\(242\) 72.5513 4.66377
\(243\) 1.00000 0.0641500
\(244\) −13.6543 −0.874129
\(245\) −4.36364 −0.278783
\(246\) 10.2522 0.653655
\(247\) 8.35098 0.531360
\(248\) −42.0787 −2.67200
\(249\) 6.59352 0.417847
\(250\) −24.3332 −1.53896
\(251\) −22.7654 −1.43694 −0.718471 0.695557i \(-0.755157\pi\)
−0.718471 + 0.695557i \(0.755157\pi\)
\(252\) 7.65302 0.482095
\(253\) −28.4801 −1.79053
\(254\) 36.1043 2.26538
\(255\) −5.53791 −0.346797
\(256\) −30.3142 −1.89464
\(257\) 7.70838 0.480836 0.240418 0.970669i \(-0.422716\pi\)
0.240418 + 0.970669i \(0.422716\pi\)
\(258\) 4.64077 0.288922
\(259\) 10.6850 0.663931
\(260\) −6.16469 −0.382318
\(261\) 0 0
\(262\) 17.3291 1.07060
\(263\) −0.769558 −0.0474530 −0.0237265 0.999718i \(-0.507553\pi\)
−0.0237265 + 0.999718i \(0.507553\pi\)
\(264\) 38.6427 2.37830
\(265\) −4.11193 −0.252594
\(266\) −28.6244 −1.75507
\(267\) 3.34552 0.204742
\(268\) −10.5996 −0.647476
\(269\) 15.3466 0.935696 0.467848 0.883809i \(-0.345029\pi\)
0.467848 + 0.883809i \(0.345029\pi\)
\(270\) 2.76107 0.168033
\(271\) 15.7301 0.955538 0.477769 0.878485i \(-0.341446\pi\)
0.477769 + 0.878485i \(0.341446\pi\)
\(272\) −34.1155 −2.06856
\(273\) −2.21424 −0.134012
\(274\) 34.1465 2.06286
\(275\) −24.0031 −1.44744
\(276\) −20.0069 −1.20428
\(277\) −22.6255 −1.35944 −0.679718 0.733473i \(-0.737898\pi\)
−0.679718 + 0.733473i \(0.737898\pi\)
\(278\) 29.8581 1.79077
\(279\) −6.85487 −0.410391
\(280\) 11.5741 0.691682
\(281\) −22.0455 −1.31512 −0.657561 0.753401i \(-0.728412\pi\)
−0.657561 + 0.753401i \(0.728412\pi\)
\(282\) 3.84311 0.228854
\(283\) 5.18145 0.308005 0.154003 0.988070i \(-0.450784\pi\)
0.154003 + 0.988070i \(0.450784\pi\)
\(284\) 41.3208 2.45194
\(285\) −7.11109 −0.421225
\(286\) −20.4119 −1.20698
\(287\) 7.00103 0.413258
\(288\) 4.73216 0.278845
\(289\) 8.83596 0.519762
\(290\) 0 0
\(291\) 2.26753 0.132925
\(292\) −7.95035 −0.465259
\(293\) 3.76172 0.219762 0.109881 0.993945i \(-0.464953\pi\)
0.109881 + 0.993945i \(0.464953\pi\)
\(294\) −10.1498 −0.591951
\(295\) −9.50272 −0.553270
\(296\) 37.9006 2.20293
\(297\) 6.29513 0.365281
\(298\) 1.93098 0.111859
\(299\) 5.78857 0.334762
\(300\) −16.8619 −0.973520
\(301\) 3.16910 0.182664
\(302\) 46.7224 2.68857
\(303\) 12.5571 0.721389
\(304\) −43.8069 −2.51250
\(305\) −3.36403 −0.192624
\(306\) −12.8812 −0.736369
\(307\) −4.15007 −0.236857 −0.118428 0.992963i \(-0.537786\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(308\) 48.1768 2.74513
\(309\) 2.77536 0.157885
\(310\) −18.9268 −1.07497
\(311\) −8.20010 −0.464985 −0.232492 0.972598i \(-0.574688\pi\)
−0.232492 + 0.972598i \(0.574688\pi\)
\(312\) −7.85412 −0.444652
\(313\) −5.81526 −0.328698 −0.164349 0.986402i \(-0.552552\pi\)
−0.164349 + 0.986402i \(0.552552\pi\)
\(314\) 27.7956 1.56860
\(315\) 1.88548 0.106235
\(316\) −12.6725 −0.712883
\(317\) −11.0951 −0.623161 −0.311581 0.950220i \(-0.600858\pi\)
−0.311581 + 0.950220i \(0.600858\pi\)
\(318\) −9.56436 −0.536343
\(319\) 0 0
\(320\) −1.55944 −0.0871752
\(321\) 9.95779 0.555790
\(322\) −19.8413 −1.10571
\(323\) 33.1753 1.84593
\(324\) 4.42225 0.245681
\(325\) 4.87861 0.270617
\(326\) 60.4421 3.34758
\(327\) −4.72545 −0.261318
\(328\) 24.8334 1.37119
\(329\) 2.62439 0.144687
\(330\) 17.3813 0.956808
\(331\) 16.7926 0.923002 0.461501 0.887140i \(-0.347311\pi\)
0.461501 + 0.887140i \(0.347311\pi\)
\(332\) 29.1582 1.60026
\(333\) 6.17424 0.338346
\(334\) −36.4617 −1.99509
\(335\) −2.61144 −0.142678
\(336\) 11.6153 0.633665
\(337\) 21.0778 1.14818 0.574091 0.818791i \(-0.305355\pi\)
0.574091 + 0.818791i \(0.305355\pi\)
\(338\) −28.7961 −1.56630
\(339\) −0.548457 −0.0297881
\(340\) −24.4900 −1.32816
\(341\) −43.1523 −2.33683
\(342\) −16.5404 −0.894404
\(343\) −19.0452 −1.02834
\(344\) 11.2411 0.606080
\(345\) −4.92913 −0.265376
\(346\) −10.0077 −0.538018
\(347\) −31.0309 −1.66583 −0.832914 0.553402i \(-0.813329\pi\)
−0.832914 + 0.553402i \(0.813329\pi\)
\(348\) 0 0
\(349\) −35.7539 −1.91386 −0.956931 0.290315i \(-0.906240\pi\)
−0.956931 + 0.290315i \(0.906240\pi\)
\(350\) −16.7223 −0.893843
\(351\) −1.27948 −0.0682937
\(352\) 29.7895 1.58779
\(353\) −6.02826 −0.320852 −0.160426 0.987048i \(-0.551287\pi\)
−0.160426 + 0.987048i \(0.551287\pi\)
\(354\) −22.1034 −1.17478
\(355\) 10.1803 0.540312
\(356\) 14.7947 0.784118
\(357\) −8.79634 −0.465551
\(358\) 41.5959 2.19841
\(359\) −5.71397 −0.301572 −0.150786 0.988566i \(-0.548180\pi\)
−0.150786 + 0.988566i \(0.548180\pi\)
\(360\) 6.68800 0.352489
\(361\) 23.5997 1.24209
\(362\) −42.4561 −2.23145
\(363\) 28.6287 1.50262
\(364\) −9.79191 −0.513236
\(365\) −1.95874 −0.102525
\(366\) −7.82476 −0.409007
\(367\) 27.3435 1.42732 0.713658 0.700494i \(-0.247037\pi\)
0.713658 + 0.700494i \(0.247037\pi\)
\(368\) −30.3652 −1.58290
\(369\) 4.04550 0.210600
\(370\) 17.0475 0.886257
\(371\) −6.53133 −0.339090
\(372\) −30.3140 −1.57171
\(373\) −12.6216 −0.653522 −0.326761 0.945107i \(-0.605957\pi\)
−0.326761 + 0.945107i \(0.605957\pi\)
\(374\) −81.0888 −4.19300
\(375\) −9.60185 −0.495837
\(376\) 9.30899 0.480074
\(377\) 0 0
\(378\) 4.38564 0.225573
\(379\) −3.30059 −0.169540 −0.0847700 0.996401i \(-0.527016\pi\)
−0.0847700 + 0.996401i \(0.527016\pi\)
\(380\) −31.4471 −1.61320
\(381\) 14.2467 0.729881
\(382\) −7.47603 −0.382507
\(383\) 9.63804 0.492481 0.246240 0.969209i \(-0.420805\pi\)
0.246240 + 0.969209i \(0.420805\pi\)
\(384\) −13.0916 −0.668076
\(385\) 11.8694 0.604919
\(386\) −12.3754 −0.629893
\(387\) 1.83124 0.0930874
\(388\) 10.0276 0.509073
\(389\) 10.7987 0.547518 0.273759 0.961798i \(-0.411733\pi\)
0.273759 + 0.961798i \(0.411733\pi\)
\(390\) −3.53274 −0.178887
\(391\) 22.9958 1.16295
\(392\) −24.5855 −1.24175
\(393\) 6.83805 0.344934
\(394\) −6.38254 −0.321548
\(395\) −3.12213 −0.157092
\(396\) 27.8387 1.39895
\(397\) 29.7323 1.49222 0.746111 0.665822i \(-0.231919\pi\)
0.746111 + 0.665822i \(0.231919\pi\)
\(398\) 64.7535 3.24580
\(399\) −11.2952 −0.565466
\(400\) −25.5918 −1.27959
\(401\) 11.4349 0.571030 0.285515 0.958374i \(-0.407835\pi\)
0.285515 + 0.958374i \(0.407835\pi\)
\(402\) −6.07423 −0.302955
\(403\) 8.77069 0.436899
\(404\) 55.5309 2.76276
\(405\) 1.08952 0.0541384
\(406\) 0 0
\(407\) 38.8677 1.92660
\(408\) −31.2015 −1.54470
\(409\) 29.9586 1.48136 0.740679 0.671859i \(-0.234504\pi\)
0.740679 + 0.671859i \(0.234504\pi\)
\(410\) 11.1699 0.551642
\(411\) 13.4742 0.664632
\(412\) 12.2733 0.604664
\(413\) −15.0940 −0.742727
\(414\) −11.4652 −0.563483
\(415\) 7.18374 0.352636
\(416\) −6.05471 −0.296857
\(417\) 11.7820 0.576966
\(418\) −104.124 −5.09288
\(419\) −20.3911 −0.996168 −0.498084 0.867129i \(-0.665963\pi\)
−0.498084 + 0.867129i \(0.665963\pi\)
\(420\) 8.33808 0.406857
\(421\) −22.9880 −1.12037 −0.560183 0.828369i \(-0.689269\pi\)
−0.560183 + 0.828369i \(0.689269\pi\)
\(422\) −4.67591 −0.227620
\(423\) 1.51649 0.0737342
\(424\) −23.1673 −1.12510
\(425\) 19.3809 0.940112
\(426\) 23.6793 1.14727
\(427\) −5.34339 −0.258585
\(428\) 44.0359 2.12855
\(429\) −8.05451 −0.388876
\(430\) 5.05619 0.243831
\(431\) −4.04708 −0.194941 −0.0974704 0.995238i \(-0.531075\pi\)
−0.0974704 + 0.995238i \(0.531075\pi\)
\(432\) 6.71181 0.322922
\(433\) 2.62955 0.126368 0.0631841 0.998002i \(-0.479874\pi\)
0.0631841 + 0.998002i \(0.479874\pi\)
\(434\) −30.0630 −1.44307
\(435\) 0 0
\(436\) −20.8971 −1.00079
\(437\) 29.5284 1.41254
\(438\) −4.55603 −0.217695
\(439\) −26.0095 −1.24137 −0.620683 0.784061i \(-0.713145\pi\)
−0.620683 + 0.784061i \(0.713145\pi\)
\(440\) 42.1018 2.00713
\(441\) −4.00512 −0.190720
\(442\) 16.4813 0.783934
\(443\) 18.8152 0.893935 0.446968 0.894550i \(-0.352504\pi\)
0.446968 + 0.894550i \(0.352504\pi\)
\(444\) 27.3040 1.29579
\(445\) 3.64499 0.172789
\(446\) −60.9458 −2.88587
\(447\) 0.761963 0.0360396
\(448\) −2.47699 −0.117027
\(449\) 12.3698 0.583767 0.291883 0.956454i \(-0.405718\pi\)
0.291883 + 0.956454i \(0.405718\pi\)
\(450\) −9.66286 −0.455511
\(451\) 25.4670 1.19919
\(452\) −2.42542 −0.114082
\(453\) 18.4366 0.866229
\(454\) −57.3745 −2.69272
\(455\) −2.41244 −0.113097
\(456\) −40.0651 −1.87622
\(457\) −20.1273 −0.941514 −0.470757 0.882263i \(-0.656019\pi\)
−0.470757 + 0.882263i \(0.656019\pi\)
\(458\) −34.9776 −1.63440
\(459\) −5.08291 −0.237250
\(460\) −21.7979 −1.01633
\(461\) 19.7785 0.921175 0.460587 0.887614i \(-0.347639\pi\)
0.460587 + 0.887614i \(0.347639\pi\)
\(462\) 27.6082 1.28445
\(463\) 2.22268 0.103297 0.0516484 0.998665i \(-0.483552\pi\)
0.0516484 + 0.998665i \(0.483552\pi\)
\(464\) 0 0
\(465\) −7.46849 −0.346343
\(466\) −16.9746 −0.786332
\(467\) 4.63380 0.214427 0.107213 0.994236i \(-0.465807\pi\)
0.107213 + 0.994236i \(0.465807\pi\)
\(468\) −5.65820 −0.261550
\(469\) −4.14798 −0.191536
\(470\) 4.18713 0.193138
\(471\) 10.9681 0.505385
\(472\) −53.5399 −2.46437
\(473\) 11.5279 0.530054
\(474\) −7.26210 −0.333559
\(475\) 24.8866 1.14187
\(476\) −38.8996 −1.78296
\(477\) −3.77409 −0.172804
\(478\) 30.8224 1.40978
\(479\) −9.50600 −0.434340 −0.217170 0.976134i \(-0.569683\pi\)
−0.217170 + 0.976134i \(0.569683\pi\)
\(480\) 5.15576 0.235327
\(481\) −7.89983 −0.360201
\(482\) 6.73132 0.306603
\(483\) −7.82937 −0.356249
\(484\) 126.603 5.75469
\(485\) 2.47051 0.112180
\(486\) 2.53422 0.114954
\(487\) 7.59754 0.344278 0.172139 0.985073i \(-0.444932\pi\)
0.172139 + 0.985073i \(0.444932\pi\)
\(488\) −18.9535 −0.857986
\(489\) 23.8504 1.07855
\(490\) −11.0584 −0.499568
\(491\) −22.5226 −1.01643 −0.508216 0.861230i \(-0.669695\pi\)
−0.508216 + 0.861230i \(0.669695\pi\)
\(492\) 17.8902 0.806554
\(493\) 0 0
\(494\) 21.1632 0.952177
\(495\) 6.85864 0.308273
\(496\) −46.0086 −2.06585
\(497\) 16.1702 0.725332
\(498\) 16.7094 0.748766
\(499\) −28.7796 −1.28835 −0.644176 0.764878i \(-0.722799\pi\)
−0.644176 + 0.764878i \(0.722799\pi\)
\(500\) −42.4618 −1.89895
\(501\) −14.3878 −0.642798
\(502\) −57.6925 −2.57494
\(503\) −5.00532 −0.223176 −0.111588 0.993755i \(-0.535594\pi\)
−0.111588 + 0.993755i \(0.535594\pi\)
\(504\) 10.6231 0.473192
\(505\) 13.6812 0.608805
\(506\) −72.1748 −3.20856
\(507\) −11.3629 −0.504645
\(508\) 63.0026 2.79529
\(509\) 4.98133 0.220794 0.110397 0.993888i \(-0.464788\pi\)
0.110397 + 0.993888i \(0.464788\pi\)
\(510\) −14.0342 −0.621447
\(511\) −3.11123 −0.137633
\(512\) −50.6397 −2.23798
\(513\) −6.52684 −0.288167
\(514\) 19.5347 0.861639
\(515\) 3.02380 0.133244
\(516\) 8.09822 0.356504
\(517\) 9.54650 0.419855
\(518\) 27.0780 1.18974
\(519\) −3.94904 −0.173343
\(520\) −8.55718 −0.375257
\(521\) 4.54404 0.199078 0.0995389 0.995034i \(-0.468263\pi\)
0.0995389 + 0.995034i \(0.468263\pi\)
\(522\) 0 0
\(523\) −3.08967 −0.135102 −0.0675510 0.997716i \(-0.521519\pi\)
−0.0675510 + 0.997716i \(0.521519\pi\)
\(524\) 30.2396 1.32102
\(525\) −6.59859 −0.287986
\(526\) −1.95023 −0.0850339
\(527\) 34.8427 1.51777
\(528\) 42.2517 1.83877
\(529\) −2.53205 −0.110089
\(530\) −10.4205 −0.452638
\(531\) −8.72197 −0.378501
\(532\) −49.9501 −2.16561
\(533\) −5.17615 −0.224204
\(534\) 8.47826 0.366890
\(535\) 10.8492 0.469050
\(536\) −14.7133 −0.635518
\(537\) 16.4137 0.708305
\(538\) 38.8915 1.67673
\(539\) −25.2128 −1.08599
\(540\) 4.81811 0.207338
\(541\) 21.4608 0.922670 0.461335 0.887226i \(-0.347371\pi\)
0.461335 + 0.887226i \(0.347371\pi\)
\(542\) 39.8636 1.71229
\(543\) −16.7532 −0.718947
\(544\) −24.0531 −1.03127
\(545\) −5.14845 −0.220535
\(546\) −5.61135 −0.240144
\(547\) −14.5151 −0.620619 −0.310309 0.950636i \(-0.600433\pi\)
−0.310309 + 0.950636i \(0.600433\pi\)
\(548\) 59.5862 2.54540
\(549\) −3.08764 −0.131777
\(550\) −60.8290 −2.59376
\(551\) 0 0
\(552\) −27.7716 −1.18204
\(553\) −4.95916 −0.210885
\(554\) −57.3380 −2.43606
\(555\) 6.72693 0.285542
\(556\) 52.1029 2.20965
\(557\) 24.1558 1.02351 0.511757 0.859130i \(-0.328995\pi\)
0.511757 + 0.859130i \(0.328995\pi\)
\(558\) −17.3717 −0.735404
\(559\) −2.34305 −0.0991003
\(560\) 12.6550 0.534772
\(561\) −31.9976 −1.35094
\(562\) −55.8680 −2.35665
\(563\) −7.54185 −0.317851 −0.158926 0.987291i \(-0.550803\pi\)
−0.158926 + 0.987291i \(0.550803\pi\)
\(564\) 6.70630 0.282386
\(565\) −0.597553 −0.0251392
\(566\) 13.1309 0.551933
\(567\) 1.73057 0.0726772
\(568\) 57.3572 2.40666
\(569\) −20.0507 −0.840568 −0.420284 0.907393i \(-0.638070\pi\)
−0.420284 + 0.907393i \(0.638070\pi\)
\(570\) −18.0211 −0.754819
\(571\) −4.55564 −0.190648 −0.0953239 0.995446i \(-0.530389\pi\)
−0.0953239 + 0.995446i \(0.530389\pi\)
\(572\) −35.6191 −1.48931
\(573\) −2.95004 −0.123240
\(574\) 17.7421 0.740542
\(575\) 17.2504 0.719391
\(576\) −1.43131 −0.0596380
\(577\) 19.6367 0.817485 0.408742 0.912650i \(-0.365967\pi\)
0.408742 + 0.912650i \(0.365967\pi\)
\(578\) 22.3922 0.931394
\(579\) −4.88334 −0.202945
\(580\) 0 0
\(581\) 11.4106 0.473390
\(582\) 5.74640 0.238196
\(583\) −23.7584 −0.983972
\(584\) −11.0358 −0.456667
\(585\) −1.39402 −0.0576355
\(586\) 9.53300 0.393805
\(587\) −40.1991 −1.65919 −0.829596 0.558364i \(-0.811429\pi\)
−0.829596 + 0.558364i \(0.811429\pi\)
\(588\) −17.7117 −0.730417
\(589\) 44.7407 1.84351
\(590\) −24.0819 −0.991438
\(591\) −2.51855 −0.103599
\(592\) 41.4403 1.70319
\(593\) 45.9625 1.88746 0.943728 0.330724i \(-0.107293\pi\)
0.943728 + 0.330724i \(0.107293\pi\)
\(594\) 15.9532 0.654569
\(595\) −9.58374 −0.392895
\(596\) 3.36959 0.138024
\(597\) 25.5517 1.04576
\(598\) 14.6695 0.599880
\(599\) −10.0554 −0.410853 −0.205426 0.978673i \(-0.565858\pi\)
−0.205426 + 0.978673i \(0.565858\pi\)
\(600\) −23.4059 −0.955541
\(601\) −1.22427 −0.0499390 −0.0249695 0.999688i \(-0.507949\pi\)
−0.0249695 + 0.999688i \(0.507949\pi\)
\(602\) 8.03118 0.327327
\(603\) −2.39689 −0.0976088
\(604\) 81.5315 3.31747
\(605\) 31.1914 1.26811
\(606\) 31.8225 1.29270
\(607\) 30.7767 1.24919 0.624593 0.780950i \(-0.285265\pi\)
0.624593 + 0.780950i \(0.285265\pi\)
\(608\) −30.8860 −1.25259
\(609\) 0 0
\(610\) −8.52519 −0.345175
\(611\) −1.94032 −0.0784970
\(612\) −22.4779 −0.908615
\(613\) −7.90846 −0.319420 −0.159710 0.987164i \(-0.551056\pi\)
−0.159710 + 0.987164i \(0.551056\pi\)
\(614\) −10.5172 −0.424438
\(615\) 4.40764 0.177733
\(616\) 66.8740 2.69443
\(617\) −12.8000 −0.515308 −0.257654 0.966237i \(-0.582949\pi\)
−0.257654 + 0.966237i \(0.582949\pi\)
\(618\) 7.03336 0.282923
\(619\) −42.4563 −1.70646 −0.853230 0.521534i \(-0.825360\pi\)
−0.853230 + 0.521534i \(0.825360\pi\)
\(620\) −33.0275 −1.32642
\(621\) −4.52415 −0.181548
\(622\) −20.7808 −0.833235
\(623\) 5.78965 0.231958
\(624\) −8.58765 −0.343781
\(625\) 8.60343 0.344137
\(626\) −14.7371 −0.589014
\(627\) −41.0873 −1.64087
\(628\) 48.5039 1.93552
\(629\) −31.3831 −1.25133
\(630\) 4.77822 0.190369
\(631\) 44.0652 1.75421 0.877104 0.480300i \(-0.159472\pi\)
0.877104 + 0.480300i \(0.159472\pi\)
\(632\) −17.5906 −0.699718
\(633\) −1.84511 −0.0733366
\(634\) −28.1173 −1.11668
\(635\) 15.5220 0.615972
\(636\) −16.6900 −0.661801
\(637\) 5.12449 0.203040
\(638\) 0 0
\(639\) 9.34384 0.369636
\(640\) −14.2635 −0.563813
\(641\) −40.3894 −1.59528 −0.797642 0.603131i \(-0.793920\pi\)
−0.797642 + 0.603131i \(0.793920\pi\)
\(642\) 25.2352 0.995954
\(643\) 7.69076 0.303294 0.151647 0.988435i \(-0.451542\pi\)
0.151647 + 0.988435i \(0.451542\pi\)
\(644\) −34.6234 −1.36435
\(645\) 1.99517 0.0785597
\(646\) 84.0735 3.30783
\(647\) −24.5624 −0.965649 −0.482824 0.875717i \(-0.660389\pi\)
−0.482824 + 0.875717i \(0.660389\pi\)
\(648\) 6.13851 0.241143
\(649\) −54.9060 −2.15525
\(650\) 12.3635 0.484935
\(651\) −11.8628 −0.464942
\(652\) 105.472 4.13062
\(653\) 26.6658 1.04351 0.521756 0.853095i \(-0.325277\pi\)
0.521756 + 0.853095i \(0.325277\pi\)
\(654\) −11.9753 −0.468272
\(655\) 7.45016 0.291102
\(656\) 27.1526 1.06013
\(657\) −1.79781 −0.0701391
\(658\) 6.65078 0.259274
\(659\) −12.2372 −0.476692 −0.238346 0.971180i \(-0.576605\pi\)
−0.238346 + 0.971180i \(0.576605\pi\)
\(660\) 30.3306 1.18062
\(661\) 40.4225 1.57225 0.786126 0.618067i \(-0.212084\pi\)
0.786126 + 0.618067i \(0.212084\pi\)
\(662\) 42.5560 1.65398
\(663\) 6.50349 0.252575
\(664\) 40.4744 1.57071
\(665\) −12.3063 −0.477216
\(666\) 15.6469 0.606303
\(667\) 0 0
\(668\) −63.6263 −2.46178
\(669\) −24.0492 −0.929794
\(670\) −6.61796 −0.255674
\(671\) −19.4371 −0.750362
\(672\) 8.18933 0.315910
\(673\) 48.1741 1.85698 0.928488 0.371362i \(-0.121109\pi\)
0.928488 + 0.371362i \(0.121109\pi\)
\(674\) 53.4158 2.05750
\(675\) −3.81296 −0.146761
\(676\) −50.2497 −1.93268
\(677\) 2.26329 0.0869852 0.0434926 0.999054i \(-0.486152\pi\)
0.0434926 + 0.999054i \(0.486152\pi\)
\(678\) −1.38991 −0.0533792
\(679\) 3.92412 0.150594
\(680\) −33.9945 −1.30363
\(681\) −22.6399 −0.867564
\(682\) −109.357 −4.18751
\(683\) −27.9688 −1.07020 −0.535099 0.844789i \(-0.679726\pi\)
−0.535099 + 0.844789i \(0.679726\pi\)
\(684\) −28.8633 −1.10362
\(685\) 14.6803 0.560906
\(686\) −48.2645 −1.84275
\(687\) −13.8021 −0.526584
\(688\) 12.2910 0.468589
\(689\) 4.82889 0.183966
\(690\) −12.4915 −0.475543
\(691\) −11.9344 −0.454006 −0.227003 0.973894i \(-0.572893\pi\)
−0.227003 + 0.973894i \(0.572893\pi\)
\(692\) −17.4636 −0.663868
\(693\) 10.8942 0.413835
\(694\) −78.6391 −2.98510
\(695\) 12.8366 0.486921
\(696\) 0 0
\(697\) −20.5629 −0.778876
\(698\) −90.6081 −3.42957
\(699\) −6.69816 −0.253348
\(700\) −29.1806 −1.10292
\(701\) −3.43744 −0.129830 −0.0649152 0.997891i \(-0.520678\pi\)
−0.0649152 + 0.997891i \(0.520678\pi\)
\(702\) −3.24249 −0.122380
\(703\) −40.2983 −1.51988
\(704\) −9.01030 −0.339589
\(705\) 1.65224 0.0622269
\(706\) −15.2769 −0.574954
\(707\) 21.7310 0.817280
\(708\) −38.5708 −1.44958
\(709\) −26.5487 −0.997058 −0.498529 0.866873i \(-0.666126\pi\)
−0.498529 + 0.866873i \(0.666126\pi\)
\(710\) 25.7990 0.968218
\(711\) −2.86562 −0.107469
\(712\) 20.5365 0.769637
\(713\) 31.0125 1.16143
\(714\) −22.2918 −0.834250
\(715\) −8.77551 −0.328186
\(716\) 72.5857 2.71265
\(717\) 12.1625 0.454217
\(718\) −14.4804 −0.540405
\(719\) −31.1862 −1.16305 −0.581524 0.813530i \(-0.697543\pi\)
−0.581524 + 0.813530i \(0.697543\pi\)
\(720\) 7.31262 0.272525
\(721\) 4.80296 0.178872
\(722\) 59.8067 2.22578
\(723\) 2.65618 0.0987843
\(724\) −74.0867 −2.75341
\(725\) 0 0
\(726\) 72.5513 2.69263
\(727\) 17.1516 0.636119 0.318060 0.948071i \(-0.396969\pi\)
0.318060 + 0.948071i \(0.396969\pi\)
\(728\) −13.5921 −0.503757
\(729\) 1.00000 0.0370370
\(730\) −4.96386 −0.183721
\(731\) −9.30805 −0.344271
\(732\) −13.6543 −0.504679
\(733\) 21.3935 0.790186 0.395093 0.918641i \(-0.370712\pi\)
0.395093 + 0.918641i \(0.370712\pi\)
\(734\) 69.2942 2.55770
\(735\) −4.36364 −0.160955
\(736\) −21.4090 −0.789146
\(737\) −15.0887 −0.555800
\(738\) 10.2522 0.377388
\(739\) −17.3296 −0.637478 −0.318739 0.947842i \(-0.603259\pi\)
−0.318739 + 0.947842i \(0.603259\pi\)
\(740\) 29.7482 1.09356
\(741\) 8.35098 0.306781
\(742\) −16.5518 −0.607636
\(743\) −52.1369 −1.91272 −0.956358 0.292197i \(-0.905614\pi\)
−0.956358 + 0.292197i \(0.905614\pi\)
\(744\) −42.0787 −1.54268
\(745\) 0.830170 0.0304151
\(746\) −31.9859 −1.17109
\(747\) 6.59352 0.241244
\(748\) −141.501 −5.17380
\(749\) 17.2327 0.629668
\(750\) −24.3332 −0.888521
\(751\) 23.9867 0.875288 0.437644 0.899148i \(-0.355813\pi\)
0.437644 + 0.899148i \(0.355813\pi\)
\(752\) 10.1784 0.371168
\(753\) −22.7654 −0.829618
\(754\) 0 0
\(755\) 20.0870 0.731041
\(756\) 7.65302 0.278338
\(757\) 47.4501 1.72460 0.862301 0.506395i \(-0.169022\pi\)
0.862301 + 0.506395i \(0.169022\pi\)
\(758\) −8.36441 −0.303809
\(759\) −28.4801 −1.03376
\(760\) −43.6515 −1.58341
\(761\) 38.7137 1.40337 0.701684 0.712488i \(-0.252432\pi\)
0.701684 + 0.712488i \(0.252432\pi\)
\(762\) 36.1043 1.30792
\(763\) −8.17772 −0.296053
\(764\) −13.0458 −0.471981
\(765\) −5.53791 −0.200223
\(766\) 24.4249 0.882507
\(767\) 11.1596 0.402950
\(768\) −30.3142 −1.09387
\(769\) 42.9530 1.54893 0.774463 0.632619i \(-0.218020\pi\)
0.774463 + 0.632619i \(0.218020\pi\)
\(770\) 30.0795 1.08399
\(771\) 7.70838 0.277611
\(772\) −21.5954 −0.777234
\(773\) 28.2216 1.01506 0.507531 0.861634i \(-0.330558\pi\)
0.507531 + 0.861634i \(0.330558\pi\)
\(774\) 4.64077 0.166809
\(775\) 26.1373 0.938881
\(776\) 13.9192 0.499672
\(777\) 10.6850 0.383321
\(778\) 27.3664 0.981132
\(779\) −26.4044 −0.946034
\(780\) −6.16469 −0.220731
\(781\) 58.8207 2.10477
\(782\) 58.2765 2.08396
\(783\) 0 0
\(784\) −26.8816 −0.960058
\(785\) 11.9500 0.426512
\(786\) 17.3291 0.618109
\(787\) 13.3827 0.477042 0.238521 0.971137i \(-0.423337\pi\)
0.238521 + 0.971137i \(0.423337\pi\)
\(788\) −11.1377 −0.396762
\(789\) −0.769558 −0.0273970
\(790\) −7.91216 −0.281502
\(791\) −0.949145 −0.0337477
\(792\) 38.6427 1.37311
\(793\) 3.95059 0.140289
\(794\) 75.3481 2.67400
\(795\) −4.11193 −0.145835
\(796\) 112.996 4.00503
\(797\) −29.7230 −1.05284 −0.526421 0.850224i \(-0.676466\pi\)
−0.526421 + 0.850224i \(0.676466\pi\)
\(798\) −28.6244 −1.01329
\(799\) −7.70818 −0.272696
\(800\) −18.0435 −0.637934
\(801\) 3.34552 0.118208
\(802\) 28.9784 1.02326
\(803\) −11.3174 −0.399383
\(804\) −10.5996 −0.373820
\(805\) −8.53021 −0.300651
\(806\) 22.2268 0.782907
\(807\) 15.3466 0.540224
\(808\) 77.0822 2.71174
\(809\) −46.8802 −1.64822 −0.824111 0.566429i \(-0.808325\pi\)
−0.824111 + 0.566429i \(0.808325\pi\)
\(810\) 2.76107 0.0970140
\(811\) 5.86820 0.206060 0.103030 0.994678i \(-0.467146\pi\)
0.103030 + 0.994678i \(0.467146\pi\)
\(812\) 0 0
\(813\) 15.7301 0.551680
\(814\) 98.4990 3.45239
\(815\) 25.9854 0.910228
\(816\) −34.1155 −1.19428
\(817\) −11.9522 −0.418156
\(818\) 75.9216 2.65454
\(819\) −2.21424 −0.0773717
\(820\) 19.4917 0.680679
\(821\) −22.3264 −0.779198 −0.389599 0.920985i \(-0.627386\pi\)
−0.389599 + 0.920985i \(0.627386\pi\)
\(822\) 34.1465 1.19099
\(823\) −18.4220 −0.642152 −0.321076 0.947053i \(-0.604045\pi\)
−0.321076 + 0.947053i \(0.604045\pi\)
\(824\) 17.0366 0.593497
\(825\) −24.0031 −0.835679
\(826\) −38.2514 −1.33094
\(827\) 28.3783 0.986809 0.493404 0.869800i \(-0.335752\pi\)
0.493404 + 0.869800i \(0.335752\pi\)
\(828\) −20.0069 −0.695289
\(829\) −9.92857 −0.344833 −0.172417 0.985024i \(-0.555158\pi\)
−0.172417 + 0.985024i \(0.555158\pi\)
\(830\) 18.2051 0.631910
\(831\) −22.6255 −0.784871
\(832\) 1.83134 0.0634903
\(833\) 20.3577 0.705352
\(834\) 29.8581 1.03390
\(835\) −15.6757 −0.542479
\(836\) −181.699 −6.28418
\(837\) −6.85487 −0.236939
\(838\) −51.6753 −1.78509
\(839\) 52.9639 1.82852 0.914259 0.405130i \(-0.132774\pi\)
0.914259 + 0.405130i \(0.132774\pi\)
\(840\) 11.5741 0.399343
\(841\) 0 0
\(842\) −58.2565 −2.00765
\(843\) −22.0455 −0.759286
\(844\) −8.15955 −0.280863
\(845\) −12.3801 −0.425888
\(846\) 3.84311 0.132129
\(847\) 49.5440 1.70235
\(848\) −25.3310 −0.869870
\(849\) 5.18145 0.177827
\(850\) 49.1154 1.68464
\(851\) −27.9332 −0.957538
\(852\) 41.3208 1.41563
\(853\) 44.7737 1.53302 0.766512 0.642230i \(-0.221991\pi\)
0.766512 + 0.642230i \(0.221991\pi\)
\(854\) −13.5413 −0.463374
\(855\) −7.11109 −0.243194
\(856\) 61.1260 2.08924
\(857\) 0.211298 0.00721779 0.00360889 0.999993i \(-0.498851\pi\)
0.00360889 + 0.999993i \(0.498851\pi\)
\(858\) −20.4119 −0.696850
\(859\) 56.0665 1.91296 0.956482 0.291790i \(-0.0942508\pi\)
0.956482 + 0.291790i \(0.0942508\pi\)
\(860\) 8.82314 0.300866
\(861\) 7.00103 0.238594
\(862\) −10.2562 −0.349326
\(863\) 26.3407 0.896647 0.448323 0.893871i \(-0.352021\pi\)
0.448323 + 0.893871i \(0.352021\pi\)
\(864\) 4.73216 0.160991
\(865\) −4.30253 −0.146291
\(866\) 6.66385 0.226447
\(867\) 8.83596 0.300085
\(868\) −52.4605 −1.78063
\(869\) −18.0394 −0.611946
\(870\) 0 0
\(871\) 3.06678 0.103914
\(872\) −29.0072 −0.982308
\(873\) 2.26753 0.0767442
\(874\) 74.8314 2.53121
\(875\) −16.6167 −0.561746
\(876\) −7.95035 −0.268617
\(877\) 33.6648 1.13678 0.568390 0.822759i \(-0.307566\pi\)
0.568390 + 0.822759i \(0.307566\pi\)
\(878\) −65.9138 −2.22448
\(879\) 3.76172 0.126880
\(880\) 46.0339 1.55180
\(881\) −16.4282 −0.553481 −0.276741 0.960945i \(-0.589254\pi\)
−0.276741 + 0.960945i \(0.589254\pi\)
\(882\) −10.1498 −0.341763
\(883\) 4.29020 0.144377 0.0721884 0.997391i \(-0.477002\pi\)
0.0721884 + 0.997391i \(0.477002\pi\)
\(884\) 28.7601 0.967306
\(885\) −9.50272 −0.319430
\(886\) 47.6817 1.60190
\(887\) −39.5279 −1.32722 −0.663608 0.748081i \(-0.730976\pi\)
−0.663608 + 0.748081i \(0.730976\pi\)
\(888\) 37.9006 1.27186
\(889\) 24.6550 0.826901
\(890\) 9.23719 0.309631
\(891\) 6.29513 0.210895
\(892\) −106.351 −3.56091
\(893\) −9.89789 −0.331220
\(894\) 1.93098 0.0645816
\(895\) 17.8830 0.597763
\(896\) −22.6559 −0.756880
\(897\) 5.78857 0.193275
\(898\) 31.3477 1.04609
\(899\) 0 0
\(900\) −16.8619 −0.562062
\(901\) 19.1834 0.639090
\(902\) 64.5388 2.14891
\(903\) 3.16910 0.105461
\(904\) −3.36671 −0.111975
\(905\) −18.2528 −0.606744
\(906\) 46.7224 1.55225
\(907\) 27.1253 0.900681 0.450340 0.892857i \(-0.351303\pi\)
0.450340 + 0.892857i \(0.351303\pi\)
\(908\) −100.119 −3.32258
\(909\) 12.5571 0.416494
\(910\) −6.11365 −0.202666
\(911\) −12.8679 −0.426333 −0.213166 0.977016i \(-0.568378\pi\)
−0.213166 + 0.977016i \(0.568378\pi\)
\(912\) −43.8069 −1.45059
\(913\) 41.5071 1.37368
\(914\) −51.0069 −1.68716
\(915\) −3.36403 −0.111212
\(916\) −61.0365 −2.01670
\(917\) 11.8337 0.390784
\(918\) −12.8812 −0.425143
\(919\) −23.3758 −0.771097 −0.385548 0.922688i \(-0.625988\pi\)
−0.385548 + 0.922688i \(0.625988\pi\)
\(920\) −30.2575 −0.997561
\(921\) −4.15007 −0.136749
\(922\) 50.1229 1.65071
\(923\) −11.9553 −0.393513
\(924\) 48.1768 1.58490
\(925\) −23.5421 −0.774060
\(926\) 5.63276 0.185104
\(927\) 2.77536 0.0911548
\(928\) 0 0
\(929\) −6.68335 −0.219274 −0.109637 0.993972i \(-0.534969\pi\)
−0.109637 + 0.993972i \(0.534969\pi\)
\(930\) −18.9268 −0.620633
\(931\) 26.1408 0.856731
\(932\) −29.6209 −0.970266
\(933\) −8.20010 −0.268459
\(934\) 11.7430 0.384244
\(935\) −34.8618 −1.14010
\(936\) −7.85412 −0.256720
\(937\) −35.4245 −1.15727 −0.578633 0.815588i \(-0.696414\pi\)
−0.578633 + 0.815588i \(0.696414\pi\)
\(938\) −10.5119 −0.343225
\(939\) −5.81526 −0.189774
\(940\) 7.30661 0.238315
\(941\) 54.0181 1.76094 0.880470 0.474103i \(-0.157227\pi\)
0.880470 + 0.474103i \(0.157227\pi\)
\(942\) 27.7956 0.905631
\(943\) −18.3025 −0.596010
\(944\) −58.5402 −1.90532
\(945\) 1.88548 0.0613348
\(946\) 29.2142 0.949837
\(947\) −46.9883 −1.52691 −0.763457 0.645859i \(-0.776499\pi\)
−0.763457 + 0.645859i \(0.776499\pi\)
\(948\) −12.6725 −0.411583
\(949\) 2.30026 0.0746696
\(950\) 63.0680 2.04619
\(951\) −11.0951 −0.359782
\(952\) −53.9964 −1.75003
\(953\) −39.4554 −1.27809 −0.639043 0.769171i \(-0.720670\pi\)
−0.639043 + 0.769171i \(0.720670\pi\)
\(954\) −9.56436 −0.309658
\(955\) −3.21411 −0.104006
\(956\) 53.7856 1.73955
\(957\) 0 0
\(958\) −24.0903 −0.778321
\(959\) 23.3180 0.752978
\(960\) −1.55944 −0.0503306
\(961\) 15.9893 0.515783
\(962\) −20.0199 −0.645467
\(963\) 9.95779 0.320885
\(964\) 11.7463 0.378322
\(965\) −5.32047 −0.171272
\(966\) −19.8413 −0.638384
\(967\) −19.1270 −0.615082 −0.307541 0.951535i \(-0.599506\pi\)
−0.307541 + 0.951535i \(0.599506\pi\)
\(968\) 175.737 5.64842
\(969\) 33.1753 1.06575
\(970\) 6.26079 0.201022
\(971\) 18.6748 0.599304 0.299652 0.954049i \(-0.403129\pi\)
0.299652 + 0.954049i \(0.403129\pi\)
\(972\) 4.42225 0.141844
\(973\) 20.3895 0.653659
\(974\) 19.2538 0.616932
\(975\) 4.87861 0.156241
\(976\) −20.7237 −0.663349
\(977\) 54.0174 1.72817 0.864085 0.503345i \(-0.167898\pi\)
0.864085 + 0.503345i \(0.167898\pi\)
\(978\) 60.4421 1.93272
\(979\) 21.0605 0.673095
\(980\) −19.2971 −0.616424
\(981\) −4.72545 −0.150872
\(982\) −57.0772 −1.82141
\(983\) −53.7012 −1.71280 −0.856401 0.516311i \(-0.827305\pi\)
−0.856401 + 0.516311i \(0.827305\pi\)
\(984\) 24.8334 0.791659
\(985\) −2.74399 −0.0874309
\(986\) 0 0
\(987\) 2.62439 0.0835353
\(988\) 36.9302 1.17490
\(989\) −8.28483 −0.263442
\(990\) 17.3813 0.552413
\(991\) −3.10936 −0.0987721 −0.0493861 0.998780i \(-0.515726\pi\)
−0.0493861 + 0.998780i \(0.515726\pi\)
\(992\) −32.4383 −1.02992
\(993\) 16.7926 0.532896
\(994\) 40.9787 1.29977
\(995\) 27.8389 0.882553
\(996\) 29.1582 0.923913
\(997\) −37.8192 −1.19774 −0.598872 0.800844i \(-0.704384\pi\)
−0.598872 + 0.800844i \(0.704384\pi\)
\(998\) −72.9337 −2.30868
\(999\) 6.17424 0.195344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.7 9
3.2 odd 2 7569.2.a.bj.1.3 9
29.23 even 7 87.2.g.a.7.1 18
29.24 even 7 87.2.g.a.25.1 yes 18
29.28 even 2 2523.2.a.o.1.3 9
87.23 odd 14 261.2.k.c.181.3 18
87.53 odd 14 261.2.k.c.199.3 18
87.86 odd 2 7569.2.a.bm.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.1 18 29.23 even 7
87.2.g.a.25.1 yes 18 29.24 even 7
261.2.k.c.181.3 18 87.23 odd 14
261.2.k.c.199.3 18 87.53 odd 14
2523.2.a.o.1.3 9 29.28 even 2
2523.2.a.r.1.7 9 1.1 even 1 trivial
7569.2.a.bj.1.3 9 3.2 odd 2
7569.2.a.bm.1.7 9 87.86 odd 2