Properties

Label 7569.2.a.bj.1.3
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.53422\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.53422 q^{2} +4.42225 q^{4} -1.08952 q^{5} +1.73057 q^{7} -6.13851 q^{8} +2.76107 q^{10} -6.29513 q^{11} -1.27948 q^{13} -4.38564 q^{14} +6.71181 q^{16} +5.08291 q^{17} -6.52684 q^{19} -4.81811 q^{20} +15.9532 q^{22} +4.52415 q^{23} -3.81296 q^{25} +3.24249 q^{26} +7.65302 q^{28} -6.85487 q^{31} -4.73216 q^{32} -12.8812 q^{34} -1.88548 q^{35} +6.17424 q^{37} +16.5404 q^{38} +6.68800 q^{40} -4.04550 q^{41} +1.83124 q^{43} -27.8387 q^{44} -11.4652 q^{46} -1.51649 q^{47} -4.00512 q^{49} +9.66286 q^{50} -5.65820 q^{52} +3.77409 q^{53} +6.85864 q^{55} -10.6231 q^{56} +8.72197 q^{59} -3.08764 q^{61} +17.3717 q^{62} -1.43131 q^{64} +1.39402 q^{65} -2.39689 q^{67} +22.4779 q^{68} +4.77822 q^{70} -9.34384 q^{71} -1.79781 q^{73} -15.6469 q^{74} -28.8633 q^{76} -10.8942 q^{77} -2.86562 q^{79} -7.31262 q^{80} +10.2522 q^{82} -6.59352 q^{83} -5.53791 q^{85} -4.64077 q^{86} +38.6427 q^{88} -3.34552 q^{89} -2.21424 q^{91} +20.0069 q^{92} +3.84311 q^{94} +7.11109 q^{95} +2.26753 q^{97} +10.1498 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} + 11 q^{4} + 4 q^{5} + 5 q^{7} - 24 q^{8} + q^{11} + q^{13} - 9 q^{14} + 35 q^{16} - 2 q^{17} + 9 q^{19} + 18 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} + 8 q^{26} + 40 q^{28} + 8 q^{31} - 43 q^{32}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.53422 −1.79196 −0.895981 0.444093i \(-0.853526\pi\)
−0.895981 + 0.444093i \(0.853526\pi\)
\(3\) 0 0
\(4\) 4.42225 2.21113
\(5\) −1.08952 −0.487246 −0.243623 0.969870i \(-0.578336\pi\)
−0.243623 + 0.969870i \(0.578336\pi\)
\(6\) 0 0
\(7\) 1.73057 0.654094 0.327047 0.945008i \(-0.393946\pi\)
0.327047 + 0.945008i \(0.393946\pi\)
\(8\) −6.13851 −2.17029
\(9\) 0 0
\(10\) 2.76107 0.873126
\(11\) −6.29513 −1.89805 −0.949027 0.315195i \(-0.897930\pi\)
−0.949027 + 0.315195i \(0.897930\pi\)
\(12\) 0 0
\(13\) −1.27948 −0.354865 −0.177432 0.984133i \(-0.556779\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(14\) −4.38564 −1.17211
\(15\) 0 0
\(16\) 6.71181 1.67795
\(17\) 5.08291 1.23279 0.616393 0.787439i \(-0.288593\pi\)
0.616393 + 0.787439i \(0.288593\pi\)
\(18\) 0 0
\(19\) −6.52684 −1.49736 −0.748680 0.662931i \(-0.769312\pi\)
−0.748680 + 0.662931i \(0.769312\pi\)
\(20\) −4.81811 −1.07736
\(21\) 0 0
\(22\) 15.9532 3.40124
\(23\) 4.52415 0.943351 0.471675 0.881772i \(-0.343649\pi\)
0.471675 + 0.881772i \(0.343649\pi\)
\(24\) 0 0
\(25\) −3.81296 −0.762591
\(26\) 3.24249 0.635904
\(27\) 0 0
\(28\) 7.65302 1.44629
\(29\) 0 0
\(30\) 0 0
\(31\) −6.85487 −1.23117 −0.615586 0.788070i \(-0.711081\pi\)
−0.615586 + 0.788070i \(0.711081\pi\)
\(32\) −4.73216 −0.836535
\(33\) 0 0
\(34\) −12.8812 −2.20911
\(35\) −1.88548 −0.318705
\(36\) 0 0
\(37\) 6.17424 1.01504 0.507519 0.861640i \(-0.330563\pi\)
0.507519 + 0.861640i \(0.330563\pi\)
\(38\) 16.5404 2.68321
\(39\) 0 0
\(40\) 6.68800 1.05747
\(41\) −4.04550 −0.631801 −0.315901 0.948792i \(-0.602307\pi\)
−0.315901 + 0.948792i \(0.602307\pi\)
\(42\) 0 0
\(43\) 1.83124 0.279262 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(44\) −27.8387 −4.19684
\(45\) 0 0
\(46\) −11.4652 −1.69045
\(47\) −1.51649 −0.221203 −0.110601 0.993865i \(-0.535278\pi\)
−0.110601 + 0.993865i \(0.535278\pi\)
\(48\) 0 0
\(49\) −4.00512 −0.572160
\(50\) 9.66286 1.36653
\(51\) 0 0
\(52\) −5.65820 −0.784651
\(53\) 3.77409 0.518411 0.259206 0.965822i \(-0.416539\pi\)
0.259206 + 0.965822i \(0.416539\pi\)
\(54\) 0 0
\(55\) 6.85864 0.924819
\(56\) −10.6231 −1.41958
\(57\) 0 0
\(58\) 0 0
\(59\) 8.72197 1.13550 0.567752 0.823200i \(-0.307813\pi\)
0.567752 + 0.823200i \(0.307813\pi\)
\(60\) 0 0
\(61\) −3.08764 −0.395332 −0.197666 0.980269i \(-0.563336\pi\)
−0.197666 + 0.980269i \(0.563336\pi\)
\(62\) 17.3717 2.20621
\(63\) 0 0
\(64\) −1.43131 −0.178914
\(65\) 1.39402 0.172906
\(66\) 0 0
\(67\) −2.39689 −0.292826 −0.146413 0.989224i \(-0.546773\pi\)
−0.146413 + 0.989224i \(0.546773\pi\)
\(68\) 22.4779 2.72585
\(69\) 0 0
\(70\) 4.77822 0.571107
\(71\) −9.34384 −1.10891 −0.554455 0.832214i \(-0.687073\pi\)
−0.554455 + 0.832214i \(0.687073\pi\)
\(72\) 0 0
\(73\) −1.79781 −0.210417 −0.105209 0.994450i \(-0.533551\pi\)
−0.105209 + 0.994450i \(0.533551\pi\)
\(74\) −15.6469 −1.81891
\(75\) 0 0
\(76\) −28.8633 −3.31085
\(77\) −10.8942 −1.24151
\(78\) 0 0
\(79\) −2.86562 −0.322407 −0.161204 0.986921i \(-0.551538\pi\)
−0.161204 + 0.986921i \(0.551538\pi\)
\(80\) −7.31262 −0.817576
\(81\) 0 0
\(82\) 10.2522 1.13216
\(83\) −6.59352 −0.723733 −0.361866 0.932230i \(-0.617860\pi\)
−0.361866 + 0.932230i \(0.617860\pi\)
\(84\) 0 0
\(85\) −5.53791 −0.600670
\(86\) −4.64077 −0.500427
\(87\) 0 0
\(88\) 38.6427 4.11933
\(89\) −3.34552 −0.354624 −0.177312 0.984155i \(-0.556740\pi\)
−0.177312 + 0.984155i \(0.556740\pi\)
\(90\) 0 0
\(91\) −2.21424 −0.232115
\(92\) 20.0069 2.08587
\(93\) 0 0
\(94\) 3.84311 0.396387
\(95\) 7.11109 0.729583
\(96\) 0 0
\(97\) 2.26753 0.230233 0.115116 0.993352i \(-0.463276\pi\)
0.115116 + 0.993352i \(0.463276\pi\)
\(98\) 10.1498 1.02529
\(99\) 0 0
\(100\) −16.8619 −1.68619
\(101\) −12.5571 −1.24948 −0.624741 0.780832i \(-0.714796\pi\)
−0.624741 + 0.780832i \(0.714796\pi\)
\(102\) 0 0
\(103\) 2.77536 0.273464 0.136732 0.990608i \(-0.456340\pi\)
0.136732 + 0.990608i \(0.456340\pi\)
\(104\) 7.85412 0.770160
\(105\) 0 0
\(106\) −9.56436 −0.928973
\(107\) −9.95779 −0.962656 −0.481328 0.876540i \(-0.659845\pi\)
−0.481328 + 0.876540i \(0.659845\pi\)
\(108\) 0 0
\(109\) −4.72545 −0.452616 −0.226308 0.974056i \(-0.572666\pi\)
−0.226308 + 0.974056i \(0.572666\pi\)
\(110\) −17.3813 −1.65724
\(111\) 0 0
\(112\) 11.6153 1.09754
\(113\) 0.548457 0.0515945 0.0257973 0.999667i \(-0.491788\pi\)
0.0257973 + 0.999667i \(0.491788\pi\)
\(114\) 0 0
\(115\) −4.92913 −0.459644
\(116\) 0 0
\(117\) 0 0
\(118\) −22.1034 −2.03478
\(119\) 8.79634 0.806359
\(120\) 0 0
\(121\) 28.6287 2.60261
\(122\) 7.82476 0.708420
\(123\) 0 0
\(124\) −30.3140 −2.72228
\(125\) 9.60185 0.858816
\(126\) 0 0
\(127\) 14.2467 1.26419 0.632096 0.774890i \(-0.282195\pi\)
0.632096 + 0.774890i \(0.282195\pi\)
\(128\) 13.0916 1.15714
\(129\) 0 0
\(130\) −3.53274 −0.309842
\(131\) −6.83805 −0.597443 −0.298722 0.954340i \(-0.596560\pi\)
−0.298722 + 0.954340i \(0.596560\pi\)
\(132\) 0 0
\(133\) −11.2952 −0.979415
\(134\) 6.07423 0.524733
\(135\) 0 0
\(136\) −31.2015 −2.67551
\(137\) −13.4742 −1.15118 −0.575588 0.817740i \(-0.695227\pi\)
−0.575588 + 0.817740i \(0.695227\pi\)
\(138\) 0 0
\(139\) 11.7820 0.999334 0.499667 0.866218i \(-0.333456\pi\)
0.499667 + 0.866218i \(0.333456\pi\)
\(140\) −8.33808 −0.704697
\(141\) 0 0
\(142\) 23.6793 1.98712
\(143\) 8.05451 0.673552
\(144\) 0 0
\(145\) 0 0
\(146\) 4.55603 0.377060
\(147\) 0 0
\(148\) 27.3040 2.24438
\(149\) −0.761963 −0.0624224 −0.0312112 0.999513i \(-0.509936\pi\)
−0.0312112 + 0.999513i \(0.509936\pi\)
\(150\) 0 0
\(151\) 18.4366 1.50035 0.750176 0.661238i \(-0.229969\pi\)
0.750176 + 0.661238i \(0.229969\pi\)
\(152\) 40.0651 3.24971
\(153\) 0 0
\(154\) 27.6082 2.22473
\(155\) 7.46849 0.599883
\(156\) 0 0
\(157\) 10.9681 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(158\) 7.26210 0.577741
\(159\) 0 0
\(160\) 5.15576 0.407598
\(161\) 7.82937 0.617041
\(162\) 0 0
\(163\) 23.8504 1.86811 0.934054 0.357133i \(-0.116246\pi\)
0.934054 + 0.357133i \(0.116246\pi\)
\(164\) −17.8902 −1.39699
\(165\) 0 0
\(166\) 16.7094 1.29690
\(167\) 14.3878 1.11336 0.556679 0.830728i \(-0.312075\pi\)
0.556679 + 0.830728i \(0.312075\pi\)
\(168\) 0 0
\(169\) −11.3629 −0.874071
\(170\) 14.0342 1.07638
\(171\) 0 0
\(172\) 8.09822 0.617484
\(173\) 3.94904 0.300240 0.150120 0.988668i \(-0.452034\pi\)
0.150120 + 0.988668i \(0.452034\pi\)
\(174\) 0 0
\(175\) −6.59859 −0.498807
\(176\) −42.2517 −3.18484
\(177\) 0 0
\(178\) 8.47826 0.635473
\(179\) −16.4137 −1.22682 −0.613410 0.789765i \(-0.710203\pi\)
−0.613410 + 0.789765i \(0.710203\pi\)
\(180\) 0 0
\(181\) −16.7532 −1.24525 −0.622626 0.782519i \(-0.713934\pi\)
−0.622626 + 0.782519i \(0.713934\pi\)
\(182\) 5.61135 0.415941
\(183\) 0 0
\(184\) −27.7716 −2.04735
\(185\) −6.72693 −0.494574
\(186\) 0 0
\(187\) −31.9976 −2.33989
\(188\) −6.70630 −0.489107
\(189\) 0 0
\(190\) −18.0211 −1.30738
\(191\) 2.95004 0.213457 0.106729 0.994288i \(-0.465962\pi\)
0.106729 + 0.994288i \(0.465962\pi\)
\(192\) 0 0
\(193\) −4.88334 −0.351511 −0.175755 0.984434i \(-0.556237\pi\)
−0.175755 + 0.984434i \(0.556237\pi\)
\(194\) −5.74640 −0.412568
\(195\) 0 0
\(196\) −17.7117 −1.26512
\(197\) 2.51855 0.179439 0.0897195 0.995967i \(-0.471403\pi\)
0.0897195 + 0.995967i \(0.471403\pi\)
\(198\) 0 0
\(199\) 25.5517 1.81131 0.905655 0.424015i \(-0.139380\pi\)
0.905655 + 0.424015i \(0.139380\pi\)
\(200\) 23.4059 1.65505
\(201\) 0 0
\(202\) 31.8225 2.23903
\(203\) 0 0
\(204\) 0 0
\(205\) 4.40764 0.307843
\(206\) −7.03336 −0.490038
\(207\) 0 0
\(208\) −8.58765 −0.595446
\(209\) 41.0873 2.84207
\(210\) 0 0
\(211\) −1.84511 −0.127023 −0.0635114 0.997981i \(-0.520230\pi\)
−0.0635114 + 0.997981i \(0.520230\pi\)
\(212\) 16.6900 1.14627
\(213\) 0 0
\(214\) 25.2352 1.72504
\(215\) −1.99517 −0.136069
\(216\) 0 0
\(217\) −11.8628 −0.805303
\(218\) 11.9753 0.811070
\(219\) 0 0
\(220\) 30.3306 2.04489
\(221\) −6.50349 −0.437472
\(222\) 0 0
\(223\) −24.0492 −1.61045 −0.805225 0.592969i \(-0.797956\pi\)
−0.805225 + 0.592969i \(0.797956\pi\)
\(224\) −8.18933 −0.547173
\(225\) 0 0
\(226\) −1.38991 −0.0924554
\(227\) 22.6399 1.50267 0.751333 0.659924i \(-0.229411\pi\)
0.751333 + 0.659924i \(0.229411\pi\)
\(228\) 0 0
\(229\) −13.8021 −0.912070 −0.456035 0.889962i \(-0.650731\pi\)
−0.456035 + 0.889962i \(0.650731\pi\)
\(230\) 12.4915 0.823664
\(231\) 0 0
\(232\) 0 0
\(233\) 6.69816 0.438811 0.219405 0.975634i \(-0.429588\pi\)
0.219405 + 0.975634i \(0.429588\pi\)
\(234\) 0 0
\(235\) 1.65224 0.107780
\(236\) 38.5708 2.51074
\(237\) 0 0
\(238\) −22.2918 −1.44496
\(239\) −12.1625 −0.786726 −0.393363 0.919383i \(-0.628688\pi\)
−0.393363 + 0.919383i \(0.628688\pi\)
\(240\) 0 0
\(241\) 2.65618 0.171099 0.0855497 0.996334i \(-0.472735\pi\)
0.0855497 + 0.996334i \(0.472735\pi\)
\(242\) −72.5513 −4.66377
\(243\) 0 0
\(244\) −13.6543 −0.874129
\(245\) 4.36364 0.278783
\(246\) 0 0
\(247\) 8.35098 0.531360
\(248\) 42.0787 2.67200
\(249\) 0 0
\(250\) −24.3332 −1.53896
\(251\) 22.7654 1.43694 0.718471 0.695557i \(-0.244843\pi\)
0.718471 + 0.695557i \(0.244843\pi\)
\(252\) 0 0
\(253\) −28.4801 −1.79053
\(254\) −36.1043 −2.26538
\(255\) 0 0
\(256\) −30.3142 −1.89464
\(257\) −7.70838 −0.480836 −0.240418 0.970669i \(-0.577284\pi\)
−0.240418 + 0.970669i \(0.577284\pi\)
\(258\) 0 0
\(259\) 10.6850 0.663931
\(260\) 6.16469 0.382318
\(261\) 0 0
\(262\) 17.3291 1.07060
\(263\) 0.769558 0.0474530 0.0237265 0.999718i \(-0.492447\pi\)
0.0237265 + 0.999718i \(0.492447\pi\)
\(264\) 0 0
\(265\) −4.11193 −0.252594
\(266\) 28.6244 1.75507
\(267\) 0 0
\(268\) −10.5996 −0.647476
\(269\) −15.3466 −0.935696 −0.467848 0.883809i \(-0.654971\pi\)
−0.467848 + 0.883809i \(0.654971\pi\)
\(270\) 0 0
\(271\) 15.7301 0.955538 0.477769 0.878485i \(-0.341446\pi\)
0.477769 + 0.878485i \(0.341446\pi\)
\(272\) 34.1155 2.06856
\(273\) 0 0
\(274\) 34.1465 2.06286
\(275\) 24.0031 1.44744
\(276\) 0 0
\(277\) −22.6255 −1.35944 −0.679718 0.733473i \(-0.737898\pi\)
−0.679718 + 0.733473i \(0.737898\pi\)
\(278\) −29.8581 −1.79077
\(279\) 0 0
\(280\) 11.5741 0.691682
\(281\) 22.0455 1.31512 0.657561 0.753401i \(-0.271588\pi\)
0.657561 + 0.753401i \(0.271588\pi\)
\(282\) 0 0
\(283\) 5.18145 0.308005 0.154003 0.988070i \(-0.450784\pi\)
0.154003 + 0.988070i \(0.450784\pi\)
\(284\) −41.3208 −2.45194
\(285\) 0 0
\(286\) −20.4119 −1.20698
\(287\) −7.00103 −0.413258
\(288\) 0 0
\(289\) 8.83596 0.519762
\(290\) 0 0
\(291\) 0 0
\(292\) −7.95035 −0.465259
\(293\) −3.76172 −0.219762 −0.109881 0.993945i \(-0.535047\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(294\) 0 0
\(295\) −9.50272 −0.553270
\(296\) −37.9006 −2.20293
\(297\) 0 0
\(298\) 1.93098 0.111859
\(299\) −5.78857 −0.334762
\(300\) 0 0
\(301\) 3.16910 0.182664
\(302\) −46.7224 −2.68857
\(303\) 0 0
\(304\) −43.8069 −2.51250
\(305\) 3.36403 0.192624
\(306\) 0 0
\(307\) −4.15007 −0.236857 −0.118428 0.992963i \(-0.537786\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(308\) −48.1768 −2.74513
\(309\) 0 0
\(310\) −18.9268 −1.07497
\(311\) 8.20010 0.464985 0.232492 0.972598i \(-0.425312\pi\)
0.232492 + 0.972598i \(0.425312\pi\)
\(312\) 0 0
\(313\) −5.81526 −0.328698 −0.164349 0.986402i \(-0.552552\pi\)
−0.164349 + 0.986402i \(0.552552\pi\)
\(314\) −27.7956 −1.56860
\(315\) 0 0
\(316\) −12.6725 −0.712883
\(317\) 11.0951 0.623161 0.311581 0.950220i \(-0.399142\pi\)
0.311581 + 0.950220i \(0.399142\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.55944 0.0871752
\(321\) 0 0
\(322\) −19.8413 −1.10571
\(323\) −33.1753 −1.84593
\(324\) 0 0
\(325\) 4.87861 0.270617
\(326\) −60.4421 −3.34758
\(327\) 0 0
\(328\) 24.8334 1.37119
\(329\) −2.62439 −0.144687
\(330\) 0 0
\(331\) 16.7926 0.923002 0.461501 0.887140i \(-0.347311\pi\)
0.461501 + 0.887140i \(0.347311\pi\)
\(332\) −29.1582 −1.60026
\(333\) 0 0
\(334\) −36.4617 −1.99509
\(335\) 2.61144 0.142678
\(336\) 0 0
\(337\) 21.0778 1.14818 0.574091 0.818791i \(-0.305355\pi\)
0.574091 + 0.818791i \(0.305355\pi\)
\(338\) 28.7961 1.56630
\(339\) 0 0
\(340\) −24.4900 −1.32816
\(341\) 43.1523 2.33683
\(342\) 0 0
\(343\) −19.0452 −1.02834
\(344\) −11.2411 −0.606080
\(345\) 0 0
\(346\) −10.0077 −0.538018
\(347\) 31.0309 1.66583 0.832914 0.553402i \(-0.186671\pi\)
0.832914 + 0.553402i \(0.186671\pi\)
\(348\) 0 0
\(349\) −35.7539 −1.91386 −0.956931 0.290315i \(-0.906240\pi\)
−0.956931 + 0.290315i \(0.906240\pi\)
\(350\) 16.7223 0.893843
\(351\) 0 0
\(352\) 29.7895 1.58779
\(353\) 6.02826 0.320852 0.160426 0.987048i \(-0.448713\pi\)
0.160426 + 0.987048i \(0.448713\pi\)
\(354\) 0 0
\(355\) 10.1803 0.540312
\(356\) −14.7947 −0.784118
\(357\) 0 0
\(358\) 41.5959 2.19841
\(359\) 5.71397 0.301572 0.150786 0.988566i \(-0.451820\pi\)
0.150786 + 0.988566i \(0.451820\pi\)
\(360\) 0 0
\(361\) 23.5997 1.24209
\(362\) 42.4561 2.23145
\(363\) 0 0
\(364\) −9.79191 −0.513236
\(365\) 1.95874 0.102525
\(366\) 0 0
\(367\) 27.3435 1.42732 0.713658 0.700494i \(-0.247037\pi\)
0.713658 + 0.700494i \(0.247037\pi\)
\(368\) 30.3652 1.58290
\(369\) 0 0
\(370\) 17.0475 0.886257
\(371\) 6.53133 0.339090
\(372\) 0 0
\(373\) −12.6216 −0.653522 −0.326761 0.945107i \(-0.605957\pi\)
−0.326761 + 0.945107i \(0.605957\pi\)
\(374\) 81.0888 4.19300
\(375\) 0 0
\(376\) 9.30899 0.480074
\(377\) 0 0
\(378\) 0 0
\(379\) −3.30059 −0.169540 −0.0847700 0.996401i \(-0.527016\pi\)
−0.0847700 + 0.996401i \(0.527016\pi\)
\(380\) 31.4471 1.61320
\(381\) 0 0
\(382\) −7.47603 −0.382507
\(383\) −9.63804 −0.492481 −0.246240 0.969209i \(-0.579195\pi\)
−0.246240 + 0.969209i \(0.579195\pi\)
\(384\) 0 0
\(385\) 11.8694 0.604919
\(386\) 12.3754 0.629893
\(387\) 0 0
\(388\) 10.0276 0.509073
\(389\) −10.7987 −0.547518 −0.273759 0.961798i \(-0.588267\pi\)
−0.273759 + 0.961798i \(0.588267\pi\)
\(390\) 0 0
\(391\) 22.9958 1.16295
\(392\) 24.5855 1.24175
\(393\) 0 0
\(394\) −6.38254 −0.321548
\(395\) 3.12213 0.157092
\(396\) 0 0
\(397\) 29.7323 1.49222 0.746111 0.665822i \(-0.231919\pi\)
0.746111 + 0.665822i \(0.231919\pi\)
\(398\) −64.7535 −3.24580
\(399\) 0 0
\(400\) −25.5918 −1.27959
\(401\) −11.4349 −0.571030 −0.285515 0.958374i \(-0.592165\pi\)
−0.285515 + 0.958374i \(0.592165\pi\)
\(402\) 0 0
\(403\) 8.77069 0.436899
\(404\) −55.5309 −2.76276
\(405\) 0 0
\(406\) 0 0
\(407\) −38.8677 −1.92660
\(408\) 0 0
\(409\) 29.9586 1.48136 0.740679 0.671859i \(-0.234504\pi\)
0.740679 + 0.671859i \(0.234504\pi\)
\(410\) −11.1699 −0.551642
\(411\) 0 0
\(412\) 12.2733 0.604664
\(413\) 15.0940 0.742727
\(414\) 0 0
\(415\) 7.18374 0.352636
\(416\) 6.05471 0.296857
\(417\) 0 0
\(418\) −104.124 −5.09288
\(419\) 20.3911 0.996168 0.498084 0.867129i \(-0.334037\pi\)
0.498084 + 0.867129i \(0.334037\pi\)
\(420\) 0 0
\(421\) −22.9880 −1.12037 −0.560183 0.828369i \(-0.689269\pi\)
−0.560183 + 0.828369i \(0.689269\pi\)
\(422\) 4.67591 0.227620
\(423\) 0 0
\(424\) −23.1673 −1.12510
\(425\) −19.3809 −0.940112
\(426\) 0 0
\(427\) −5.34339 −0.258585
\(428\) −44.0359 −2.12855
\(429\) 0 0
\(430\) 5.05619 0.243831
\(431\) 4.04708 0.194941 0.0974704 0.995238i \(-0.468925\pi\)
0.0974704 + 0.995238i \(0.468925\pi\)
\(432\) 0 0
\(433\) 2.62955 0.126368 0.0631841 0.998002i \(-0.479874\pi\)
0.0631841 + 0.998002i \(0.479874\pi\)
\(434\) 30.0630 1.44307
\(435\) 0 0
\(436\) −20.8971 −1.00079
\(437\) −29.5284 −1.41254
\(438\) 0 0
\(439\) −26.0095 −1.24137 −0.620683 0.784061i \(-0.713145\pi\)
−0.620683 + 0.784061i \(0.713145\pi\)
\(440\) −42.1018 −2.00713
\(441\) 0 0
\(442\) 16.4813 0.783934
\(443\) −18.8152 −0.893935 −0.446968 0.894550i \(-0.647496\pi\)
−0.446968 + 0.894550i \(0.647496\pi\)
\(444\) 0 0
\(445\) 3.64499 0.172789
\(446\) 60.9458 2.88587
\(447\) 0 0
\(448\) −2.47699 −0.117027
\(449\) −12.3698 −0.583767 −0.291883 0.956454i \(-0.594282\pi\)
−0.291883 + 0.956454i \(0.594282\pi\)
\(450\) 0 0
\(451\) 25.4670 1.19919
\(452\) 2.42542 0.114082
\(453\) 0 0
\(454\) −57.3745 −2.69272
\(455\) 2.41244 0.113097
\(456\) 0 0
\(457\) −20.1273 −0.941514 −0.470757 0.882263i \(-0.656019\pi\)
−0.470757 + 0.882263i \(0.656019\pi\)
\(458\) 34.9776 1.63440
\(459\) 0 0
\(460\) −21.7979 −1.01633
\(461\) −19.7785 −0.921175 −0.460587 0.887614i \(-0.652361\pi\)
−0.460587 + 0.887614i \(0.652361\pi\)
\(462\) 0 0
\(463\) 2.22268 0.103297 0.0516484 0.998665i \(-0.483552\pi\)
0.0516484 + 0.998665i \(0.483552\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −16.9746 −0.786332
\(467\) −4.63380 −0.214427 −0.107213 0.994236i \(-0.534193\pi\)
−0.107213 + 0.994236i \(0.534193\pi\)
\(468\) 0 0
\(469\) −4.14798 −0.191536
\(470\) −4.18713 −0.193138
\(471\) 0 0
\(472\) −53.5399 −2.46437
\(473\) −11.5279 −0.530054
\(474\) 0 0
\(475\) 24.8866 1.14187
\(476\) 38.8996 1.78296
\(477\) 0 0
\(478\) 30.8224 1.40978
\(479\) 9.50600 0.434340 0.217170 0.976134i \(-0.430317\pi\)
0.217170 + 0.976134i \(0.430317\pi\)
\(480\) 0 0
\(481\) −7.89983 −0.360201
\(482\) −6.73132 −0.306603
\(483\) 0 0
\(484\) 126.603 5.75469
\(485\) −2.47051 −0.112180
\(486\) 0 0
\(487\) 7.59754 0.344278 0.172139 0.985073i \(-0.444932\pi\)
0.172139 + 0.985073i \(0.444932\pi\)
\(488\) 18.9535 0.857986
\(489\) 0 0
\(490\) −11.0584 −0.499568
\(491\) 22.5226 1.01643 0.508216 0.861230i \(-0.330305\pi\)
0.508216 + 0.861230i \(0.330305\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −21.1632 −0.952177
\(495\) 0 0
\(496\) −46.0086 −2.06585
\(497\) −16.1702 −0.725332
\(498\) 0 0
\(499\) −28.7796 −1.28835 −0.644176 0.764878i \(-0.722799\pi\)
−0.644176 + 0.764878i \(0.722799\pi\)
\(500\) 42.4618 1.89895
\(501\) 0 0
\(502\) −57.6925 −2.57494
\(503\) 5.00532 0.223176 0.111588 0.993755i \(-0.464406\pi\)
0.111588 + 0.993755i \(0.464406\pi\)
\(504\) 0 0
\(505\) 13.6812 0.608805
\(506\) 72.1748 3.20856
\(507\) 0 0
\(508\) 63.0026 2.79529
\(509\) −4.98133 −0.220794 −0.110397 0.993888i \(-0.535212\pi\)
−0.110397 + 0.993888i \(0.535212\pi\)
\(510\) 0 0
\(511\) −3.11123 −0.137633
\(512\) 50.6397 2.23798
\(513\) 0 0
\(514\) 19.5347 0.861639
\(515\) −3.02380 −0.133244
\(516\) 0 0
\(517\) 9.54650 0.419855
\(518\) −27.0780 −1.18974
\(519\) 0 0
\(520\) −8.55718 −0.375257
\(521\) −4.54404 −0.199078 −0.0995389 0.995034i \(-0.531737\pi\)
−0.0995389 + 0.995034i \(0.531737\pi\)
\(522\) 0 0
\(523\) −3.08967 −0.135102 −0.0675510 0.997716i \(-0.521519\pi\)
−0.0675510 + 0.997716i \(0.521519\pi\)
\(524\) −30.2396 −1.32102
\(525\) 0 0
\(526\) −1.95023 −0.0850339
\(527\) −34.8427 −1.51777
\(528\) 0 0
\(529\) −2.53205 −0.110089
\(530\) 10.4205 0.452638
\(531\) 0 0
\(532\) −49.9501 −2.16561
\(533\) 5.17615 0.224204
\(534\) 0 0
\(535\) 10.8492 0.469050
\(536\) 14.7133 0.635518
\(537\) 0 0
\(538\) 38.8915 1.67673
\(539\) 25.2128 1.08599
\(540\) 0 0
\(541\) 21.4608 0.922670 0.461335 0.887226i \(-0.347371\pi\)
0.461335 + 0.887226i \(0.347371\pi\)
\(542\) −39.8636 −1.71229
\(543\) 0 0
\(544\) −24.0531 −1.03127
\(545\) 5.14845 0.220535
\(546\) 0 0
\(547\) −14.5151 −0.620619 −0.310309 0.950636i \(-0.600433\pi\)
−0.310309 + 0.950636i \(0.600433\pi\)
\(548\) −59.5862 −2.54540
\(549\) 0 0
\(550\) −60.8290 −2.59376
\(551\) 0 0
\(552\) 0 0
\(553\) −4.95916 −0.210885
\(554\) 57.3380 2.43606
\(555\) 0 0
\(556\) 52.1029 2.20965
\(557\) −24.1558 −1.02351 −0.511757 0.859130i \(-0.671005\pi\)
−0.511757 + 0.859130i \(0.671005\pi\)
\(558\) 0 0
\(559\) −2.34305 −0.0991003
\(560\) −12.6550 −0.534772
\(561\) 0 0
\(562\) −55.8680 −2.35665
\(563\) 7.54185 0.317851 0.158926 0.987291i \(-0.449197\pi\)
0.158926 + 0.987291i \(0.449197\pi\)
\(564\) 0 0
\(565\) −0.597553 −0.0251392
\(566\) −13.1309 −0.551933
\(567\) 0 0
\(568\) 57.3572 2.40666
\(569\) 20.0507 0.840568 0.420284 0.907393i \(-0.361930\pi\)
0.420284 + 0.907393i \(0.361930\pi\)
\(570\) 0 0
\(571\) −4.55564 −0.190648 −0.0953239 0.995446i \(-0.530389\pi\)
−0.0953239 + 0.995446i \(0.530389\pi\)
\(572\) 35.6191 1.48931
\(573\) 0 0
\(574\) 17.7421 0.740542
\(575\) −17.2504 −0.719391
\(576\) 0 0
\(577\) 19.6367 0.817485 0.408742 0.912650i \(-0.365967\pi\)
0.408742 + 0.912650i \(0.365967\pi\)
\(578\) −22.3922 −0.931394
\(579\) 0 0
\(580\) 0 0
\(581\) −11.4106 −0.473390
\(582\) 0 0
\(583\) −23.7584 −0.983972
\(584\) 11.0358 0.456667
\(585\) 0 0
\(586\) 9.53300 0.393805
\(587\) 40.1991 1.65919 0.829596 0.558364i \(-0.188571\pi\)
0.829596 + 0.558364i \(0.188571\pi\)
\(588\) 0 0
\(589\) 44.7407 1.84351
\(590\) 24.0819 0.991438
\(591\) 0 0
\(592\) 41.4403 1.70319
\(593\) −45.9625 −1.88746 −0.943728 0.330724i \(-0.892707\pi\)
−0.943728 + 0.330724i \(0.892707\pi\)
\(594\) 0 0
\(595\) −9.58374 −0.392895
\(596\) −3.36959 −0.138024
\(597\) 0 0
\(598\) 14.6695 0.599880
\(599\) 10.0554 0.410853 0.205426 0.978673i \(-0.434142\pi\)
0.205426 + 0.978673i \(0.434142\pi\)
\(600\) 0 0
\(601\) −1.22427 −0.0499390 −0.0249695 0.999688i \(-0.507949\pi\)
−0.0249695 + 0.999688i \(0.507949\pi\)
\(602\) −8.03118 −0.327327
\(603\) 0 0
\(604\) 81.5315 3.31747
\(605\) −31.1914 −1.26811
\(606\) 0 0
\(607\) 30.7767 1.24919 0.624593 0.780950i \(-0.285265\pi\)
0.624593 + 0.780950i \(0.285265\pi\)
\(608\) 30.8860 1.25259
\(609\) 0 0
\(610\) −8.52519 −0.345175
\(611\) 1.94032 0.0784970
\(612\) 0 0
\(613\) −7.90846 −0.319420 −0.159710 0.987164i \(-0.551056\pi\)
−0.159710 + 0.987164i \(0.551056\pi\)
\(614\) 10.5172 0.424438
\(615\) 0 0
\(616\) 66.8740 2.69443
\(617\) 12.8000 0.515308 0.257654 0.966237i \(-0.417051\pi\)
0.257654 + 0.966237i \(0.417051\pi\)
\(618\) 0 0
\(619\) −42.4563 −1.70646 −0.853230 0.521534i \(-0.825360\pi\)
−0.853230 + 0.521534i \(0.825360\pi\)
\(620\) 33.0275 1.32642
\(621\) 0 0
\(622\) −20.7808 −0.833235
\(623\) −5.78965 −0.231958
\(624\) 0 0
\(625\) 8.60343 0.344137
\(626\) 14.7371 0.589014
\(627\) 0 0
\(628\) 48.5039 1.93552
\(629\) 31.3831 1.25133
\(630\) 0 0
\(631\) 44.0652 1.75421 0.877104 0.480300i \(-0.159472\pi\)
0.877104 + 0.480300i \(0.159472\pi\)
\(632\) 17.5906 0.699718
\(633\) 0 0
\(634\) −28.1173 −1.11668
\(635\) −15.5220 −0.615972
\(636\) 0 0
\(637\) 5.12449 0.203040
\(638\) 0 0
\(639\) 0 0
\(640\) −14.2635 −0.563813
\(641\) 40.3894 1.59528 0.797642 0.603131i \(-0.206080\pi\)
0.797642 + 0.603131i \(0.206080\pi\)
\(642\) 0 0
\(643\) 7.69076 0.303294 0.151647 0.988435i \(-0.451542\pi\)
0.151647 + 0.988435i \(0.451542\pi\)
\(644\) 34.6234 1.36435
\(645\) 0 0
\(646\) 84.0735 3.30783
\(647\) 24.5624 0.965649 0.482824 0.875717i \(-0.339611\pi\)
0.482824 + 0.875717i \(0.339611\pi\)
\(648\) 0 0
\(649\) −54.9060 −2.15525
\(650\) −12.3635 −0.484935
\(651\) 0 0
\(652\) 105.472 4.13062
\(653\) −26.6658 −1.04351 −0.521756 0.853095i \(-0.674723\pi\)
−0.521756 + 0.853095i \(0.674723\pi\)
\(654\) 0 0
\(655\) 7.45016 0.291102
\(656\) −27.1526 −1.06013
\(657\) 0 0
\(658\) 6.65078 0.259274
\(659\) 12.2372 0.476692 0.238346 0.971180i \(-0.423395\pi\)
0.238346 + 0.971180i \(0.423395\pi\)
\(660\) 0 0
\(661\) 40.4225 1.57225 0.786126 0.618067i \(-0.212084\pi\)
0.786126 + 0.618067i \(0.212084\pi\)
\(662\) −42.5560 −1.65398
\(663\) 0 0
\(664\) 40.4744 1.57071
\(665\) 12.3063 0.477216
\(666\) 0 0
\(667\) 0 0
\(668\) 63.6263 2.46178
\(669\) 0 0
\(670\) −6.61796 −0.255674
\(671\) 19.4371 0.750362
\(672\) 0 0
\(673\) 48.1741 1.85698 0.928488 0.371362i \(-0.121109\pi\)
0.928488 + 0.371362i \(0.121109\pi\)
\(674\) −53.4158 −2.05750
\(675\) 0 0
\(676\) −50.2497 −1.93268
\(677\) −2.26329 −0.0869852 −0.0434926 0.999054i \(-0.513848\pi\)
−0.0434926 + 0.999054i \(0.513848\pi\)
\(678\) 0 0
\(679\) 3.92412 0.150594
\(680\) 33.9945 1.30363
\(681\) 0 0
\(682\) −109.357 −4.18751
\(683\) 27.9688 1.07020 0.535099 0.844789i \(-0.320274\pi\)
0.535099 + 0.844789i \(0.320274\pi\)
\(684\) 0 0
\(685\) 14.6803 0.560906
\(686\) 48.2645 1.84275
\(687\) 0 0
\(688\) 12.2910 0.468589
\(689\) −4.82889 −0.183966
\(690\) 0 0
\(691\) −11.9344 −0.454006 −0.227003 0.973894i \(-0.572893\pi\)
−0.227003 + 0.973894i \(0.572893\pi\)
\(692\) 17.4636 0.663868
\(693\) 0 0
\(694\) −78.6391 −2.98510
\(695\) −12.8366 −0.486921
\(696\) 0 0
\(697\) −20.5629 −0.778876
\(698\) 90.6081 3.42957
\(699\) 0 0
\(700\) −29.1806 −1.10292
\(701\) 3.43744 0.129830 0.0649152 0.997891i \(-0.479322\pi\)
0.0649152 + 0.997891i \(0.479322\pi\)
\(702\) 0 0
\(703\) −40.2983 −1.51988
\(704\) 9.01030 0.339589
\(705\) 0 0
\(706\) −15.2769 −0.574954
\(707\) −21.7310 −0.817280
\(708\) 0 0
\(709\) −26.5487 −0.997058 −0.498529 0.866873i \(-0.666126\pi\)
−0.498529 + 0.866873i \(0.666126\pi\)
\(710\) −25.7990 −0.968218
\(711\) 0 0
\(712\) 20.5365 0.769637
\(713\) −31.0125 −1.16143
\(714\) 0 0
\(715\) −8.77551 −0.328186
\(716\) −72.5857 −2.71265
\(717\) 0 0
\(718\) −14.4804 −0.540405
\(719\) 31.1862 1.16305 0.581524 0.813530i \(-0.302457\pi\)
0.581524 + 0.813530i \(0.302457\pi\)
\(720\) 0 0
\(721\) 4.80296 0.178872
\(722\) −59.8067 −2.22578
\(723\) 0 0
\(724\) −74.0867 −2.75341
\(725\) 0 0
\(726\) 0 0
\(727\) 17.1516 0.636119 0.318060 0.948071i \(-0.396969\pi\)
0.318060 + 0.948071i \(0.396969\pi\)
\(728\) 13.5921 0.503757
\(729\) 0 0
\(730\) −4.96386 −0.183721
\(731\) 9.30805 0.344271
\(732\) 0 0
\(733\) 21.3935 0.790186 0.395093 0.918641i \(-0.370712\pi\)
0.395093 + 0.918641i \(0.370712\pi\)
\(734\) −69.2942 −2.55770
\(735\) 0 0
\(736\) −21.4090 −0.789146
\(737\) 15.0887 0.555800
\(738\) 0 0
\(739\) −17.3296 −0.637478 −0.318739 0.947842i \(-0.603259\pi\)
−0.318739 + 0.947842i \(0.603259\pi\)
\(740\) −29.7482 −1.09356
\(741\) 0 0
\(742\) −16.5518 −0.607636
\(743\) 52.1369 1.91272 0.956358 0.292197i \(-0.0943862\pi\)
0.956358 + 0.292197i \(0.0943862\pi\)
\(744\) 0 0
\(745\) 0.830170 0.0304151
\(746\) 31.9859 1.17109
\(747\) 0 0
\(748\) −141.501 −5.17380
\(749\) −17.2327 −0.629668
\(750\) 0 0
\(751\) 23.9867 0.875288 0.437644 0.899148i \(-0.355813\pi\)
0.437644 + 0.899148i \(0.355813\pi\)
\(752\) −10.1784 −0.371168
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0870 −0.731041
\(756\) 0 0
\(757\) 47.4501 1.72460 0.862301 0.506395i \(-0.169022\pi\)
0.862301 + 0.506395i \(0.169022\pi\)
\(758\) 8.36441 0.303809
\(759\) 0 0
\(760\) −43.6515 −1.58341
\(761\) −38.7137 −1.40337 −0.701684 0.712488i \(-0.747568\pi\)
−0.701684 + 0.712488i \(0.747568\pi\)
\(762\) 0 0
\(763\) −8.17772 −0.296053
\(764\) 13.0458 0.471981
\(765\) 0 0
\(766\) 24.4249 0.882507
\(767\) −11.1596 −0.402950
\(768\) 0 0
\(769\) 42.9530 1.54893 0.774463 0.632619i \(-0.218020\pi\)
0.774463 + 0.632619i \(0.218020\pi\)
\(770\) −30.0795 −1.08399
\(771\) 0 0
\(772\) −21.5954 −0.777234
\(773\) −28.2216 −1.01506 −0.507531 0.861634i \(-0.669442\pi\)
−0.507531 + 0.861634i \(0.669442\pi\)
\(774\) 0 0
\(775\) 26.1373 0.938881
\(776\) −13.9192 −0.499672
\(777\) 0 0
\(778\) 27.3664 0.981132
\(779\) 26.4044 0.946034
\(780\) 0 0
\(781\) 58.8207 2.10477
\(782\) −58.2765 −2.08396
\(783\) 0 0
\(784\) −26.8816 −0.960058
\(785\) −11.9500 −0.426512
\(786\) 0 0
\(787\) 13.3827 0.477042 0.238521 0.971137i \(-0.423337\pi\)
0.238521 + 0.971137i \(0.423337\pi\)
\(788\) 11.1377 0.396762
\(789\) 0 0
\(790\) −7.91216 −0.281502
\(791\) 0.949145 0.0337477
\(792\) 0 0
\(793\) 3.95059 0.140289
\(794\) −75.3481 −2.67400
\(795\) 0 0
\(796\) 112.996 4.00503
\(797\) 29.7230 1.05284 0.526421 0.850224i \(-0.323534\pi\)
0.526421 + 0.850224i \(0.323534\pi\)
\(798\) 0 0
\(799\) −7.70818 −0.272696
\(800\) 18.0435 0.637934
\(801\) 0 0
\(802\) 28.9784 1.02326
\(803\) 11.3174 0.399383
\(804\) 0 0
\(805\) −8.53021 −0.300651
\(806\) −22.2268 −0.782907
\(807\) 0 0
\(808\) 77.0822 2.71174
\(809\) 46.8802 1.64822 0.824111 0.566429i \(-0.191675\pi\)
0.824111 + 0.566429i \(0.191675\pi\)
\(810\) 0 0
\(811\) 5.86820 0.206060 0.103030 0.994678i \(-0.467146\pi\)
0.103030 + 0.994678i \(0.467146\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 98.4990 3.45239
\(815\) −25.9854 −0.910228
\(816\) 0 0
\(817\) −11.9522 −0.418156
\(818\) −75.9216 −2.65454
\(819\) 0 0
\(820\) 19.4917 0.680679
\(821\) 22.3264 0.779198 0.389599 0.920985i \(-0.372614\pi\)
0.389599 + 0.920985i \(0.372614\pi\)
\(822\) 0 0
\(823\) −18.4220 −0.642152 −0.321076 0.947053i \(-0.604045\pi\)
−0.321076 + 0.947053i \(0.604045\pi\)
\(824\) −17.0366 −0.593497
\(825\) 0 0
\(826\) −38.2514 −1.33094
\(827\) −28.3783 −0.986809 −0.493404 0.869800i \(-0.664248\pi\)
−0.493404 + 0.869800i \(0.664248\pi\)
\(828\) 0 0
\(829\) −9.92857 −0.344833 −0.172417 0.985024i \(-0.555158\pi\)
−0.172417 + 0.985024i \(0.555158\pi\)
\(830\) −18.2051 −0.631910
\(831\) 0 0
\(832\) 1.83134 0.0634903
\(833\) −20.3577 −0.705352
\(834\) 0 0
\(835\) −15.6757 −0.542479
\(836\) 181.699 6.28418
\(837\) 0 0
\(838\) −51.6753 −1.78509
\(839\) −52.9639 −1.82852 −0.914259 0.405130i \(-0.867226\pi\)
−0.914259 + 0.405130i \(0.867226\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 58.2565 2.00765
\(843\) 0 0
\(844\) −8.15955 −0.280863
\(845\) 12.3801 0.425888
\(846\) 0 0
\(847\) 49.5440 1.70235
\(848\) 25.3310 0.869870
\(849\) 0 0
\(850\) 49.1154 1.68464
\(851\) 27.9332 0.957538
\(852\) 0 0
\(853\) 44.7737 1.53302 0.766512 0.642230i \(-0.221991\pi\)
0.766512 + 0.642230i \(0.221991\pi\)
\(854\) 13.5413 0.463374
\(855\) 0 0
\(856\) 61.1260 2.08924
\(857\) −0.211298 −0.00721779 −0.00360889 0.999993i \(-0.501149\pi\)
−0.00360889 + 0.999993i \(0.501149\pi\)
\(858\) 0 0
\(859\) 56.0665 1.91296 0.956482 0.291790i \(-0.0942508\pi\)
0.956482 + 0.291790i \(0.0942508\pi\)
\(860\) −8.82314 −0.300866
\(861\) 0 0
\(862\) −10.2562 −0.349326
\(863\) −26.3407 −0.896647 −0.448323 0.893871i \(-0.647979\pi\)
−0.448323 + 0.893871i \(0.647979\pi\)
\(864\) 0 0
\(865\) −4.30253 −0.146291
\(866\) −6.66385 −0.226447
\(867\) 0 0
\(868\) −52.4605 −1.78063
\(869\) 18.0394 0.611946
\(870\) 0 0
\(871\) 3.06678 0.103914
\(872\) 29.0072 0.982308
\(873\) 0 0
\(874\) 74.8314 2.53121
\(875\) 16.6167 0.561746
\(876\) 0 0
\(877\) 33.6648 1.13678 0.568390 0.822759i \(-0.307566\pi\)
0.568390 + 0.822759i \(0.307566\pi\)
\(878\) 65.9138 2.22448
\(879\) 0 0
\(880\) 46.0339 1.55180
\(881\) 16.4282 0.553481 0.276741 0.960945i \(-0.410746\pi\)
0.276741 + 0.960945i \(0.410746\pi\)
\(882\) 0 0
\(883\) 4.29020 0.144377 0.0721884 0.997391i \(-0.477002\pi\)
0.0721884 + 0.997391i \(0.477002\pi\)
\(884\) −28.7601 −0.967306
\(885\) 0 0
\(886\) 47.6817 1.60190
\(887\) 39.5279 1.32722 0.663608 0.748081i \(-0.269024\pi\)
0.663608 + 0.748081i \(0.269024\pi\)
\(888\) 0 0
\(889\) 24.6550 0.826901
\(890\) −9.23719 −0.309631
\(891\) 0 0
\(892\) −106.351 −3.56091
\(893\) 9.89789 0.331220
\(894\) 0 0
\(895\) 17.8830 0.597763
\(896\) 22.6559 0.756880
\(897\) 0 0
\(898\) 31.3477 1.04609
\(899\) 0 0
\(900\) 0 0
\(901\) 19.1834 0.639090
\(902\) −64.5388 −2.14891
\(903\) 0 0
\(904\) −3.36671 −0.111975
\(905\) 18.2528 0.606744
\(906\) 0 0
\(907\) 27.1253 0.900681 0.450340 0.892857i \(-0.351303\pi\)
0.450340 + 0.892857i \(0.351303\pi\)
\(908\) 100.119 3.32258
\(909\) 0 0
\(910\) −6.11365 −0.202666
\(911\) 12.8679 0.426333 0.213166 0.977016i \(-0.431622\pi\)
0.213166 + 0.977016i \(0.431622\pi\)
\(912\) 0 0
\(913\) 41.5071 1.37368
\(914\) 51.0069 1.68716
\(915\) 0 0
\(916\) −61.0365 −2.01670
\(917\) −11.8337 −0.390784
\(918\) 0 0
\(919\) −23.3758 −0.771097 −0.385548 0.922688i \(-0.625988\pi\)
−0.385548 + 0.922688i \(0.625988\pi\)
\(920\) 30.2575 0.997561
\(921\) 0 0
\(922\) 50.1229 1.65071
\(923\) 11.9553 0.393513
\(924\) 0 0
\(925\) −23.5421 −0.774060
\(926\) −5.63276 −0.185104
\(927\) 0 0
\(928\) 0 0
\(929\) 6.68335 0.219274 0.109637 0.993972i \(-0.465031\pi\)
0.109637 + 0.993972i \(0.465031\pi\)
\(930\) 0 0
\(931\) 26.1408 0.856731
\(932\) 29.6209 0.970266
\(933\) 0 0
\(934\) 11.7430 0.384244
\(935\) 34.8618 1.14010
\(936\) 0 0
\(937\) −35.4245 −1.15727 −0.578633 0.815588i \(-0.696414\pi\)
−0.578633 + 0.815588i \(0.696414\pi\)
\(938\) 10.5119 0.343225
\(939\) 0 0
\(940\) 7.30661 0.238315
\(941\) −54.0181 −1.76094 −0.880470 0.474103i \(-0.842773\pi\)
−0.880470 + 0.474103i \(0.842773\pi\)
\(942\) 0 0
\(943\) −18.3025 −0.596010
\(944\) 58.5402 1.90532
\(945\) 0 0
\(946\) 29.2142 0.949837
\(947\) 46.9883 1.52691 0.763457 0.645859i \(-0.223501\pi\)
0.763457 + 0.645859i \(0.223501\pi\)
\(948\) 0 0
\(949\) 2.30026 0.0746696
\(950\) −63.0680 −2.04619
\(951\) 0 0
\(952\) −53.9964 −1.75003
\(953\) 39.4554 1.27809 0.639043 0.769171i \(-0.279330\pi\)
0.639043 + 0.769171i \(0.279330\pi\)
\(954\) 0 0
\(955\) −3.21411 −0.104006
\(956\) −53.7856 −1.73955
\(957\) 0 0
\(958\) −24.0903 −0.778321
\(959\) −23.3180 −0.752978
\(960\) 0 0
\(961\) 15.9893 0.515783
\(962\) 20.0199 0.645467
\(963\) 0 0
\(964\) 11.7463 0.378322
\(965\) 5.32047 0.171272
\(966\) 0 0
\(967\) −19.1270 −0.615082 −0.307541 0.951535i \(-0.599506\pi\)
−0.307541 + 0.951535i \(0.599506\pi\)
\(968\) −175.737 −5.64842
\(969\) 0 0
\(970\) 6.26079 0.201022
\(971\) −18.6748 −0.599304 −0.299652 0.954049i \(-0.596871\pi\)
−0.299652 + 0.954049i \(0.596871\pi\)
\(972\) 0 0
\(973\) 20.3895 0.653659
\(974\) −19.2538 −0.616932
\(975\) 0 0
\(976\) −20.7237 −0.663349
\(977\) −54.0174 −1.72817 −0.864085 0.503345i \(-0.832102\pi\)
−0.864085 + 0.503345i \(0.832102\pi\)
\(978\) 0 0
\(979\) 21.0605 0.673095
\(980\) 19.2971 0.616424
\(981\) 0 0
\(982\) −57.0772 −1.82141
\(983\) 53.7012 1.71280 0.856401 0.516311i \(-0.172695\pi\)
0.856401 + 0.516311i \(0.172695\pi\)
\(984\) 0 0
\(985\) −2.74399 −0.0874309
\(986\) 0 0
\(987\) 0 0
\(988\) 36.9302 1.17490
\(989\) 8.28483 0.263442
\(990\) 0 0
\(991\) −3.10936 −0.0987721 −0.0493861 0.998780i \(-0.515726\pi\)
−0.0493861 + 0.998780i \(0.515726\pi\)
\(992\) 32.4383 1.02992
\(993\) 0 0
\(994\) 40.9787 1.29977
\(995\) −27.8389 −0.882553
\(996\) 0 0
\(997\) −37.8192 −1.19774 −0.598872 0.800844i \(-0.704384\pi\)
−0.598872 + 0.800844i \(0.704384\pi\)
\(998\) 72.9337 2.30868
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bj.1.3 9
3.2 odd 2 2523.2.a.r.1.7 9
29.23 even 7 261.2.k.c.181.3 18
29.24 even 7 261.2.k.c.199.3 18
29.28 even 2 7569.2.a.bm.1.7 9
87.23 odd 14 87.2.g.a.7.1 18
87.53 odd 14 87.2.g.a.25.1 yes 18
87.86 odd 2 2523.2.a.o.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.1 18 87.23 odd 14
87.2.g.a.25.1 yes 18 87.53 odd 14
261.2.k.c.181.3 18 29.23 even 7
261.2.k.c.199.3 18 29.24 even 7
2523.2.a.o.1.3 9 87.86 odd 2
2523.2.a.r.1.7 9 3.2 odd 2
7569.2.a.bj.1.3 9 1.1 even 1 trivial
7569.2.a.bm.1.7 9 29.28 even 2